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Thermodynamics of a frustrated quantum magnet on a square lattice

K. Yu. Povarov,* V. K. Bhartiya, Z. Yan, and A. Zheludev
Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland†

(Received 25 July 2018; revised manuscript received 13 December 2018; published 10 January 2019)

We report the magnetic and calorimetric measurements in single-crystal samples of the square lattice
J1-J2 quantum antiferromagnet BaCdVO(PO4)2. An investigation of the scaling of magnetization reveals
a “dimensionality reduction” indicative of a strong degree of geometric frustration. Below a characteristic
temperature of T ∗ � 150 mK we observe the emergence of an additional strongly fluctuating quantum phase
close to full magnetic saturation. It is separated from the magnetically ordered state by first- and second-order
phase transitions, depending on the orientation of the applied magnetic field. We suggest that this phase may
indeed be related to the theoretically predicted spin-nematic state.
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I. INTRODUCTION

The quest for the so-called spin-nematic state in magnetic
insulators started more than three decades ago, but continues
to this day [1–6]. This exotic magnetic order spontaneously
breaks rotational symmetry, while keeping time-reversal sym-
metry intact. It can be understood as a quantum condensate
of bound magnon pairs [2–4]. The key characteristics of any
potential host system are competing ferro- (FM) and antiferro-
magnetic (AF) interactions and extreme quantum fluctuations.
The baseline model is the S = 1/2 square lattice Heisen-
berg Hamiltonian with FM nearest-neighbor exchange J1 and
AF next-nearest-neighbor coupling J2 [3,7–10] sketched in
Fig. 1(a) alongside its phase diagram. The classical critical
point at J2/J1 = −1/2 separates FM and columnar-AF states,
but becomes destabilized by quantum fluctuations and is re-
placed by a novel region in its vicinity. The resulting state can
be understood as a magnon bound pair condensate occurring
at zero field—the spin nematic [3,9]. Even outside the narrow
J2/J1 parameter range in which spin nematic is supposed to
exist at zero field, this state can be further stabilized in a
magnetized system. Magnon pair condensation and hence spin
nematicity can be induced by an external magnetic field close
to the saturation point. This result turns out to hold well away
from optimal parameter set J2/J1 = −1/2 and even in the
presence of additional couplings in the Hamiltonian [3,11].

Despite the vast body of theoretical work, experimentally
the spin-nematic state on a frustrated square lattice remains
elusive. One obvious problem is that the tensorial order pa-
rameter is invisible to most conventional magnetism probes.
What is an even bigger obstacle, is that potential model com-
pounds are few and hard to synthesize. The most promising
known candidate is BaCdVO(PO4)2 [12,13]. The applicability
of the J1-J2 model to this compound has been validated by
density functional theory calculations [14]. The material fea-
tures strong geometric frustration (J2/J1 � −0.9) and easily
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accessible energy scales (saturation field about 4 T, AF order
below TN = 1.05 K). The high-temperature thermodynamics
is consistently described by J1 = −3.6 K and J2 = 3.2 K
[12]. For lack of other candidates, BaCdVO(PO4)2 has been
a subject of intense theoretical studies, including specific
predictions for inelastic neutron scattering [15] and nuclear
magnetic resonance [16]. Disappointingly, a lack of single
crystals has severely impeded experimental studies. To date,
no empirical evidence of a spin-nematic phase or any related
unconventional magnetism has been reported in this material.

In the present paper we describe the unusual magnetic
and thermodynamic properties of single-crystal samples of
BaCdVO(PO4)2. We map out the anisotropic magnetic phase
diagram and study the “dimensionality reduction” and pecu-
liar scaling of magnetization near the field-induced quantum
phase transition. We accomplish this by employing magne-
tization, specific heat, and the magnetocaloric effect studies.
In what may be the first sign of spin nematicity, we re-
port evidence of an additional low-temperature field-induced
strongly fluctuating quantum regime just below saturation. In
an axially symmetric geometry the new state emerges in a
first-order transition, and is preceded by substantial precursor
transverse fluctuations in the magnetically ordered state.

