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We theoretically investigate the role of spin fluctuations in charge transport through a magnetic junction.
Motivated by recent experiments that measure a nonlinear dependence of the current on electrical bias, we
develop a systematic understanding of the interplay of charge and spin dynamics in nanoscale magnetic junctions.
Our model captures two distinct features arising from these fluctuations: magnon-assisted transport and the effect
of spin-transfer torque on the magnetoconductance. The latter stems from magnetic misalignment in the junction
induced by spin-current fluctuations. As the temperature is lowered, inelastic quantum scattering takes over
thermal fluctuations, exhibiting signatures that make it readily distinguishable from magnon-assisted transport.

DOI: 10.1103/PhysRevB.99.024434

I. INTRODUCTION

The accurate electrical detection and control of the spin
degree of freedom of electrons remain a central goal of
spintronics. An early success of the field was the demon-
stration of magnetoresistance in conducting magnetic multi-
layers, allowing for the determination of the magnetic state
of a heterostructure via its electrical resistance [1-3]. Later
was shown the possibility of writing magnetic states by the
application of large current densities [4—10]. An electrical
current traversing the structure becomes spin polarized by
one magnetic layer and exerts a spin-transfer torque (STT)
on another [11-13]. If the STT is large enough to overcome
damping, it can induce switching between magnetic states
with different electrical resistances, thereby paving the way
for a current-driven “write” complement to the “read” func-
tionality of magnetoresistance [14,15].

In structures with large macrospins, it typically suffices to
characterize charge transport in the linear response. However,
as devices are scaled down and the spins of the components
become smaller, magnetic fluctuations become increasingly
important and can give rise to new interplays between mag-
netic dynamics and electrical transport, which may manifest
through nonlinear charge transport features.

One known example of this interplay is magnon-assisted
transport (MAT) originating from inelastic electron-magnon
scattering [16]. A second effect stems from changes in the
magnetoresistance of a heterostructure caused by STT-altered
misalignments of the magnetic components [17]. While such
misalignments arise from thermal fluctuations at high tem-
peratures, recent work has argued that in nanostructures at
low temperatures, such an effect is quantum mechanical in
nature. [18]

As both MAT and STT may manifest as zero-bias kinks
in the electrical response, a careful theoretical treatment is
necessary to distinguish these, as well as to elucidate the
nature (classical versus quantum) of the STT in nanoscale
junctions [19]. Previous theoretical studies, such as quantum
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master equation approaches [20], treat quantum spin fluctu-
ations but focus on spin dynamics rather than charge trans-
port features. Others, including a quantum Green’s function
approach [21], formally integrate spin fluctuations and focus
on the ensuing magnetotransport.

In this paper, we develop a self-consistent treatment for
spin fluctuations coupled to the electrical response of a mag-
netic heterostructure, incorporating the relevant inelastic pro-
cesses and including both thermal and quantum fluctuations
on equal footing. Developing a quantum rate equation for
magnetic dynamics, in particular, allows for the phenomeno-
logical inclusion of dissipation to the environment and the
incorporation of pertinent nonlinearities. Our model allows
for parsing and comparison of the contributions of the differ-
ent effects to overall electrical response. Our approach yields
simple, analytic equations that, in addition to laying bare the
underlying physics, make clear the temperature, bias, and
junction-size regimes in which different effects dominate.

Our model offers two key insights. (1) While our results
are compatible with the interpretation of [18], we go beyond
a phenomenological description of magnon emission. The
low-temperature STT predicted by our model, which includes
quantum fluctuations, results in a zero-bias resistance kink.
Our model also describes the crossover from classical (ther-
mal) STT at high temperatures to the quantum behavior at low
temperatures, which is marked by a change in the resistance
from a monotonic dependence on bias to a local extremum.
(2) We show that both types of STT may be readily distin-
guished from MAT by reversing the relative magnetic orien-
tation in the junction, as well as by the bias scales on which
they appear. Additionally, we predict that both MAT and STT
give rise to a flat resistance at biases smaller than the magnetic
field energy, which may be observed at higher fields.

