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Magnon condensation in a dense nitrogen-vacancy spin ensemble
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The feasibility of creating a Bose-Einstein condensate of magnons using a dense ensemble of nitrogen-vacancy
spin defects in diamond is investigated. Through assessing a density-dependent spin-exchange interaction
strength and the magnetic phase-transition temperature (Tc) using the Sherrington-Kirkpatrick model, the min-
imum temperature-dependent concentration for magnetic self-ordering is estimated. For a randomly dispersed
spin ensemble, the calculated average exchange constant exceeds the average dipole interaction strengths for
concentrations approximately greater than 70 ppm, while Tc is estimated to exceed 10 mK beyond 90 ppm,
reaching 300 K at a concentration of approximately 450 ppm. On this basis, the existence of dipole-exchange
spin waves and their plane-wave dispersion is postulated and estimated using a semiclassical magnetostatic
description. This is discussed along with a Tc-based estimate of the four-magnon scattering rate, which indicates
magnons and their condensation may be detectable in thin films for concentrations greater than 90 ppm.
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I. INTRODUCTION

Bose-Einstein condensates are fascinating systems which
tangibly demonstrate macroscopic quantum coherence and
novel matter-wave dynamics. Following their initial demon-
stration using ultracold atom gases [1,2], the phenomenon has
been observed in solid systems using metastable ensembles
of photonic [3,4] and magnetic [5,6] quasiparticles. Here,
the possibility of observing similar magnetic quasiparticle
condensation in an ensemble of charged nitrogen vacancy
(N-V −) spins in diamond is investigated.

The pursuit of solid-state-based condensates has been mo-
tivated mainly by the desire to observe the phenomenon at less
stringent temperatures and critical densities [7]. This is facili-
tated with the use of quasiparticles due to their orders of mag-
nitude lower mass compared to atoms. However, this advan-
tage is mitigated by their short lifetimes, which is limited by
the local density of states and lattice-induced relaxation. Such
condensates are understood to be formed by being inelasti-
cally scattered into their lowest energy at a critical density,
provided that the scattering rate is faster than their lifetime,
which can be limited by both intrinsic and extrinsic factors.
Quasiparticle condensates are therefore transient by nature
and are often referred to as nonequilibrium condensates, due
to not being thermally equilibrated with their immediate envi-
ronment. In photonic systems, most reports have focused on
the condensation of cavity-based exciton polaritons [8] which
possess intrinsic lifetimes in the order of hundreds of picosec-
onds [9], being usually limited by the quality of the optical
cavity. In magnetic systems, most observations of condensates
have been through exploring deviations in the magnetic-
and temperature-dependent phase transitions of quantum
magnets [10]. However, recent observations have centered
around the condensation of magnons in thin-film yttrium
iron garnet (YIG), which are limited by their spin-lattice
relaxation time in the order of hundreds of nanoseconds [11].
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Magnons, or spin-wave quanta, constitute propagating dis-
turbances in a correlated array of magnetic spins [12,13],
and whose modes and dynamics are being intensely studied
in a variety of systems in the pursuit of both fundamental
many-body states [14], and practical information technology
[15,16]. While the manifestation of spin waves in magnetic
media is ubiquitous, their room-temperature quantum con-
densation is a recently observed phenomenon, and presents
a compelling platform for exploring many-body and macro-
scopic quantum dynamics at room temperature [4,17–19].
Given the central role of spin-lattice relaxation, it is com-
pelling to consider their manifestation and condensation in
magnetically doped crystals with long-lived spin systems, and
for which additional degrees of spin manipulation may be
available.

The interest in exploring N-V − ensembles is therefore
motivated by their record room-temperature spin-lattice re-
laxation times [20,21], and the demonstrated high fidelity of
coherent control and optical readout from both single spins
and ensembles, without the need for cryogenics or intricate
detection schemes [22]. In light of their exceptional spin prop-
erties, N-V − ensembles have been suggested for the study of
controllable quantum spin glasses [23] and cavity-mediated
ferromagnetic ordering [24], and have already proven to be
experimentally versatile systems for developing quantum-
based metrology and information protocols [25–27], room-
temperature masers [28], and the exploration of many-body
quantum systems [29], demonstrated in particular by the
recent observation of time crystals [30].

Fundamentally, condensation of quasiparticles is depen-
dent on the presence of a global minima or “traps” in their
momentum space, and an inelastic-scattering mechanism (ξ )
which enables a form of evaporative cooling for condensation
to occur. This needs to occur at a rate which exceeds the
spin-lattice relaxation (γ ), and toward a minimum energy
that is below the surrounding thermal energy. In turn, the
thermally equilibrated energy of the crystal matrix needs
to be lower than the magnetic phase-transition temperature
(Tc; Fig. 1), being the point where the interaction energy

2469-9950/2019/99(2)/024414(12) 024414-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.024414&domain=pdf&date_stamp=2019-01-15
https://doi.org/10.1103/PhysRevB.99.024414


HAITHAM A. R. EL-ELLA PHYSICAL REVIEW B 99, 024414 (2019)

θ

(c)(b)(a)

Non-equilibrium
magnon condensates

Energy

‖ Bk ⊥Bk

)(

FIG. 1. (a) Schematic of a diamond unit cell, highlighting the configuration of the N-V − defect and its three other possible orientations
[(i)–(iii)] relative to the crystal coordinates. (b) Magnons will condense into their minimum energy h̄ω through inelastic scattering at a rate ξ

provided that this rate is greater than the spin-lattice relaxation rate γ , and that h̄ω is less than the local thermal energy kBT and the magnetic
phase-transition energy kBTc. (c) A surface plot of the dispersion of dipole-exchange plane spin waves for all relative angles between an
external magnetic field B and the propagating spin-wave number k. Two global minima occur in the dispersion of spin waves propagating in
parallel with B.

between nearest-neighbor spins exceeds the local thermal
energy. This ensures that an ensemble of magnetic spins
will mutually lock each other in phase, bringing about long-
range magnetic order, and accommodating the propagation of
magnetic order perturbations, i.e., spin waves [13].