II. EXPERIMENT DETAILS

A. Material

High-quality single crystals of BaCdVO(PO4)2 were
grown using the self-flux Bridgman method from the melt of
presynthesized BaCdP2O7 and vanadium dioxide at 1000 ◦C.
The details of the method will be published elsewhere. The
crystal structure [orthorhombic Pbca (D15

2h, No. 61), a = 8.84,
b = 8.92, c = 19.37 Å] was validated using single-crystal
x-ray diffraction on a Bruker APEX-II instrument, and found
to be totally consistent with that reported previously [17].

The single crystals of BaCdVO(PO4)2 have the appearance
of green transparent square plates. The plate corresponds to
the crystallographic ab plane, with the directions of a and b

axes being usually along the diagonals. Correspondingly, the
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FIG. 1. (a) The frustrated S = 1/2 Heisenberg square lattice
model and typical “circular” representation of its ground state as a
function of the ferromagnetic J1 to antiferromagnetic J2 exchange
ratio. The positions of BaCdVO(PO4)2 as well as of few other simi-
larly structured materials are shown (after Ref. [12]). (b) Magnetic
susceptibilities along the different directions of BaCdVO(PO4)2

crystal, scaled with their g factors. (c) Isothermal magnetization
along different directions at T = 0.55 K. The inset shows the region
around μ0HSF � 0.5 T in more detail. The dashed lines show the
estimate for Msat = gμB/2 value. All the magnetic data is corrected
for the diamagnetic background.

c axis is normal to the plane. One of the crystals from the
present study is shown in Fig. 2.

We would like to note that the highly symmetric shape of
the samples ensures that no crystal morphology-related effects
can be expected to make a difference between H‖a and H‖b
configurations.

B. Techniques

The magnetization measurements were performed with the
7 T superconducting quantum interference device magne-
tometer [Quantum Design Magnetic Property Measurement
System (MPMS)] in the temperature range 1.8–300 K. Further
extension to the temperatures of about 0.5 K was achieved
with the help of 3He cryostat inset IQuantum iHelium3. The
magnetic susceptibility χ = M/H was measured at a small
field 0.1 T. The crystal shown in Fig. 2 was used in all the
magnetic measurements.

Specific heat measurements were carried out on a stan-
dard Quantum Design relaxation calorimetry option and the
3He-4He dilution refrigerator inset for the Quantum Design
Physical Properties Measurement System (PPMS). Two mea-
surement geometries H‖a and H‖b were realized by mount-
ing a 2.3-mg flat single-crystal sample on a small silver foil

FIG. 2. A single 16-mg crystal sample of BaCdVO(PO4)2 used
in magnetization measurements. A snapshot from a Bruker APEX II
single-crystal x-ray diffractometer.

holder with Apiezon N grease. The measurement procedure
consists of giving a gentle heat pulse to the sample platform.
Then the temperature rise is observed during the pulse, and
subsequent temperature fall is observed as the heater is turned
off. The resulting T (t ) curve typically has a characteristic
“shark fin” shape, and specific heat can be calculated from
the curvature.

The magnetocaloric effect measurements were performed
in the same setup by directly reading the resistivity of the sam-
ple thermometer as the function of slowly varying magnetic
field. It was done either with an Agilent E4980A LCR meter,
or with a Stanford Research SR830 lock-in amplifier.

III. RESULTS AND DISCUSSION

A. Magnetization studies

1. Susceptibility above TN

Above TN the susceptibilities [Fig. 1(b)] show qualitatively
identical behavior: typical Curie-Weiss tail at high tempera-
tures, followed by a rounded maximum at T � 2.5 K and then
gradual decrease down to TN = 1.05 K marked by a kink.

The Curie-Weiss part of the susceptibility curve at high
temperatures can be used for accurate determination of the
g factors and the diamagnetic background:

χα (T ) = χ0
α + (gα/2)2C

T + �
, (1)

where C = 0.375 K emu/mol is the Curie constant for the
S = 1/2 case with g = 2.00. The analysis given by Eq. (1)
was performed in a temperature window between 30 and
200 K. The Curie-Weiss temperature is found to be � =
−0.90(2) K; we have enforced the equal value for all three di-
rections. The values of g factors and diamagnetic background
susceptibilities χ0

α are summarized in Table I. The obtained
g-factor values are rather isotropic and consistent with powder
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TABLE I. Results of the Curie-Weiss analysis of the high-
temperature susceptibility.