This paper is organized as follows. In Sec. II, we start by
briefly discussing the physical processes behind MAT and
STT, after which we introduce our model Hamiltonian for
spin-dependent electron transport, which we generalize to
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FIG. 1. Top left: magnon-assisted transport. Electrons excite or
destroy magnons as they move across a heterostructure. Bottom
left: spin-transfer torque (STT) alteration of the magnetoresistance.
The STT alters fluctuations of the spin S, affecting (S) and thereby
the magnetoconductance G,,. Right: MTJ schematic. The magnetic
island does not hold charge, but the island spin S, which is allowed to
fluctuate, gives rise to spin-dependent hopping between the left and
right leads.

include spin fluctuations. In Sec. III, using the Kubo formula,
we then compute the charge transport resulting from this
generalized Hamiltonian, including both inelastic and elastic
electron hopping. The inelastic current is MAT, while the
elastic current includes magnetoresistance, which depends on
the magnetic state. Next, in Sec. [V we determine the steady-
state magnetic dynamics by computing the spin-transfer rate
(i.e., the STT) from the same inelastic scattering processes;
the resulting expression for the magnetic steady state is finally
reinserted back into the current to give the full, self-consistent
charge dynamics. Finally, on the basis of the resulting expres-
sion for the current, in Sec. V we discuss the contributions of
both STT and MAT to the nonlinear /-V curves over different
ranges of temperature and bias.

II. MODEL

Before introducing our model, we briefly discuss the
physics of MAT and STT. Consider a conducting magnetic
junction in contact with metallic reservoirs. Under an elec-
trical bias, electrons flow from one energy reservoir, across
the junction, to the other. If the bias is large enough, some
of the electrons may undergo spin-flip scattering, creating a
magnetic excitation, a magnon, of the magnetic components
of the junction. The electron correspondingly loses some
energy to a magnon, entering a lower-energy state in the other
energy reservoir (see top left panel of Fig. 1). This inelastic
transport, i.e., MAT, has been shown to manifest as a zero-bias
kink in the electrical response [16,22-24].

Meanwhile, the junction magnetoconductance G, depends
generally on the relative orientations of magnetic layers;
because spin fluctuations of the different layers change, on
average, the relative orientations of the layers, the magnetore-
sistance obtains a correction §G,, proportional to the ampli-
tudes of the fluctuations. Under a bias, the STT may enhance
or reduce the amplitude of the spin fluctuations [25-28],

altering §G,, and self-consistently changing the current [
flowing across the heterostructure. As a result, the current
may demonstrate a nonlinear dependence on bias. At high
temperatures, these spin fluctuations are thermal in nature
(corresponding to classical STT). However, the dependence
of the magnetoconductance on bias has been observed as a
zero-bias kink in the differential resistance of a nanopillar spin
valve, which is known to persist at low temperatures [29,30].
In [18], it was argued that such features may arise from
quantum STT. Importantly, this STT incorporates sponta-
neous magnon emission, which gives rise to a dependence
of the resistance on the absolute value |/| of the current,
thereby manifesting as the zero-bias kink: remarkably, spin
fluctuations are enhanced for both directions of current, which
stands in contrast to classical predictions [19].

We now turn to the task of writing a minimal model
that captures both effects. To incorporate inelastic spin-flip
scattering of electrons naturally, we focus on a magnetic
tunnel junction (MTJ) (oriented in a parallel or antiparallel
configuration). While some quantitative differences in charge
transport may arise between sequential tunneling and coherent
electron transport through a metallic device such as that in
Ref. [18], we expect our results to be qualitatively generic
(barring special features associated with mesoscopic reso-
nances, Coulomb blockade, or any band-structure anomalies).

In our model the role of magnetization of one of the leads
is ascribed to the spin of a magnetic nanoisland connecting
the leads (see right panel of Fig. 1), which gives rise to spin-
dependent charge transport through the junction barrier. The
island spin is allowed to fluctuate, coupling magnetic fluctua-
tions with charge transport. Charge transport occurs between
a metallic lead on the right and a magnetic metallic lead on the
left, between which electrons map hop. We suppose that both
leads are large reservoirs whose properties are unaffected by
transport, with the magnetic polarization of the left lead fixed
in the +z direction; in addition we suppose that the spin of
the left lead is sufficiently large that its fluctuations may be
neglected. While the right lead is nonmagnetic, we consider
the spins of electrons traversing the junction to be coupled to
the spin S of the magnetic island, which connects the leads but
does not hold electrons; the amplitudes for electron hopping
from one lead to the other thus depend on the orientation
of the electron spin relative to S. For a fixed, semiclassical
S, the corresponding tunneling Hamiltonian can be written
generally:

Hr = Z Z V\J(ZG,)BIG&V'G' +Hec., (1

oo’ v

where the amplitudes yv(f,a/) depend on the unit vector n =
S/Sh of the island spin, with S = |S|// as the island spin.
Here, a,, and Bm are annihilation operators for electrons in
left-lead eigenstate v and spin o’ and right-lead eigenstate
v and spin o, respectively; the indices o, 0’ =%, | denote
spin orientations relative to the z direction. Note that we
do not include magnetism of the left lead in the tunneling
Hamiltonian, Eq. (1), but will subsequently include it through
the left-lead density of states. For a model isotropic in spin
space, we may expand in powers of n - ¢, where ¢ is a vector
of Pauli matrices, with .. denoting 2 x 2 spin structure. One
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obtains the semiclassical expression
?vv/ = Ayl + B,yn- o] (2)

(with I as the 2 x 2 identity), which is general in the absence
of magnetism in the leads and constitutes an isotropic Kondo
model.

To parametrize thermal and quantum fluctuations of the
tunnel island macrospin, we quantize S via the Holstein-
Primakoff transformation:

S, =éle—s, §_=8,—i§, =25 —¢lee ~ V2S¢,
3

where ¢ is a bosonic magnon annihilation operator. We will
restrict ourselves to biases below the STT-induced classical
instability [12], so that the average direction of n is fixed,
and fluctuations are incoherent: (¢) = 0. In writing Eq. (3),
we have chosen the direction of (S) to be oriented antiparallel
(i.e., in the —z direction) to the left-lead spin in equilibrium;
thus, a magnon, which carries spin opposite to the spin order
parameter, is associated with a quantum +7%z of angular
momentum. (The other case we will consider, the parallel
orientation, may be obtained by changing the sign of the
left reservoir polarization P ). For simplicity, we specialize
to fluctuations of the macrospin only, with higher-energy
magnon modes assumed to be energetically inaccessible. In
addition, we restrict ourselves to a large spin § > 1 and
small magnon occupation numbers, N = (83‘1) = (¢fe) « S,
allowing for the expansion of the radical in Eq. (3).

Writing n as S/S% in Eq. (2) and inserting Eq. (3), we find
the tunneling Hamiltonian, Eq. (1), has two physically distinct
contributions: Hy ~ H. + H,;. The first term,

He= 3 Y i0b]avq + He, )

o=+ v,/

conserves the magnon number and gives rise to elastic scat-
tering of electrons through the tunnel junction. Here, t(i)
Ay F B,y + ZBwchfc/ S (with &+ denoting spin orientation
in the positive and negative z directions, respectively) capture
mixing of the spin-dependent hopping amplitudes by fluctua-
tions of the island spin. The second term,

H, = > Bu(@'b] ayy +ebliay) +He,  (5)

1
N
describes inelastic spin-flip processes in which magnons are
created or destroyed as electrons traverse the tunnel barrier.

These terms, H, and H;, are field-theoretic representations of
STT and MAT, respectively.

III. CHARGE TRANSPORT

In this section, we compute the Charge current
I=(—e)>,, 0 b bw ) =—(—e))_,, d(al,a,) into
the right lead perturbatlvely to second order in the
amplitudes A,, and B,, (with e >0 as the negative
of the electron charge), driven by an electrical bias
across the MTJ. We take as our unperturbed Hamiltonian
Ho =3, (€50l dvy + €,b1 b,o) + 1T,  where ¢,
and €, are the left- and right-lead single-particle energies,
respectively, and €2 is the ferromagnetic resonance frequency

of the island spin. To simplify our model, we suppose the
leads are good spin reservoirs, so that no spin accumulates
there.

To second order in the tunneling amplitudes, we obtain
a charge current for both the parallel ({(S) oriented in the z
direction) and antiparallel ((S) oriented in the —z direction)
configurations with elastic and inelastic contributions,

I=1+1, (©6)
respectively arising from #, and H;. Here,
I, =GV, I, =(e/rS)AQIN_ — nP.(N+ — N)]J, @)

where V =V — Vj is the voltage bias. In the elastic term,
the conductance G depends on the magnon number N and is
given by G = Gy + nG,,(1 — N/S), with

Go= Gy Y A Ner) Arv(er)(|Av > + [Boy ),

vy’

Gu=2Gy Y A7 (er)Ari(er)Re[A], By, (8)

vy’

where we have assumed a flat electronic density of states
near the Fermi surfaces e€r of the leads. Here, G4 = 2¢2 /h
is the spin-degenerate quantum of conductance, and n = %1
for parallel (antiparallel) transport. Furthermore, Ag,(¢€) is
the right-lead spectral function, while A(i)(e) = [Apyv(e) £
Apv(€)]1/2, with A;s(€) as the spin-o left-lead spectral
function.