To evaluate these points, the density-dependent spin-
exchange and dipole interaction strengths in a randomly dis-
tributed ensemble of N-V − spins is assessed. This is carried
out with the understanding that the spin properties may be-
come unpredictably modified when defect concentrations be-
gin approaching the crystal unit-cell density, thereby limiting
this analysis to densities that retain the spin defects integrity,
i.e., that defects are separated enough throughout the crystal
lattice to ensure that their electronic level structure is not
fundamentally modified. There are considerable difficulties
in generating dense N-V − ensembles with concentrations
exceeding 10 ppm, and for concentrations reported in the liter-
ature, almost all do not exceed a few ppm. Exceptionally, there
are reports of concentrations exceeding 10 ppm and approach-
ing 100 ppm [31–33]. This encourages the consideration of
higher concentrations, and the optimistic outlook that there
are no intrinsic limitations, as growth optimization techniques
and N-V − creation efficiencies are continuously improved.

This article is divided into two sections. In the first section,
a general consideration of the N-V − density limit is outlined,
followed by an estimation of the exchange interaction strength
Jex. This is based on first principles, and is delineated as a
function of concentration, which is then parametrized in terms
of the average nearest-neighbor distance. The obtained values
are then applied to estimate the magnetic phase-transition
temperature Tc as a function of concentration. In particular,
the Sherrington-Kirkpatrick model is used [34] in combi-
nation with the average exchange interaction 〈Jex〉, under
the application of a magnetic field. In the second section,
the calculated concentration-based 〈Jex〉 and Tc values are
used to justify the use of a semiclassical description of the
dipole-exchange plane spin-wave dispersion [35], as well as
the rudimentary condensation dynamics based on the analysis
formulated in [11]. As previously mentioned, observation of
room-temperature magnon condensation has been extensively

reported so far for thin-film YIG, which thereby provides an
instructive physical comparison. Its reported parameters are
therefore highlighted in Sec. III, in order to contextualize the
presented values.

II. MAGNETIC ORDER IN A N-V − SPIN ENSEMBLE

A. Density considerations

Defects in a crystal induce lattice distortions which are
amplified by the density of neighboring defects. This may
lead to the energetically favorable formation of aggregates
[36], and a limit on the obtainable defect density based
solely on the relaxation of lattice strain is conceivable. In
diamond, the distortion introduced by substitutional nitro-
gen or vacancy defects has been calculated to displace the
nearest-neighbor carbon atoms by approximately 1% [37],
and reported experimental observations have indicated that
lattice distortions surrounding a N-V − center are negligible
beyond approximately 4 Å [38,39]. In addition to strain, the
integrity of a defect’s electronic level structure can be as-
sessed through the spatial density of its spin-wave function.
For substitutional defects in diamond such as Ni or Cr, the
related spin-wave functions do not extend much beyond the
first neighboring carbon atoms, and they may therefore be
considered as a spherical cluster of five lattice sites, which
retains the defect’s integrity provided that the nearest neighbor
is three lattice sites away. In the case of twin point defects
such as the N-V − center, the resulting wave functions of the
spin states are noncentrosymmetric, and the volume needed
to retain their integrity is much less obvious. The N-V −
center—a pair of point defects (a substitutional nitrogen and a
carbon vacancy), for which the symmetry axis (C3v) pins the
quantization axis, as shown in Fig. 1(a)—is understood from
ab initio supercell and tight-binding models [40,41] to possess
a spin-wave function that is centralized around the vacancy
and the dangling bonds of the three surrounding carbon atoms.
Accounting for these properties, a self-contained N-V − defect
is conservatively considered here as a cluster of 26 lattice
sites. This consideration implies a maximum density limit
of one N-V − defect per 26 lattice sites, corresponding to a
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FIG. 2. (a) Simplified crystal schematic highlighting the consid-
ered 26-lattice-site cluster surrounding a N-V − defect, and their
minimal distance in the order of approximately 5 Å if they do
not fully overlap (red and green circles show first and second
coordination shells, respectively). (b) Plots of the probability-density
equation (1), for four different concentrations, highlighting the
concept that for a random distribution at concentrations exceeding
1000 ppm, a considerable portion of the ensemble will occupy
nearest-neighbor lattice sites that are shorter than the conceptual 5 Å
limit discussed in the text.

concentration of approximately 4 × 104 ppm. If these clusters
are considered to be “hard-spheres,” such that they do not
overlap, as conceptualized in Fig. 2(a), then their tightly
packed arrangement would imply a nearest-neighbor distance
of approximately 5 Å (or about one defect for every three unit
cells). However, unless specific strategies are implemented
to facilitate a degree of order during defect creation (e.g.,
[42,43]), an ensemble’s nearest-neighbor separation distances
will be normally distributed. This implies that a lower prac-
tical limit exists for ensuring that the probability of defect
aggregation is negligible.

A rudimentary estimate of a practical concentration limit
can be carried out by considering the nearest-neighbor dis-

tance from a single point in a crystal lattice. This can be
described in terms of the defect density Nd and the number
of possible sites at a distance lN [44,45], leading to the
probability-density expression P (lN ), and its first moment:

P (lN ) = (
4πl2

NNd

)
e−(4πl3

N Nd )/3, (1)

〈lN 〉 =
(

3

4πNd

)1/3

�

(
4

3

)
, (2)

where � is the gamma function. Accounting only for the
allowed relative positions within the diamond lattice, lN is
discretized and Eq. (1) is appropriately normalized to obtain a
binomial probability distribution as a function of Nd , as shown
in Fig. 2(b) for a range of concentrations. Using this repre-
sentation, and setting a 5% cumulative probability threshold
on the formation of aggregates (i.e., for the probability of the
nearest-neighbor distance being less than approximately 5 Å),
a defect integrity-retaining concentration limit is estimated
to be approximately Nd/Nc ≈ 1100 ppm (where Nc is the
carbon atom density). Although somewhat arbitrary, this limit
is chosen to provide a grounded basis for the subsequent
estimations. This is considered bearing in mind that the
long-range structural and electronic perturbations that could
occur for concentrations approaching this value may further
decrease this limit, especially when considering the presence
of neighboring non-N-V − defects, such as 14/15N and 13C
atoms. For example, in light of the N-V − system’s unique
charge-state dynamics [33], a finite concentration of electron
donors, such as the 14/15N defect, is necessary to ensure that
the N-V − → N-V 0 conversion rate is negligible. Therefore,
their relative density may also encourage the formation of
aggregates and further limit the electronic integrity-retaining
concentration. At the least, their concentration should not
exceed that of the N-V − ensemble’s, considering similar
nearest-neighbor arguments.