Direction gα χ 0
α (emu/mol)

a 1.95(1) −1.79(2) × 10−4

b 1.97(1) −2.45(2) × 10−4

c 1.92(1) −2.32(2) × 10−4

electron paramagnetic resonance estimates [18]. In Fig. 1(b)
one can see that background subtracted susceptibilities nor-
malized by g2 show a perfect overlap in absence of magnetic
order.

2. Easy-axis anisotropy

Below the Néel temperature TN = 1.05 K the susceptibili-
ties shown in Fig. 1(b) start to show rather different behavior.
At low temperatures χb(T ) and χc(T ) remain more or less
constant, while χa (T ) shows a rapid decrease upon cooling.
This suggests a collinear magnetic structure with spins along
the a axis. This interpretation is backed by isothermal mag-
netization M (H ) scans at T = 0.55 K [Fig. 1(c)]. For the
H‖a case (and only for that geometry) there is a pronounced
magnetization jump around μ0HSF � 0.5 T. This behavior
is characteristic of a spin-flop transition driven by the weak
Ising-like anisotropy, a being the magnetic easy axis. Thus,
using a simple Heisenberg model to describe the system can
only be done with caution. Below we shall refer to experi-
ments with H‖a as the axial geometry, and to those with a
field in perpendicular directions as transverse.

3. Convex shape and “dimensionality reduction”

The most striking feature of the measured M (H ) curves is
their extreme convex shape close to the saturation. As known
from the numerical studies of the J1-J2 model [13,19], it
serves as a reliable indicator of the significant magnetic frus-
tration, indirectly confirming the nearly critical positioning of
BaCdVO(PO4)2 on the Fig. 1(b) phase diagram.

We note that the measured convex magnetization curve is
reminiscent of the cusp singularity occurring at saturation in
the AF spin chains [20,21]. This feature—square root cusp at
the saturation magnetization Msat − M (H ) ∝ √

Hc − H—is
endemic to one dimension, yet it appears in our essentially
two-dimensional (2D) material. This is another signature of
the frustration, known as the “dimensionality reduction.” For
example, a similar effect is responsible for low-temperature
crossover to effectively 2D behavior in a nominally 3D ma-
terial BaCuSi2O6 (“Han purple”) [22]. In the case of the
frustrated square lattice a qualitative prediction is given by
Jackeli and Zhitomirsky [23]: close to the points of perfect
frustration |J2/J1| = 1/2 1D-like behavior with a square root
magnetization cusp is indeed present in a 2D material at
saturation. A simple explanation is, close to Hc the low-energy
part of the spin-wave spectrum defining the low-T behavior
features a continuous circle of degenerate minima as the result
of strong frustration. This effectively reduced the problem to
a one-dimensional one, rendering the low-energy spectrum as
being pseudo-1D [23].

Thus, verifying the zero-temperature Msat − M (H ) ∝√
Hc − H prediction would be a strong signature of nearly

critical J2/J1 coupling ratio in BaCdVO(PO4)2. However,
in a realistic experiment we are dealing with the finite tem-
peratures that make the cusp rounded and hide away the
associated power law. Below we will show that by considering
the quantum critical behavior of longitudinal magnetization
close to Hc it is nonetheless possible to relate the “hidden”
zero-temperature cusp to the available finite temperature data.

4. Quantum critical scaling: Theory

The basic assumption that we need to make is that the
hyperscaling holds at the quantum critical point. This would
be the case if the “dimensionality reduction” scenario takes
place indeed. Then in the vicinity of the transition the free
energy can be expressed as

F (T ,H ) = λbF[λzT , λ1/ν (H − Hc )] + F0(T ,H ). (2)

Here F (x, y) is some a priori unknown function of two
variables and λ is an arbitrary positive number. This term
reflects the singular part of the free energy. We do not even
need to make any assumption about the particular value of the
exponent b (which is usually set to be d + z—the effective
dimensionality of the quantum phase transition). The nonsin-
gular part of free energy F0(T ,H ) is important at H � Hc

and can be approximated as −Msat(H − Hc ). Then, one can
express the magnetization reduction as

−Msat + M (T ,H ) = −
(

∂ (F − F0)

∂H

)
T

(3)

= −λb+1/νM0[λzT , λ1/ν (Hc − H )].