In the inelastic term in Eq. (7), A is a dimensionless
parameter quantifying inelastic charge transport:

A= 2ZA(Lt?(GF)ARu(GF)|va’|2» 9)

vy’

which vanishes when the island is nonmagnetic, while P;, is
an effective left-lead polarization:

PL=2) A7 (er)Arv(€p)|Bu /A (10)

vy’
When magnetism of the island is turned off (B,,, = 0), trans-
port is elastic, and the total charge current reduces to [ =
G,V. Last,

Ni(V) = (ng(hQ — eV)[AQ — eV]

1
2hQ2
+ng(hQ2 +eV)[hQ +eV]} (11
describes electron-hole excitations in the leads, with ngle] =
[e/T — 117! as a Bose-Einstein distribution and 7', the tem-
perature in units of energy. The dependence of /; on V through
the functions Ny (V) captures MAT, i.e., the alteration of
charge transport caused by the absorption or emission of a
magnon energy quantum /€2 by an electron traversing the
tunnel barrier.

The transport coefficients in Eq. (7) allow for a
more transparent parametrization in the simplifying
case A=A,y and B = B,,. There, P, reduces to
the traditional definition of polarization, Pp = (Dpy —
Dp)/(Dry + D), where Dyy =), Arov(€r). Defining
a complex island polarization P = B/A, one finds that
Go = G4 Dy Dg|AI*(1 + | P)?), G,,, = 2G0Re 1PL/(1 +
[P|?), and A =2(Go/Gy)|PI*/(1+|P*), where
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Dy =(Dpy +Dp))/2 and D=3, A (ep) are the
left-lead spin-averaged and right-lead densities of states.

In the limit of infinite S, magnetic fluctuations of island
spin do not contribute to the current. Here, the inelastic term
in Eq. (6) vanishes, while the elastic term reduces to the
classical expression for current traversing an MTJ with fixed
orientations of the magnetic leads, I = (Go + nG,)V, ie.,
a linear dependence of / on V that depends on the island
orientation through 5.

At finite S, however, the current depends nonlinearly on
the bias V through the electron-hole functions Ny and the
magnon number N. The dependence of G,, on N =S —
(8.)/h can be interpreted as a change in the magnetoconduc-
tance §G,, = (—N/S)G,, due to the average misorientation
of the fluctuating island spin away from the left-lead polar-
ization direction z. At zero bias, the current vanishes if N =
N1(0) =np(h2) = Ny, i.e., the magnons are in equilibrium
with the electron-hole excitations in the leads. At finite bias,
however, N is driven out of equilibrium and depends on V. To
obtain the full dependence of / on V, we turn to spin-transfer
and magnon dynamics.

IV. SELF-CONSISTENT SPIN DYNAMICS

In this section, we compute the bias dependence of the
magnon occupation number in the steady state, which is
driven from equilibrium by the STT. The same inelastic
scattering processes as those described above drive magnetic
dynamics [17]. The corresponding island spin dynamics can
be captured by a simple rate equation for the magnon number:

AN = =20, iQ(N — No) + I, (12)

where [, is the rate of angular momentum transfer to
the island spin from the leads. The damping coefficient
a, parametrizes coupling of the spin S to the lattice,
which, in the absence of [,, equilibrates N to Ny. The
spin current [, is obtained by calculating the rate of
change of the z component of angular momentum of
the leads, I|" = (h/2)Y, . 05,.8,(a],800) and Iy =

Z

(7/2) 3, 667 OO (bl b,o), and exploiting conservation of

total z spin by Hr, i.e., I, = —I,(f) — Iz(eS)~ One obtains again
to second order

In = =20, iQ(N — Ny) + 20, PL(N_-EQ + NV), (13)

where o, = A/Sm, so that electron fluctuations become
increasingly important with decreasing junction size ~S.
The first term, « N — Ny = (1 + N,)N — N, (1 + N), is
the difference between the rate of electron-hole emis-
sion/magnon absorption (< 1 + N, ) and the rate of magnon
emission/electron-hole absorption (x 1 + N) and is nonzero
due to the noncancellation of the spontaneous magnon and
electron-hole emission terms. At zero bias, the second term in
Eq. (13) vanishes, leaving AN = —2(ote + )N — Np);
here, the rate of change of the magnon occupation number
is the difference between the emission rate due to driving by
fluctuations of phonons and electron-holes in the leads and the
absorption rate corresponding to dissipation of the magnetic
dynamics back into the leads and lattice.