B. Spin-spin interactions

Isolated magnetic impurities interact through both long-
range dipole coupling and short-range spin-exchange cou-
pling. In the presence of a magnetic field, the dipole inter-
action can be described using the secular approximation, in
terms of the separation and relative angle of two spin dipoles
pointing along the magnetic field. The spin-exchange interac-
tion consists of Coulomb (Cij ) and spin-exchange (Xij ) ener-
gies [13] which are a function of the N-V − spin-wave function
ψi (ri ). The resulting exchange-coupling energy (Eex) is the
normalized sum or difference of these two energies, for a
singlet or triplet configuration, respectively:

Dij = hμ0γ
2
e

4π

1 − 3 cos θij

r3
ij

, (3)

E±
ex = Cij ± Xij

1 ± α2
ij

, (4)

Cij =
∫∫

|ψi (ri )|2 e2

4πε0rij

|ψj (rj )|2dVidVj , (5)

Xij =
∫∫

ψ∗
i (ri )ψ

∗
j (rj )

e2

4πε0rij

ψi (rj )ψj (ri )dVidVj , (6)

αij =
∫

ψ∗
i (ri )ψj (rj )dV, (7)
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FIG. 3. (a) Isosurface plots (5% of peak amplitude) for the three wave functions of the N-V − states that lie within the diamond band gap,
along with one possible arrangement in a diamond lattice (shown using the v orbital). Red/turquoise highlight regions of opposite phase, while
the black/red dots highlight the carbon/nitrogen atom positions. (b) The dipole and exchange energies plotted as a function of the possible
separation and relative orientation within the diamond crystal lattice. Each Jex value is bound by a ±18% error bar, which is not shown for
clarity. The shaded regions highlight where at least 95% of the calculated values are spread for given separation distances.

where rij = ri − rj is the distance and θij is the angle be-
tween neighboring spins pointing along an externally applied
magnetic field, γe is the electron gyromagnetic ratio, e is
the elementary charge constant, and μ0, ε0, are the vacuum
permeability and permittivity, respectively. The wave func-
tions ψ (r ) are described here using a linear combination
of sp3 hybridized orbitals which are constructed using the
hydrogenlike orbitals for the C and N atoms outer electron
shell [46,47] (see Appendix A for the full expressions used).
The isosurfaces of the three N-V − orbitals that exist within
the diamond band gap are shown in Fig. 3(a). While Eex
is the resulting energy for spin-orbital overlap and electron
repulsion, the metric describing the collective ordering of
spins is the energy needed for shifting between a singlet and
triplet configuration Jex = E+

ex − E−
ex [13].

The expressions |Dij | and |Jex| are plotted in Fig. 3(b) as
a function of the allowed relative positions from a central
NV − spin. A binomial distribution of values is shown for
each allowed rij , which widens as the density decreases and
the nearest-neighbor distance spans more lattice positions.
The shaded region, bounded by their characteristic fitting
functions, highlights 95% of the calculated values. For clarity,
only values calculated considering two ex orbitals are plotted,
and a similar spread of energies is obtained for ex-ey and
ey-ey combinations. The volume integrals in Eqs. (5)–(7) are
numerically solved using Monte Carlo integration and are
error bound by approximately ±18%. An r−3 dependence is
fitted for |Dij |, while for |Jex| a e−r2

/r is used.
The calculated values here show that the average absolute

exchange constant 〈|Jex|〉 exceeds 〈|Dij |〉 by up to six orders
of magnitude as rij approaches 0.5 nm. However, unlike
Jex, the spread of Dij for a random distribution is centered
around zero, due to the angular cosine dependence in Eq. (3).
The average dipole strength 〈Dij 〉 therefore approaches

zero as the density is decreased, while 〈Jex〉 > 〈Dij 〉 when
rij < 2.4 nm, corresponding to concentrations exceeding
approximately 70 ppm. It also highlights, as expected, the
quicker decay of 〈Jex〉, and how the relative spread of energies
drastically increases by several orders of magnitude.

While the sp3-hybrid orbital basis used here for estimating
Jex is rudimentary compared to more sophisticated electron
structure calculations, this approach has been previously em-
ployed [48], and the estimated values show an order of mag-
nitude and trend that is consistent with values obtained using
a tight-binding basis [41,49].

C. Magnetic phase transitions

The average and variance of the calculated interaction
strengths provides a basis to parametrize them as a function
of the average nearest-neighbor distance 〈lN 〉, and thereby the
corresponding density Nd , through Eq. (2). These values allow
for the determination of the collective magnetic order, while
accounting for the systems inherent randomness. The study of
magnetic disorder is central to the study of real systems, for
which a fully consistent three-dimensional theoretical picture
has yet to be developed, due to the intractability of considering
their thermodynamic limit [50]. One much-studied formalism
which has been reasonably successful in treating random
systems is the replica-symmetric approach for solving the
Sherrington-Kirkpatrick (SK) Hamiltonian [34] in the pres-
ence of a random field:

Ĥ = −1

2

NdV∑
〈i,j〉

WijSiSj − γe

NdV∑
i

hiSi, (8)

where Si = ±1 are Ising spin variables, {Wij } is the set of
random interactions between nearest-neighbor pairs, and
{hi} is the set of random magnetic field strengths. The angled
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bracket indicates summation only over nearest-neighbor pairs,
and the number of spins is defined in terms of the considered
density Nd and volume V . Using the replica-symmetric
approach [51–54], a heuristic solution for Eq. (8) is derived
for the systems free-energy and magnetic order parameters,
and thereby the magnetic phase-transition temperatures from
paramagnetic to ferromagnetic order Tc. Without delineating
the derivation steps and transformations (see Appendix B),
the solved expressions assume a normal distribution of {Wij }
and {hi}, and consist of coupled expressions in terms of
the normalized variance and average of the total interaction
strengths {W 2,W0} and the magnetic field {�2, h0}:

Tc = W0

∫ ∞

−∞

e−z2/2dz√
2π

sech2[ζ − β(h0 − W0m)], (9)

ζ = β[h0 + W0m + zW
√

q + (�/W )2],

where m is the magnetic order parameter, q describes the
long-time magnetic correlations (sometimes referred to as the
spin-glass order parameter), the integral

∫
f (z)dz arises from

the Hubbard-Stratonovich transformation (an exponential
identity applied during derivation), and β = 1/kBT , kB being
Boltzmann’s constant and T being the local temperature.