Once again, M0(x, y) is the unknown function of two
variables. Now, at finite temperatures by setting λ = T −1/z

one arrives at the following general scaling relation:

1 − M (H, T )/Msat = T mM
(

gμBμ0(H − Hc )

T 1/ϕ

)
. (4)

Here ϕ = νz is the crossover exponent describing the
interplay between the thermal and quantum fluctuations in the
transition vicinity. The second exponent m also has a simple
physical meaning. It describes the temperature dependence of
magnetization reduction at H = Hc.

The exponents ϕ and m are also crucial for characterizing
the T = 0 behavior. To see this, one needs to set λ = (Hc −
H )−ν in Eq. (3). Then the zero-temperature magnetization
cusp is described as

1 − M (H )/Msat ∝ (Hc − H )mϕ. (5)

So this is the mϕ product that defines the low-temperature
“cusp singularity,” and this is the quantity that needs to be
found experimentally in order to verify the “dimensionality
reduction” prediction by Jackeli and Zhitomirskii [23].

Finally, we note that the above discussion yields a gen-
eralized version of “zero scale universality” behavior at the
z = 2 critical point in one dimension [24]. The difference
is, unlike in the former case neither the numeric values of
the corresponding exponents (e.g., m = 1/2, ϕ = 1) nor the
functional form of M(x) are predefined.
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FIG. 3. Scaling of magnetization, observed near the saturation
field (H‖a case). (a) Raw data, taken in the interval 0.5–4 K.
(b) Same data, scaled according to Eq. (4). The observed exponents
are 1/ϕ = 1.6(3) and m = 0.8(1). The inset shows the empirical χ2

goodness of overlap with highlighted boundary at which the optimal
value increases by 50%.

5. Quantum critical scaling: Experiment

The manifestation of the experimentally accessible mag-
netization quantum critical behavior is contained in Eq. (4).
To verify this relation and determine exponents ϕ and m we
studied the H -T scaling of magnetization near saturation in
the axial geometry of BaCdVO(PO4)2. M (H, T ) data mea-
sured vs applied field at different temperatures are shown in
Fig. 3(a). Equation (4) suggests that all measurements are
expected to collapse onto a single curve if rescaled with
appropriate exponents. In order to determine the latter, for the
data in Fig. 3(a) we defined an empirical goodness of overlap
criterion [25]. Overall, this criterion is similar to a standard
χ2 with the only difference that the “theoretical” curve with
respect to which the deviation of datapoints is calculated is not
predefined, but empirically created on the fly at each iteration
of the fit. A more detailed description of the algorithm is
contained in Appendix A.

Using μ0Hc = 3.95(2) T obtained in calorimetric mea-
surements as described below, we plot χ2 as a function of
m and 1/ϕ in the inset in Fig. 3(b). The best overlap is
found for m = 0.8(1) and 1/ϕ = 1.6(3), and results in a
spectacular data collapse shown in Fig. 3(b) (main panel).
The measured exponents are quite distinct from those in
the pure one-dimensional case, where m = 1/2 and ϕ = 1
[20,24]. Nonetheless, the observed exponent describing the
magnetization cusp in the T = 0 limit [as given by Eq. (5)]
is the same, namely, mϕ = 0.5 ± 0.15, and agrees well
with this prediction made for the perfectly frustrated square
lattice [23].

B. Calorimetric studies

1. Specific heat measurements

Further unusual behavior of BaCdVO(PO4)2 was revealed
by the specific heat measurements. In both the H‖a, b ori-
entations zero-field-cooling data shows a pronounced lambda
anomaly at TN = 1.05 K followed by a power-law decrease
in Cp(T )/T as shown in Fig. 4(a). This behavior is fully
consistent with the previously reported powder data [12].