) N,

}'C’SS'CG' ST O(—eV — Q) O(eV — hQ)

— s\
3 X

Y < Vv
2 X
L quantum STT A Ny
~50 0 50 >
eV/hQ

FIG. 2. Left: steady-state magnon number N, Eq. (14), versus
bias V for T /12 = 0 (blue) to 10 (red) in units of 1 for the antiparal-
lel MT]J configuration with &, /. = 25. The symmetry between pos-
itive and negative V is broken by the left-lead polarization P, = 0.2.
Employing the parametrization from the discussion below Eq. (11)
and taking P = P, one has A(Gy/Go) = (G,/Gy) = P2/(1+
P?). At high temperatures, the STT gives rise to a monotonically
increasing magnon occupation number, while at low temperatures, a
minimum near zero bias is formed. Right: electron/hole pairs giving
rise to spin and charge transport at zero temperature.

In the steady state (N = 0), the out-of-equilibrium magnon
number is given by N = N, (V), with

Ny(V)=yNy+yN, (14)

which is plotted in Fig. 2. Here, y = 1/(1 + V/V,),and N =
(e /ap)IN4(V) = No — PLN-(V)1/(1 + o, /e,). The quan-
tity Ve =n(1 + o,/ )i2/e Py, is the voltage threshold for
the so-called swasing instability [12]; we restrict ourselves
to biases |V| < V.. The deviation of the magnon population
away from the equilibrium value Ny may be interpreted as
STT-induced alteration of the magnetic state of the island.
The first term in Eq. (14) represents thermal fluctuations
Ny of S, which are enhanced by a factor y by STT; when
P; =0, V., diverges, and this term no longer depends on
V. The second term in Eq. (14), which vanishes at V =0,
is an effective STT arising from inelastic electron-magnon
scattering. This term survives at P, = 0, as impinging out-
of-equilibrium electrons are known to depolarize spin even
without a polarizing layer [31], acting as an effective heating
of the ferromagnetic island spin [32]. In the limit of infinite S,
one has «, and therefore V, diverge, so N,(V) is fixed at Ny,
and S is no longer altered by the STT.

According to Eq. (14), two types of temperature regimes
for STT may be distinguished. At high temperatures where
No > N and thus N ~ y Ny, classical STT dominates, and
N depends monotonically on V/V,. Here, the bias depen-
dence of N thus arises from the STT alteration of ther-
mal fluctuations of S. At low temperatures where Ny < N,
the classical interpretation of STT-enhanced thermal fluctu-
ations of S no longer holds, and quantum STT dominates.
Since N/No ~ (ete/at))/(1 + ac/at,) ~ 1/(const + S), the
classical-to-quantum transition occurs at lower temperatures
for larger S, suggesting that such a quantum effect will
manifest only in sufficiently small junctions or at suffi-
ciently low temperatures. Even as T — 0, where Ny =0,
the junction exhibits a nonlinear electrical response. This
zero- temperature, quantum STT can be understood as fol-
lows. Thermal fluctuations of S and electron-hole pairs within
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10 hQ

—10 0

FIG. 3. Plot of the ratio of r = G¢1/Gyar s a function of bias V
and temperature 7', demonstrating the relative importance of STT to
MAT in the nonlinear charge transport features. MAT dominates over
STT at low temperatures and biases. Blue (red) contours correspond
to MAT (STT) dominating, i.e., to r < 1 (r > 1) in steps of 1/2.
The black solid lines correspond to Ny = N. At temperatures above
this line, Ny > N, and classical STT-driven thermal fluctuations
dominate the response Gsrr; below, N > Ny, and inelastic-scattering
dominates. The parameters are the same as in Fig. 2, so S/S, = 25.
Left and right insets: r for §/S, = 250 and S/S. = 2.5, respectively,
with the same axis scale as the main panel. For S < S, r no longer
depends on S; for S > S., MAT dominates over STT for a larger
range of temperatures and biases, reflecting the decreased importance
of fluctuations of S.

each lead freeze out. However, electron-hole pairs across
the junction, split by V, are available for inelastic magnon
scattering (see the schematic on the right side of Fig. 2):
because ng(hiQ2 +eV)= —O(FeV — hQ2) at zero temper-
ature, where ®(x) is the step function, the electron-hole
functions Ni are nonzero when e|V| > liQ2. These pairs
drive a nonequilibrium magnon population y N, which can be
interpreted as the generation of an effective nonzero magnon
temperature [32].