Given that the SK Hamiltonian and the derivation for Tc

is defined in terms of Ising spin variables, while the N-V −
is distinctly a spin-1 system, a simplification is necessary to
justify the use of the SK model. Furthermore, as highlighted
in Fig. 1(a), the quantization axis of the N-V − center may
be pinned along four different 〈111〉 directions, implying
that for a randomly distributed ensemble, there can be four
subgroups projected at differing angles along an externally
applied magnetic field. Therefore, a static external magnetic
field is applied parallel to either the [010] crystallographic
axis, such that each possible N-V − orientation is equally
projected onto this external field, or along one of the [111]
quantization axis which results in one fully parallel projected
group, and three equally acutely projected subgroups to the
external field.

The presence of a nonaxial magnetic field modifies the
eigenstates into superposition of the spin-1 states, |ϕ±,0〉, and
the spin quantum number ms ceases to be a good one. This
implies violation of the magnetic selection rules, allowing for
normally forbidden �ms = ±2 transitions. However, these
transitions will be relatively suppressed compared to the
allowed transitions beyond moderate applied magnetic field
strengths, while the allowed transitions [highlighted by the
black arrows in Fig. 4(a)] will gradually be energetically
equivalent. Therefore, to further simplify the spin-1 system,
either a field strength of 102.4 mT is applied to bring about
degeneracy of the |0〉 and |−1〉 eigenstates for one of the
subgroups, or a field strength beyond 180 mT is applied to en-
ergetically equalize the two allowed |ϕ±〉 ↔ |ϕ0〉 transitions
such that only two spin-state superpositions are considered
to exist. In the former case, the remaining subgroups are
ignored as their spin states become ill-defined, and in the
latter case, the �m = ±2 transition is ignored as its likelihood
is relatively suppressed as a function of the applied field
strength.

These simplifications for degeneracy are however not
strictly applicable—the spin states of the N-V − system are
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FIG. 4. (a) Zeeman splitting of a NV − ensembles three spin
eigenstates shown for two different magnetic field orientations.
When aligned along [010], as opposed to [111], all four subgroups
symmetry axes are offset by the same angle, and their eigenstate are
therefore degenerate. At field strengths beyond approximately 180
mT, the allowed transitions between the resulting mixed-spin levels
(black arrows) become near-equal, while the disallowed transition
(red arrow) becomes relatively suppressed. At these fields, or at
the ground-state anticrossing inducing field (grey dot), the total
system may be described in terms of two possible spin states.
(b) Phase diagram of the magnetic order as a function of concen-
tration, using the average and variance of Dij and Jex as estimated in
Sec. II B. The purple shaded region highlights the uncertainty based
on the error bound of 〈Jex〉, while the values shown in the top axis
are similarly error bound.

further split into hyperfine lines (two or three for 15N or 14N,
respectively), due to the interaction of the defect’s electron
and nitrogen nuclear spins, and the application of a nonaxial
magnetic field will bring about spin-mixing and an avoided
crossing of the transitions at their degeneracy point [55].
Nonetheless, this fact may be side-stepped by considering the
inherent inhomogeneous broadening of dense spin ensemble
resonance energies [56], and the spread of interaction en-
ergies shown in Fig. 3(b), which will exceed the resulting
anticrossing splitting energy. Under these conditions, the
states can be well approximated as being degenerate for the
subsequent analysis considered here.

The concentration-dependent mean and variance are ex-
tracted from the analysis in the previous section. A nor-
mal approximation of the binomial distribution of values for
each allowed separation distance is used, and related to a
given concentration through Eq. (2). The extracted values are
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combined such that W0 = 〈Jex〉 + 〈Dij 〉, and setting h0 =
180 mT, a rudimentary phase diagram is calculated and
plotted in Fig. 4(b) as a function of concentration. The plot
highlights a first-order phase transition between a paramag-
netic and ferromagnetic phase, for which the order parameters
shift from {m, q} = 0 to {m, q} �= 0. A smaller region at
low temperatures highlights a spin-glass phase for which
{m = 0, q �= 0}, but which reverts to a ferromagnetic phase
in the presence of an external field (m �= 0 when h0 > 0). The
shaded region highlights the uncertainty of the Tc point, based
on the uncertainty of the estimated 〈Jex〉 values. The first-
order phase transition implies a spontaneous ferromagnetic
ordering of the spin ensemble into either its collective |1〉
state or its approximately degenerate |−1〉 and |0〉 states. The
phase diagram shows that Tc reaches room temperatures when
the concentration is approximately 450 ± 100 ppm, while it
becomes experimentally accessible (Tc > 10 mK) when the
concentration exceeds approximately 80 ppm.

The noise in the interaction energies, and their effect on
Tc, is encapsulated in the SK model though accounting for
the interaction energy variance W 2. Further electron spin
noise stemming from interactions with the electron spins of
14/15N substitutional impurities should be of the same order,
provided their concentration does not exceed that of the N-V −
spin ensemble. The presence of a 14/15N and 13C nuclear
spin bath may also be considered in terms of their hyper-
fine coupling and the magnetic spin noise they introduce.
However, these are comparably negligible as the nuclear-
electron spin hyperfine coupling is, at most, approximately
130 MHz for 13C and N-V − spins in adjacent lattice sites
[57], and the effective magnetic field strength they introduce
will be orders of magnitude smaller than the variance W 2,
for concentrations exceeding 80 ppm. Another consideration
is the effect spin noise will have on breaking the enforced
degeneracy of the |−1〉 and |0〉 states. Provided that the
surrounding magnetic spin noise does not exceed the inherent
noise set by the interaction strength variance, this should
not affect the first-order phase-transition temperature derived
here. This should hold true if the surrounding concentra-
tion of electron spins does not exceed that of the N-V −
ensemble.

In delineating the magnetic phase map, the onset of long-
range magnetic order is highlighted, allowing for the assump-
tion of spin-wave manifestation and propagation below Tc for
any given concentration, in the presence of an external mag-
netic field. Fundamentally, the collective strength of the ex-
change interaction must exceed the local thermal energy, such
that W0(NdV ) > kBT , in order to preserve phase-correlated
magnetic disturbances, and ensure spin-wave propagation.
With these obtained parameters, the description of spin waves
may be carried out beyond this point using the conventional
picture for dipole-exchange plane spin waves, without the
further need to invoke the particular characteristics of the
N-V − system.