FIG. 4. Low-temperature specific heat in BaCdVO(PO4)2 for
axial and transverse geometries of the magnetic field. (a)–(e)
Cp (H, T )/T as the function of T for different magnetic fields.
Dashed lines show the power laws that can be identified in the data.
(f)–(j) Cp (H, T ) at fixed temperature as the function of H . Arrows
indicate excess specific heat appearing at low temperatures above the
field-induced phase transition. In all the plots the dotted lines show
the Zeeman effect based estimate of nuclear contribution, Eqs. (6)
and (7). Please note that the panels on the left have logarithmic scale,
while the panels on the right have linear scale. In Appendix B one
can also see alternative ways of plotting this data.

Tracking the phase transition to reconstruct the H -T
phase diagram is often easier in constant-H scans, shown
in Figs. 4(f)–4(j). However, these data reveal a striking dif-
ference between axial and transverse geometries. The first
key result of our calorimetry studies is that in the ax-
ial case, the field-induced transition becomes discontinuous
at low temperatures. Above T ∗ � 0.15 K both geometries
yield a sharp Cp(H ) peak, marking a second-order transition
[Figs. 4(f)–4(h)] at a critical field Hc. In the vicinity of Hc

and at all fields above it the data for the two geometries are
virtually indistinguishable. In contrast, below T ∗ the character
of the anomaly in the axial geometry changes. As shown in
Figs. 4(i) and 4(j) it rapidly evolves from a peak to a steplike
feature, similar to the step found at the spin flop (a textbook
example of discontinuous transition in a magnet).

The second and perhaps the most important finding of our
calorimetry experiments is that there is an additional anoma-
lous contribution to specific heat at the lowest temperatures
above Hc in both geometries. It can be seen in both constant-T
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FIG. 5. The raw specific heat data: relaxation curves taken at
μ0H = 4.5 and 8 T in axial geometry. The two shown curves
correspond to two single datapoints in Fig. 4(j).

[Fig. 4(j)] and constant-H scans [Fig. 4(d)]. At 100 mK it
persists as a plateau all the way up to μ0H

∗
c � 5.2 T, but

vanishes at higher fields [Fig. 4(e)].
A very straightforward illustration of vanishing high-field

specific heat is shown in Fig. 5 for the axial geometry case.
It demonstrates the relaxation curves obtained with the fixed
measurement time of 300 s and magnitude of heating pulse
P = 15.8 pW applied for 150 s. The difference between the
measurements at fields of 4.5 T � μ0Hc and 8 T � μ0Hc at
T = 100 mK is apparent. At 4.5 T the relaxation curve indeed
has the characteristic “shark fin” shape, which means sub-
stantial specific heat present (as the rather long measurement
period is comparable to the characteristic relaxation time). In
contrast, at 8 T after turning the heater on or off, in a few
seconds the system ends up in the stationary regime. This is
the clear signature of very short relaxation time and almost
absent specific heat in the sample.

2. Magnetocaloric effect measurements

The discontinuous character of the low-temperature field-
induced transition in the axial case is also confirmed by
the measurements of the magnetocaloric effect. Utilizing the
same experimental setup as for the relaxation calorimetry,
we monitor the sample temperature during slow magnetic
field sweeps, while keeping the heat bath temperature con-
stant. In this so-called equilibrium regime [26] the excess
thermal power created due to the sample’s entropy change
is balanced by the temperature gradient between the sample
and the bath across the weak heat link. The evolution of the
resulting sample’s T (H ) curves for up and down magnetic
field sweeps is shown in Fig. 6. The first-order spin-flop
transition manifests itself as a highly asymmetric peaklike
feature at all the temperatures. This is a direct consequence of
the entropy discontinuity. In contrast, at elevated temperatures
the magnetocaloric anomaly at Hc is very symmetric, as it
should be for a continuous transition [27,28]. However, below
around T ∗ this anomaly rapidly becomes rather asymmetric
as well, confirming the change of the transition type.