V. ELECTRICAL RESPONSE OF MTJ

Let us summarize our key results, Egs. (6), (7), and (14). In
order to obtain the full dependence of the current on voltage,
we insert N = N,(V) into Eq. (6). Two effects give rise to a
nonlinear relationship between / and V: MAT (dependence
of I on V via N.(V)) and STT (dependence of I on V via
the magnon distribution N). In an experiment, these effects
may manifest as nonlinear features in, e.g., the electrical
resistance R = V/I. In order to parse which effect dominates
the nonlinearity in R at a given temperature and bias, it is
helpful to write the differential conductance G = d1/dV as

G = Go+ nGy, + Gmar + Gstrs (15)

where Gumar = 0v Ii|y_y,(v) is the differential conductance
arising from MAT and Gsrr = On1|y_p,(v)0v Ns(V) is the
differential conductance STT. To isolate the nonlinear fea-
tures, we consider the ratio r = 9y Gstr/0y Gmar [33], which

classical 1
ST R[Gy ]

quantum STT

40 0 40 ev/hQ

FIG. 4. Low-temperature resistance R versus bias for parallel (P)
and antiparallel (AP) configurations, respectively corresponding to
n = =1, as well as P, = G, =0 (left lead unpolarized). Shown
are temperatures ranging from 7/iQ2 = 0 (blue) to 2 (red) in steps
of 1/4. MAT dominates at temperatures T < 2 and e|V| < hQ
but vanishes as the temperature is raised. Inset: high-temperature R
versus bias for the parallel configuration for temperatures ranging
from T/hQ2 =0 (blue) to 8 (red) in steps of 1/2. At T =0, the
resistance exhibits a maximum around zero bias, reflecting MAT.
At T/h2 ~ 1 the resistance exhibits a minimum near zero bias,
stemming from quantum STT. As T is further increased, classical
STT dominates, and R no longer shows local extrema near zero bias.
All unspecified parameters are the same as in Fig. 2. We find that the
MAT-induced resistance plateau survives at P, = G,, = 0, as only
one magnetic component is required to inelastically scatter electrons.

is plotted in Fig. 3. The resistance R at various temperatures
is shown in Fig. 4.

At low temperatures (T < A2) and biases (e|V| < ),
r < 1 (blue regions of Fig. 3), and MAT dominates the
dependence of the resistance R = V/I on V. Here, we
find that for all orientations of the MTJ, i.e., both signs of
n, MAT manifests as a plateau in the resistance [16,22—
24] (see Fig. 4). Note that, generally, features of MAT
due to macrospin fluctuations manifest on the bias scale
elV| ~ hQ.

At high temperatures (T = i2) and/or biases (e|V| >
hn<2), r > 1 (red regions of Fig. 3), and STT determines the
nonlinear behavior of R. The two STT temperature regimes,
corresponding to classical STT (Np > N) and quantum STT
(N > Nyp), as discussed above, give rise to different behaviors
of the resistance. At higher temperatures where N & y Ny, the
resistance depends monotonically on V through y near-zero
bias; at lower temperatures where N ~ )/IV , the resistance,
like N, shows an extremum (see inset in Fig. 4). The transition
from a monotonic dependence of R on V reflects the change
from classical spin fluctuations y Ny, which are enhanced
only for one direction of current, to y]V , which are enhanced
for either direction. Such a transition, from monotonically
changing R to an extremum, is seen clearly in [18]. For
the parameters chosen in Fig. 4, the classical-to-quantum
transition occurs at a temperature near 7 ~ /2. Importantly,
unlike the effect of MAT, which is observable in the range
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e|V| ~ hQ, the STT extrema persist over an energy range eV,
(>hQ for Pp < 1) due to y. As with MAT, these features
survive at zero temperature.