It is worth stressing that the SK Hamiltonian in Eq. (8)
is not used as a basis to calculate the possible spin-wave
dispersion in the subsequent sections. Ising variables do not
represent continuous spin operators which are fundamental
for describing spin-wave characteristics. The SK model is
employed here because of the convenience of the resulting

expression, Eq. (9), for Tc, which accounts for a distribution
of interaction and magnetic field values in the thermodynamic
limit while being relatively easily solved numerically. More
sophisticated Heisenberg-based models are warranted; how-
ever, considering the application of a nonzero symmetry-
breaking external field and the modification of spin states
to resemble that of a spin-half system, the calculated Tc

using a mean-field-based Heisenberg model is expected to
give similar results for the first-order phase transition. In fact,
Ising-like models can be defined as approximately equivalent
to Heisenberg-like models under a mean-field approximation
for time-averaged values of nearest-neighbor spins. In light of
this, their approximate correspondence under the conditions
described here should be sound, in particular for predicting
a first-order ferromagnetic transition. These considerations
reflect reported comparisons of these two models, for example
when predicting tricritical points considering a random-field
distribution [58] or comparing both models to measured Tc

values of disordered alloys [59].
The heuristic solution of the SK model for estimating Tc

is therefore taken to be a good approximation for predicting
when a first-order magnetic phase transition may occur un-
der the specific conditions stated here, and as a justification
for the assumption of spin-wave manifestation for Tc-related
concentrations.

III. SPIN-WAVE CONDENSATION

A. Magnon dispersion

A similar picture for the dispersion of plane spin waves
can be obtained using either a quantum [60] or semiclassical
framework, for which a thorough exposition can be found
in [61]. Here, a classical approach is used, as described in
[61–63], for a layer with a finite thickness and infinite length
and width. The exact dispersion relations can be obtained
from a system of Maxwell and linearized Landau-Lifshitz
equations of motion, for which the solution consists of an
infinite set of vector amplitude functions whose vanishing
determinant gives the exact dispersion relation for plane spin
waves. This is defined as a function of thickness d, the ex-
change field stiffness constant η, the saturation magnetization
ωM , and the relative angles of the wave propagation vector and
the externally applied magnetic field θB and φB , respectively.

For an ensemble of magnetic spins, the saturating magne-
tization ωM can be approximated as a function of the number
of spins in a given volume such that ωM ≈ γe4πgμBNdV ,
where g is the electron g factor and μB is the Bohr magneton.
The exchange field stiffness constant η is a parameter conven-
tionally used to describe the exchange-coupling strength in
ferromagnetic material with respect to their crystal structure
[13]. Given that the ensemble is randomly distributed and
therefore possesses no long-range symmetry, this is defined
here in terms of Eq. (2):

η ≈ 4π

9�
(

4
3

)3

〈Jex〉〈lN 〉5

μ0μ
2
Bg2

. (10)

The exchange field stiffness values obtained mirror the
concentration-dependent trend shown in Figs. 3(b) and 4(b),
which may be considered in light of the fixed constants
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of the YIG system [13]. For YIG, the reported exchange
field stiffness constant is approximately 3 × 10−16 m−2 (or
approximately 30 GHz in terms of TckB/h). The N-V −
ensemble exceeds these values for concentrations beyond
80 ppm, while the ensemble’s saturation magnetization will
always be at least three orders of magnitude lower than that
reported for YIG at approximately 175 mT, for the N-V −
concentrations considered here.

With the assumption of ferromagnetic order, the descrip-
tion of plane spin waves and their dispersion is carried
out using the approximate form first described in [62], for
isotropic ferromagnetic layers. Although it has been noted for
its inaccuracy in predicting the dispersion minima [60,64], it
is deemed sufficient for the current analysis. The approximate
dipole-exchange plane-wave dispersion is expressed through
the relation

ωn(k)2 ≈ (
ωH + ωMηk2

n

)(
ωH + ωMηk2

n + ωMK
)
, (11)

where ωH = γeBz is the applied magnetic field strength, k2
n =

k2 + k2
⊥ is the sum of the squared in-plane and perpendicular

wave numbers, and

K = P +
(

1−P +P cos2 φB + ωM (P −P 2) sin2 φ

ωH +ωMηk2
n

)
sin2 θB,

(12)

P = k2

k2
n

− k4

k4
n

2[1 − (−1)ne−kd ]

kd(1 + δn)
, (13)

where θB is the angle between the magnetic field vector
and the thin-film surface, and φB is the angle between the
magnetic field vector and the wave propagation direction k.
For thin films where the surface spins are described as being
completely pinned or unpinned, and where the film thickness
is in the order of the exchange field stiffness (d � √

η), the
perpendicular component of the wave number is quantized
such that k⊥ = πn/d.

The dipole-exchange spin-wave dispersion for a N-V −
spin density of 200 ppm in a 100 μm thin diamond film is
calculated using Eq. (11) and plotted in Fig. 5(a). It shows
the dispersion of the first 40 longitudinal and transverse
modes, for a magnetic field applied along the [010] crystal
axis. Both fundamental longitudinal and transverse branches
(highlighted in black) converge to the ferromagnetic reso-
nance energy ωfr = √

ωH (ωH + ωM ). The distinctive minima
of the dipole-exchange dispersion curves for longitudinal
modes represents a clear condensation trap, for which its
separation from ωfr to the lowest dispersion energy by �E

modifies the time and density needed for the formation of
a condensate. The shape of the longitudinal and transverse
branches highlight the two competing components in Eq. (11),
namely, the exchange and dipole contributions, respectively,
η and ωM . For wave numbers approaching the reciprocal
lattice length, the dispersion increases quadratically as the
interaction is dominated by the exchange energy. Similarly,
for transverse-mode spin waves, the spin dipoles are aligned
perpendicularly to the propagation direction, such that only
the exchange interaction facilitates propagation, for which a
quadratic kn relation dominates with a minimum at k = 0. In
the longitudinal branches, the dipole interaction dominates at
wave numbers smaller than approximately η−1/2, resulting in

(a)

(b)

(c)

d

[001]

[010]

[100]
k

FIG. 5. (a) Spin-wave dispersion for the first 40 thickness modes
in a 100-μm-thick diamond with a N-V − spin density of 200 pm,
highlighting the dispersion of plane spin waves that propagate either
parallel (longitudinal modes) or perpendicular (transverse modes) in
relation to the externally applied magnetic field. (b) Dependence of
the trap depth �E and (c) minimum k values at the minimum energy,
as a function of concentration and for varying thicknesses d .

a negative dispersion which is subsequently exceeded by the
exchange interaction when k > η−1/2, such that at a finite k a
“trap” is formed.