FIG. 6. Magnetocaloric effect in BaCdVO(PO4)2 at low tem-
peratures in the axial geometry. The T (H ) dependencies taken at
different temperatures with the field sweeping rate of ±5 × 10−4 T/s.

3. Possible nuclear specific heat contributions

Although observations of divergent low-temperature spe-
cific heat due to nuclear magnetism with extremely low-
energy scale are common, below we will show that the simple
picture is qualitatively inconsistent with the present data.

The simplest model of nuclear specific heat assumes the
energy levels in the spinful nuclei being split due to Zeeman
effect. Then the nuclear contribution is approximately given
as

CNuc
p (T ,H ) = A

(
μ0H

T

)2

. (6)

The material-dependent amplitude coefficient is calculated
as follows:

A =
∑

i

Ai =
∑

i

NAniαi

Ii (Ii + 1)(γi h̄)2

3kB

. (7)

The summation goes through all the spinful types of nuclei
present in the material; ni is the stoichiometric coefficient in
the chemical formula and αi is the abundance of the particular
isotope. The data on the isotopes abundance, nuclear spins Ii ,
and corresponding nuclear gyromagnetic ratios γi are found
in Ref. [29], for example. The isotope data and the corre-
sponding contribution to the nuclear specific heat prefactor
relevant to BaCdVO(PO4)2 are summarized in Table II. The
overall CNuc

p (T ,H ) prefactor is estimated as A = 1.5671 ×
10−5 J K/mol T−2, with about 80% of it stemming from the
magnetic ion 51V having nuclear spin I = 7/2. This means
that for the consistent description of CNuc

p the quadrupolar
splitting and hyperfine interactions on the 51V site also need
to be taken into account. These parameters are unknown at
the moment, and therefore Eqs. (6) and (7) should be seen
only as the crude estimate of possible effect magnitude. As
one can see from Fig. 4, the low-temperature specific heat
in BaCdVO(PO4)2 is completely at odds with this simple
estimation.

Nonetheless, since nuclear spin I = 7/2 is also carried
by the magnetic S = 1/251V4+ ions, some complex behavior
induced by hyperfine coupling close to the quantum critical
point cannot be fully ruled out. There are some experimental
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TABLE II. The relevant isotope data (from Ref. [29]) and corre-
sponding calculated contribution [Eq. (7)] to the nuclear specific heat
due to Zeeman splitting.

Isotope αi ni γi (rad/s T−1) Ii Ai (J K/mol T−2)

135Ba 0.06590 1 2.6755 × 107 3/2 2.8604 × 10−8

137Ba 0.11320 1 2.9930 × 107 3/2 6.1488 × 10−8

111Cd 0.12750 1 −5.7046 × 107 1/2 5.0318 × 10−8

113Cd 0.12260 1 −5.9609 × 107 1/2 5.2829 × 10−8

50V 0.00240 1 2.6721 × 107 6 1.1638 × 10−8

51V 0.99760 1 7.0492 × 107 7/2 1.2625 × 10−5

31P 1.00000 2 1.0839 × 108 1/2 2.8497 × 10−6

17O 0.00037 9 −3.6280 × 107 5/2 6.2013 × 10−9

[30] and theoretical [31] studies of hyperfine coupled settings,
but not for the strongly frustrated 2D case.

4. Magnetic phase diagram of BaCdVO(PO4)2

Leaving aside the certainly exotic scenario of interplay be-
tween the nuclear and electronic spins, we face the conclusion
that the found excess specific heat is of purely electron spin
origin. Apart from either electronic or nuclear spins no other
degrees of freedom may give a field-dependent contribution
to the specific heat of an insulating material at these low tem-
peratures. We conclude that in BaCdVO(PO4)2 at the lowest
temperatures Hc does not correspond to the full saturation.
Indeed, the latter would open a Zeeman gap in the spectrum
and suppress any magnetic specific heat. Instead, Hc indicates
the appearance of a new quantum regime with substantial
low-energy fluctuations.