It should be noted that the value of S, which can be
assumed to scale with the junction size, also determines the
regions in which classical STT, quantum STT, and MAT
dominate the nonlinear signal (see insets in Fig. 3). The quan-
tity S, = A/ma,, defined so that §/S. = o, /c,, provides a
convenient reference value. For larger values of §/S., STT
driving of N away from N is increasingly suppressed, and
MAT dominates over a wider range of biases and temper-
atures, with our results reducing to those of [16] in those
ranges. In addition, when | V| is sufficiently large that STT
dominates over MAT, the temperature below which quantum
STT dominates over classical STT (corresponding to N <
Ny) decreases with increasing values of S/S,, reflecting the
suppression of quantum spin fluctuations. This helps to ex-
plain why quantum STT may be expected to play a significant
role in the electrical properties of small (in the case of [18],
nanoscale) MTJs.

The various parameters are readily estimated. Typi-
cal ferromagnetic resonance frequencies €2 ~ 10 GHz ~
107® eV/A correspond to a crossover temperature of about
0.1 K. For external field strengths of ~1 T, comparable to
those used in [18] and corresponding to resonance frequencies
~100 GHz ~ 107 eV/hi, however, the crossover temperature
becomes ~1 K, which can be further increased by decreasing
S (see right inset in Fig. 3), decreasing o, (thereby increasing
S.), or increasing the bias. Taking Gy ~ Q7! and P ~ 107!
corresponds to A ~ 10°; for a conservative value o » =10,
this corresponds to a reference spin S. ~ 10°.

We conclude this section with qualitative predictions for
experiments. First, as both quantum STT and MAT depend
on the functions N.(V), at low temperatures T < 2 the
resistance is flat at biases below the magnon gap, e|V| <
h<2, as impinging electrons are not sufficiently energetic to
excite magnons. Thus, we expect that at sufficiently large
magnetic fields, the low-temperature resistance for biases
elV| < hQ2 should be flat for nanoscale junctions wherein
the micromagnetic modes are gapped out and our macrospin
model is valid. For the parameters in [18], for example,
this corresponds to a current range of |/| < 0.1 mA, which
may be beyond the resolution of the experiment. Second,
at low temperatures, one may determine whether MAT or
STT dominates by changing the orientation of the magnetic
junction. The zero-bias extrema in the resistance due to MAT
are always plateaus in the resistance, whereas those due to
quantum STT are valleys (plateaus) in the parallel (antipar-
allel) configuration [18,29,34-36] (see Fig. 4). This is to be
expected, as inelastic scattering of electrons by magnons does
not require a polarizer (scattering by phonons, for example,

will show similar behavior), while the magnetoconductance
clearly depends on the sign of 7.

VI. CONCLUSION AND DISCUSSION

We have demonstrated how a combination of inelastic
charge transport and STT generate a rich dependence of
the resistance on voltage. In particular, we have shown how
MAT and STT amplification of both equilibrium and nonequi-
librium spin fluctuations driven by inelastic scattering can
generate a low-temperature nonlinear resistance similar to that
observed experimentally [18,29].

Future work may expand on our model. For simplicity, this
model treats only one magnon mode, but in general, at high
temperatures a spectrum of modes may contribute, enhancing
the nonlinear features; if the spectrum is known, our model
can be adapted accordingly by weighing the current, Eq. (6),
by a density of states and integrating over magnon energy /i <2.
The incorporation of higher-energy (>/7<2), micromagnetic
excitations extends the temperatures at which MAT can be
studied [16]. Joule heating, absent in our model, can generate
thermal fluctuations of the spin, even if the ambient tempera-
ture is low; while such an effect is dismissed in [18], it must be
generally addressed. Furthermore, our theory is perturbative
in the tunneling coefficients A,, and B,,, and we neglect
higher-order terms in the tunneling coefficients [21], which
for small values lead to Kondo correlations at low tempera-
tures. Absent in our model are also nonparabolic electronic
band structure features of the normal metals, which can give
rise to a nonlinear resistance. In the case when the island is
physically separate from the right lead, mesoscopic low-bias
anomalies in spin-dependent transport [37] may result, which
could obscure the magnetotransport features studied in this
paper.

In addition, when V approaches the swasing threshold, N
can become on the order of S, so that our expansion of the
radical in Eq. (3) breaks down, and a more careful treatment is
required. While classical current-driven instabilities in MTJs
have already been observed [6,38], it remains to be seen how
fluctuations of the magnetic order modify charge transport for
V greater than V..

Note added in proof. The authors have recently become
aware of another paper [39], which demonstrates quantum
STT via spin shot noise.
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