Figures 5(b) and 5(c) highlight the trap depth �E and the
wave number at the minimum dispersion energy, as a function
of concentration. The trap depth increases as a function of
concentration, but for thinner thicknesses there is a nonlinear
dependence which highlights the imbalance of the simulta-
neous increase of η and ωM . For thinner layers, the rate of
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increase of ωM is reduced and the longitudinal branch takes
on a dominantly transverse shape, which becomes accentuated
as the thickness decreases. In comparison, the YIG system
displays a fixed wave-number minima around 10−4 cm−1,
depending on the thin-film thickness [62], while the depth of
the dispersion �E is in the order of gigahertz, due to the much
higher saturation magnetization. The change in the location of
the minimum wave number as a function of concentration is
also affected by the layer thickness, for the same reason, such
that as the dispersion takes on a more transverse character,
kmin approaches zero. This value is crucial when considering
experimental detection using angular-resolved Brillouin scat-
tering, which for thin films is most conveniently measured
using a backscattering geometry. The detection window of
such a configuration is limited by kmax = 2(2π/λsc) sin θ ,
and the choice of wavelength is limited by the properties of
the N-V − ensemble. In order to preserve the ground-state
spin population and ensure that the charge state is minimally
perturbed, λsc needs to exceed the luminescence sideband
and is therefore longer than approximately 850 nm [22]. The
accessible wave number using a scattering laser wavelength
of 900 nm is highlighted in Fig. 5(c). Given this limitation,
the minimum concentration needs to exceed 100 ppm for
the detection of spin waves in a backscattering geometry
to be feasible. Considering the likelihood of condensation,
there is no minimum necessary concentration provided that
the local temperature is below Tc; however, the longevity of
condensation is strongly concentration and pump dependent.

B. Condensation dynamics

The relaxation and condensation of magnons into their
minimum energy state is facilitated by an inelastic scattering
mechanism which conserves the number of magnons gener-
ated. Magnons will scatter with all crystal lattice irregularities,
as well as with themselves in any number of combinations,
so there are in principle many possible decay mechanisms.
However, it has been argued [11] that the most likely mecha-
nism facilitating condensation is four-magnon scattering, due
to its total momentum and number-conserving mechanism,
and its greater occurrence likelihood. The main competing,
non-number-conserving decay mechanism is spin-lattice re-
laxation (γ ), and to a lesser degree, destructive scattering
from lattice defects, although this is not considered here. The
rudimentary analysis described here also does not consider
the effects of dephasing, which is crucial when considering
the paramagnetic/ferromagnetic resonance linewidth and its
spectral obfuscation of detecting condensation. It is, however,
sufficient in providing an indication for the feasibility of
condensation when considering the principle rates.

Similar to the description in [11], a qualitative under-
standing of the magnon dynamics may be obtained using the
following set of rate equations for an open two-level system:

ρ̇c(t ) = −�p(t ) − γρc + 2

(
ωfr

�E

)
ξρ3

g, (14)

ρ̇g (t ) = 2�p(t ) − γρg − 2

(
ωfr

�E
− 1

2

)
ξρ3

g, (15)

where ρc/g is the population of the condensed or gaseous
portion of the parametrically injected magnons, �p(t ) is the
time-dependent parallel parametric pumping rate which is
assumed to be perfectly efficient, and ξ is the four-magnon
scattering rate. The parallel parametric pumping mechanisms
of spin waves is an inherent phenomenon [65] by which a
spin-wave mode is excited by a frequency-doubled microwave
that is applied along the magnetization direction. Due to the
momentum conservation law, this creates two spin waves with
equal but opposite wave number, at half the energies of the
applied field.

The general steps toward condensation considered here are
instigated by the injection of magnons at a frequency of 2ωfr ,
which decays toward ωfr via the previously described para-
metric instability. These magnons form a gas with energies
that span from the lowest dispersion energy to a maximum
which exceeds ωfr but is much lower than the continuum of
magnon energies that are equilibrated with the surrounding
temperature. The nonlinear four-magnon scattering involves
two magnons exchanging their energy while conserving their
total momentum, and results in one magnon decaying into a
lower energy state and another into a higher state. Here the
likelihood of one magnon decaying into the condensate is
regulated by the ωfr/�E ratio, while the second magnon al-
ways escapes the gaseous fraction into the room-temperature
continuum. With a deeper trap, and a smaller ωfr/�E ratio,
the magnon gas occupies a larger span of energies, thereby
reducing the likelihood for scattering to occur directly into
the condensate energy state for a given magnon injection rate.

These rate equations are set with respect to the parameters
extracted from the calculated dispersion curves in the previous
section, where the first terms represent the injection/removal
of gaseous/condensed magnons when the pump is applied, the
second term represents the destruction of magnons through
the spin-lattice decay rate, and the third and fourth terms
represent the nonlinear scattering of the magnons into either
the condensed fraction or out of the system. The spin-lattice
relaxation rate for a N-V − ensemble is reported to be in
the order of kilohertz (1–10 ms [21]), and is set here to be
γ /2π = (1 ms)−1, while the four-magnon scattering rate may
be approximated as a function of the concentration-based Tc,
and the local temperature T [66]:

ξ ≈
(

kBT

h

)(
T

Tc

)3

, (16)

which spans from the hundreds of terahertz to 10 GHz for
concentrations between 100 and 1000 ppm. Comparatively,
YIG samples have been reported to possess four-magnon
scattering rates in the order of 10–100 GHz, relative to its
spin-lattice relaxation rate in the order of 2 MHz.