The magnetic H -T phase diagram of BaCdVO(PO4)2 in
Fig. 7 summarizes the findings. We distinguish conventional

FIG. 7. Magnetic phase diagram for H‖a, b. The background
shows the false color map of Cp (T , H )/T , thin and thick black
solid lines represent the phase transitions (of second or first order
correspondingly), and gray dashed lines mark crossovers. Points
are the ordered phase boundary data obtained from Cp anomalies.
The phases are as follows: PM, paramagnetic; FP, fully polarized;
AF, antiferromagnetic; SF, antiferromagnetic after the spin flop;
QC, quantum critical regime; LT, unconventional low-temperature
regime. Crossover lines marking the QC regime follow T ∝ |H −
Hc|ϕ with the same crossover exponent ϕ found from scaling Eq. (4).

paramagnetic (PM), field polarized (FP), and AF states (and
its post-spin-flop version SF). At intermediate temperatures
a quantum critical (QC) regime is observed above Hc. The
new low-temperature field-induced states are labeled as LT.
While they are separated from the ordered states by obvious
phase transitions, their finite-T boundaries cannot be clearly
identified in our calorimetry data. Thus, we simply identify the
crossover line below which the anomalous behavior becomes
pronounced. The appearance of the LT regime, already in-
triguing on its own, becomes especially interesting if consid-
ered in the context of predictions made for the spin nematics.

5. Observed anomalies in context of spin nematics

One can find interesting possible connections of the
observed anomalies to the expected behavior of the two-
dimensional S = 1/2 spin-nematic materials. First, we would
like to note that the location of the LT regimes is in principle
consistent with the expectations for the spin-nematic state in
the frustrated square lattice model. The anomalous specific
heat found in BaCdVO(PO4)2 samples is endemic to the
very low temperatures compared to the typical interactions
of the order of a few kelvin in the material. Nonetheless,
this is indeed the temperature range in which the anomalous
behavior due to magnons pairing up is expected to take
place from the theory point of view. Exact diagonalization
studies of the frustrated model with J2/J1 = −0.4 suggest
significant nematic-type contributions to the specific heat to
occur at temperatures order of magnitude lower than typical
J ’s in the system [3]. In the case of BaCdVO(PO4)2 the
relevant energy scale can be suppressed even further below
0.1J1 � 0.3 K, as the system deviates from the idealized
J2/J1 = −0.4 zero-field case. This looks very consistent with
our present observations shown in Fig. 4(d). At the same
time the spin-nematic precursor behavior may in principle be
present at any field below the true saturation point—as long
as there are fluctuating transverse spin components. There
are indications that spin fluctuations associated with the new
low-temperature high-field phases are present already in the
ordered states. There too we find anomalous contributions to
specific heat below the crossover temperature T ∗ � 0.15 K
[Figs. 4(a)–4(c)]. They roughly follow Cp(T ) ∝ T −1.5 and
are particularly strong in the spin-flop state. This suggests
their transverse character. The field H ∗

c at which the spin
fluctuations vanish is consistent with the effective magnetic
energy scale of the material Jeff =

√
J 2

1 + J 2
2 [7].

A second interesting observation is related to the boundary
between conventional antiferromagnetic and LT phases. As
shown above, in the axial geometry the new high-field state is
entered from the spin-flop AF phase through a discontinuous
transition. Incidentally, this is exactly the type of behavior
expected for the spin-nematic phase predicted to emerge just
below full saturation [16]. The AF and spin-nematic phases
have competing order parameters, and therefore the transition
between them has to be first order. In the transverse geometry,
the spin-nematic phase should not exist in a field due to a
lack of axial symmetry [32]. However, this is not supposed to
impede the associated fluctuations completely. While strong
spin fluctuations persist irrespective of field orientation in
BaCdVO(PO4)2, they may result in nematic order only in
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the axial geometry. This may explain why the transition at
Hc remains continuous in the transverse case and becomes
discontinuous in the axial—the only case expected to support
the nematic long-range ordering.

To summarize, it is very tempting to consider the ob-
served anomalous regime LT as the precursor of the true
spin-nematic long-range order. This would simultaneously
explain the small energy scale associated with the new state as
well as the field-direction-dependent transition type. However,
at this stage we still cannot fully rule out the possibility
of interference between the electronic and the nuclear spins
going beyond the simple model described by Eq. (7).

IV. CONCLUSIONS

The high hopes for finding the unconventional mag-
netism in the frustrated S = 1/2 square lattice magnet
BaCdVO(PO4)2 appear to be well justified. In addition to the
experimentally quantified “dimensionality reduction” effect
serving as the indicator of strong frustration we have also
found anomalously strong contributions to the specific heat
in the vicinity of saturation field at lowest temperatures.
Although the possibility of their origin from the interplay of
electronic and nuclear magnetism is not yet fully ruled out,
these anomalies show qualitative consistency in the order of
phase transition and energy scale with the predicted spin-
nematic behavior. Future efforts aimed at understanding the
origins of the novel regime will have to specifically focus on
the lowest possible temperatures.
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APPENDIX A: DEFINITION OF SCALING χ 2 CRITERION

The hypothesis that is being tested for the magnetization
data present in Fig. 3 of the main text is that it follows the
universal behavior in the vicinity of Hc:

1 − M (T ,H )/Msat = T mM
(

gμ0μB (Hc − H )

T 1/ϕ

)
. (A1)

This means that for correctly chosen exponents m

and ϕ the set of datapoints X = gμ0μB (H−Hc )
T 1/ϕ and Y =

[1 − M (H )/Msat]/T m should lie close to some hypothetical
curve. In principle, if this hypothetical curve Y0(X) is known,
the problem of calculating the abstract “goodness of overlap”
can be reduced to the very standard problem of calculating of
the “goodness of fit” of the data Y (X) by theory Y0(X).

The key idea in the present approach, where no a priori
scaling curve is postulated, is to construct Y0(X) “on the
fly” based on the current Y (X) data. This is achieved by

FIG. 8. The scaling analysis of the magnetization data (see Fig. 3
of the main text). Left: optimal scaling exponents 1/ϕ = 1.55, m =
0.76. Right: nonoptimal scaling exponents 1/ϕ = 1, m = 1. Green
curve represents the empirical data interpolation with respect to
which the χ 2 costs are calculated.

interpolating the scattered Y (X) with cubic splines. It guar-
antees the smoothness of the resulting curve and at the same
time gives a bit more flexibility than polynomial interpolation
used, e.g., in Ref. [20] in a similar situation. The exam-
ples of such an empirical interpolation curve for cases with
good and poor choices of scaling exponents are shown in
Fig. 8.

A remark needs to be made regarding the normalization of
cost function in the case described above. The χ2 value is usu-
ally normalized with the number of degrees of freedom, which
is typically the number of datapoints. However, in the present
situation individual degrees of freedom are rather represented
by the individual M (H ) scans at fixed temperatures. For any
separately taken scan the interpolation procedure would by
definition provide an ideal overlap with the “empirical curve,”
and it is the optimization in the presence of multiple such
datasets that constitutes the essence of the procedure. Then the
cost function, being the equivalent of a standard normalized
error-bar-weighted χ2 is calculated as follows:

χ2 = 1

NDatasets − 1

√√√√∑
Xi

(
Y (Xi ) − Y0(Xi )

�Y (Xi )

)2

. (A2)

APPENDIX B: ADDENDA IN THE SPECIFIC HEAT
MEASUREMENTS

Finally, we would like to present a proof that the observed
anomalous specific heat is sample related. One simple consid-
eration is that the addenda contribution is somewhat different
in both H‖a and H‖b cases (as different amounts of grease
and a different piece of silver foil holder was used), while
the observed extra specific heat is well matched. But even
more valuable is the direct comparison, given in Fig. 9 for
the H‖a setup. One can see that the background specific heat
contribution is very small. Apart from a tiny Shottky anomaly
close to H = 0 it is dominated by Cp ∝ T linear specific heat
of the silver foil.
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FIG. 9. Low-temperature part of addenda specific heat (triangles) and total specific heat (circles) with the BaCdVO(PO4)2 sample mounted
in axial geometry. Left panel shows Cp/T data on semilogarithmic scale; right panel shows the data on linear scale.
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