An example of the temporal dynamics is plotted in Fig. 6(a)
in terms of the relative population after a 10 μs window of
sustained pumping at a pump power and frequency of 1 μW
and 10 GHz, respectively. A consequence of the large ξ/γ

ratio is the relative magnitude of the magnon condensate.
When further examining the relative concentration in their
steady state (see Appendix C) in Fig. 6(b), there is an observed
decrease in the relative condensate fraction as the concentra-
tion of spins is increased. As the average exchange energy
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FIG. 6. (a) Decay of the total composition of magnons after
10 μs parametric pumping, for a concentration of 200 ppm, at
T = Tc ≈ 5 K and γ /2π = (1 ms)−1. (b) The steady-state ratio as a
function of concentration and their equivalent Tc for various pumping
rates. As the concentration is increased, Tc is increased, and the
steady-state ratio is reduced. Conversely, as the pumping rate is
increased, the ratio is also increased due to the generation of more
magnons, provided that T < Tc.

increases, ωfr and the trap depth �E increases along with the
distribution of magnon energies. For a given injection rate,
a smaller fraction of the magnon gas is therefore likely to
condense compared to those that escape. This is counteracted
by increasing the magnon-injection rate in order to ensure that
the pump generates more magnons, and a comparatively larger
portion of the gas remains condensed, provided that T < Tc.

C. Detection of a N-V − magnon condensate

Given the predictions of the analysis presented so far,
considering a conceptual experiment to detect magnon con-
densation in a N-V − ensemble is warranted. An obvious
detection scheme, identical to that used for YIG systems, is
Brillouin scattering. As a dense N-V − ensemble is expected to
render the diamond crystal opaque, reflection-based scattering
is considered. A diamond crystal which has been thinned
down to a thickness below 100 μm, and contains a dense
N-V − ensemble, is first subjected to continuous excitation at
around 532 nm for a given duration. The duration of this pulse

depends on the spin density and applied power, and ensures
that the spins are initialized into their |0〉 ground state. This
is normally an up-to 80% efficient procedure for single spins
at room temperature [67], but will be less efficient when ap-
plying an off-axial magnetic field due to spin-mixing. This is
followed by applying a microwave field using a, e.g., coplanar
waveguide, aligned in parallel with the external magnetic field
which is aligned along the [010] crystallographic axis, in order
to generate plane spin waves that propagate in parallel with the
magnetic field. A probe beam is then shone onto the diamond
either while the microwave is continuously generated to ob-
serve the steady-state spin-wave density, or immediately after
the microwave is stopped to observe the temporal dynamics.
As mentioned in Sec. III A, the wavelength of the probe
beam needs to exceed the luminescence sideband of the N-V −
center in order to ensure that ground-state spin population is
minimally perturbed. This necessitates wavelengths beyond
850 nm, and possibly even exceeding 1050 nm in order to
avoid any finite absorption via the singlet-state transition of
the N-V − system.

If propagating spin waves are generated, a portion of the
backscattered light will be Stokes-shifted with the energy
of the spin wave, and detectable through a high-resolution
spectrometer such as a variable-length Fabry-Perot cavity. The
amplitude of the Stokes-shifted signal should be proportional
both to the applied probe-field power, and to the density of
spin waves present. The amplitude of the Stokes-shifted peak
will therefore highlight the minima of the dispersion when
measured as a function of the applied microwave frequency,
as the magnons are expected to scatter down toward their
lowest energy, irrespective of whether they form a condensate
or not. The determination of the formation of a condensate
will be witnessed through the time-dependent amplitude of the
Stokes-shifted peak, whose variation will highlight the onset
and decay of condensation.

With the calculated Tc values in mind, and the limitation of
the minimum wave number highlighted in Fig. 5(c), a mini-
mum concentration of approximately 100 ppm is necessary.
Given the technical challenges of obtaining concentrations
that exceed even just 10 ppm, preliminary experiments are
expected to be carried out with concentrations approaching
100 ppm, which necessitates the use of an optically acces-
sible dilution fridge to reach base temperatures below 1 K.
This places limitations on the injected optical and microwave
power in order to maintain a stable base temperature. For con-
centrations exceeding 200 ppm, simpler cryostats with base
temperatures exceeding 2 K may be used with less stringent
limitations on the injected probe light and microwave field.

IV. CONCLUSION

The possible formation of a magnon condensate in a
N-V − ensemble is explored here by considering the magnetic
order of a randomly distributed spin ensemble. This was
carried out by estimating the density-dependent dipole and
exchange energy using a rudimentary sp3 hybrid description
of the N-V − spin orbitals. The calculated spread of energies
was parametrized as a function of concentration through as-
sessing the corresponding average nearest-neighbor distance,
which was then used in the numerical calculation of the
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magnetic phase-transition temperature Tc. Below Tc, spatial
randomness was assumed to be a negligible perturbation,
and employing the standard description for dipole-exchange
spin-wave dispersion was justified. The spin-wave dispersion
was calculated using the estimated exchange energies, in order
to extract concentration-dependent dispersion parameters, in
particular the depth of the dispersion trap, and the correspond-
ing wave number at the lowest dispersion energy. This was fol-
lowed by using the extracted parameters in combination with
Tc and a measured spin-lattice relaxation rate to assess the
relative size and longevity of a magnon condensate compared
to its gaseous state. Ultimately, it is postulated that a magnon
condensate may be observable for concentrations exceeding
90 ppm at low temperatures, and approximately 450 pm at
room temperature through Brillouin backscattering.

The analysis presented here is by no means thorough;
further refinement is necessary in the choice of wave function
and the Hamiltonian used to predict the onset of magnetic
order, while the crucial role of spin dephasing needs to be
accounted for. However, in the pursuit of novel systems for the
study of macroscopic quantum phenomena, this preliminary
study highlights an intriguing possibility in using the N-V −
system, which has already proven to be of such convenient
and practical importance in the study of quantum information
and metrology. Although the current physical limitations on
creating dense spin ensembles in diamond are considerable,
they are expected to be overcome as the understanding of
material growth is further advanced. In light of this, the
generation of concentrations approaching 100 ppm is con-
ceivably within the grasp of current irradiation technology
and epitaxial growth, and an abundance of unique physics
is anticipated when concentrations begin to approach values
large enough to incur magnetic self-ordering.
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APPENDIX A: SPIN-WAVE FUNCTIONS

The orbitals of the N-V − center are described using
sp3 hybridized orbitals defined for the nitrogen defect (n1)
and the three carbon atoms surrounding the vacancy defect
(c1, c2, c3):

n1 = 1

2
ψN,2s −

√
3

2
ψN,2pz

, (A1)

c1 = 1

2
ψC,2s + 1

2
√

3
ψC,2pz

+
√

2

3
ψC,2py

, (A2)

c2 = 1

2
ψC,2s + 1

2
√

3
ψC,2pz

− 1√
6
ψC,2py

− 1√
2
ψC,2px

,

(A3)

c3 = 1

2
ψC,2s + 1

2
√

3
ψC,2pz

− 1√
6
ψC,2py

+ 1√
2
ψC,2px

,

(A4)

where the single orbital wave functions are defined us-
ing single-electron hydrogen wave functions in the form

ψZ,n,l,m(r, θ, φ) = RZ,n,l (r )Yl,m(θ, φ), where RZ,n,l (r ) is the
normalized Laguerre polynomial and Yl,m(θ, φ) is the
spherical harmonic function. The normalized N-V − orbital
wave functions are then defined through [46,47]

u = n1, (A5)

v = c1 + c2 + c3 − 3〈c1|u〉u√
3(1 + 2〈c3|c2〉 − 3〈c1|u〉2)

, (A6)

ex = 2c3 − c2 − c1√
3(2 − 2〈c3|c2〉)

, (A7)

ey = c2 − c3√
2 − 2〈c3|c2〉

. (A8)

Using these expressions, the integrals that define the exchange
constant Jex [Eqs. (5)–(7)] are numerically solved using
Monte Carlo integration, where the error bound is inversely
proportional to the square root of the number of trials.

APPENDIX B: SHERRINGTON-KIRKPATRICK MODEL

Of the various iterations of the spin Ising model which ac-
count for the randomness, the Sherrington-Kirkpatrick model
is one of the most studied so far. The typical Hamiltonian
[Eq. (8)] describes the competing strengths between long-
range spin order and an extrinsic magnetic field, which may
both be described in terms of a random-field probability
distribution function. In the Gaussian case

P (Wij ) = e−(Wij −W0 )2/2W 2

√
2πW

, (B1)

P (hi ) = e−(hi−h0 )2/2�2

√
2π�

. (B2)

The main objective is in extracting an expression for the
free energy of the system and the variously attributed mag-
netic order parameters in the thermodynamic limit such that
N → ∞. There are no known analytical solutions in finite
dimensions, and numerical solutions are intractable, as the
computational duration is impractically long for the averaging
of all possible arrangements of a randomly distributed N-sized
system. Heuristic methods have thus been developed, such as
the “replica-trick,” which uses the logarithmic limit:

ln x = lim
n→0

xn − 1

n
. (B3)

The free energy F in the thermodynamic limit is expressed as

F (β ) = lim
N→∞

1

Nβ
ln Z(β,N ), (B4)

where Z(β,N ) is the canonical partition function. Random-
ness is accounted for by taking the thermal average over the
random disorder such that

F (β ) = lim
N→∞

1

Nβ
〈ln Z(β,N )〉. (B5)

The direct calculation of the partition function in this case is
intractable, and the identity, Eq. (B3), is used which is rein-
terpreted to imply that there are n configurations or “replicas”
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of the system such that Zn = ∏n
α=1 Zα , thereby reformulating

Eq. (B5) into the solvable expression

F (β ) = lim
n→0

lim
N→∞

1

nNβ
[〈Zn(β,N )〉 − 1]. (B6)

Using the Hubbard-Stratanovich transformation, an expres-
sion for the free energy per particle is obtained in the set
limits with respect to the magnetic order parameter m and the
Edward-Anderson order parameter q:

q =
∫ ∞

−∞

e−z2/2dz√
2π

tanh2(ζ ), (B7)

m =
∫ ∞

−∞

e−z2/2dz√
2π

tanh(ζ ), (B8)

ζ = β[h0 + W0m + zW
√

q + (�/W )2],

from which the critical transition temperature Tc of Eq. (9) can
be derived for the condition m �= 0. A thorough exposition can
be read in [50,68].

APPENDIX C: COUPLED RATE EQUATIONS
AND STEADY-STATE SOLUTION

The derivation of the rate equations (14) and (15) is based
on the steps and assumptions presented in [11]. The initial
assumption is that the gaseous magnons are in thermodynamic
equilibrium with the energy of the injected magnons Ein, and
that they span an energy range which is much lower than
the energies of room-temperature magnons, such that kBT 
Emax > E > Emin, where Emin = h̄ωfr − �E, and Emax is
an upper cut-off energy which is temperature independent.
Assuming that a condensate has already formed, the total
number of magnons present in the system is the sum of
the number of gaseous and condensed magnons, ρg and ρc,
respectively, and is related to the total energy such that

Etot = Egas + Econd = Egρg + Eminρc, (C1)

where Eg is the average energy of the gaseous fraction,
defined in terms of the magnon integrated density of states
in the low-energy regime (Rayleigh-Jeans condition):

Eg =
∫ Emax

Emin
EdNg∫ Emax

Emin
dNg

, (C2)

dNg =
√

2V m
3/2
e

h̄2π2

kBT√
E − Emin

dE, (C3)

where V is the volume, and me is the effective mass of
the magnon. Equation (C3) is derived with the assumption
that a condensate already exists and the chemical potential
μ is equal to the condensate’s energy which is the minimum
energy of the dispersion, μ = Emin. To simplify the rate equa-
tions, the expression in Eq. (C2) can be approximated to Eg ≈
h̄ωfr − 1

2�E with an appropriate choice of Emax, which can be
arbitrarily chosen as long as Ein < Emax � kBT . Here it is set
to Emax ≈ h̄ωfr + Eg . Using these relations, the rate equations
(14) and (15) are derived by initially defining them in terms of
the total energy and number of gaseous magnons, and then
rearranging to obtain the final expressions, as detailed in [11].
Their steady-state solutions are then obtained through rear-
rangement to obtain a cubic expression in terms of the gaseous
fraction ρss

g :

ρss
c =

[
−�p + 2

(
ωfr

�E

)
ξρss3

g

]
γ −1, (C4)

ρss
g =

[
2�p − 2

(
ωfr

�E
− 1

2

)
ξρss3

g

]
γ −1, (C5)

for which the steady-state gaseous fraction is obtained through
the single real solution of the cubic equation (C5).
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