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Spin density and spin torque induced by the D’yakonov-Perel’ mechanism in magnetic
semiconductor nanowires with a constriction
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The transport through a domain wall pinned at a nanoconstriction in (Ga,Mn)As wires is investigated
theoretically using the Landauer-Büttiker approach by considering the Rashba and Dresselhaus spin-orbit
interactions. The local nonequilibrium spin densities produced by electrical spin injection at the nanoconstriction
are calculated numerically along the nanowire. The adiabatic and nonadiabatic components of the spin-transfer
torque, expressed in terms of the gradient of the spin current density, are also computed. An oscillatory behavior
in the spin-transfer torque is observed for the systems containing atomically sharp domain walls, due to the strong
reflections at the domain wall caused by the large magnetization gradient. It is demonstrated that the strength of
the oscillations for nonadiabatic spin torque increases by the negative Rashba parameter αx , while it decreases
with increasing positive values of αx . However, the nonadiabatic spin torque increases with |αy |, regardless of its
sign. Furthermore, it is shown that the Dresselhaus coupling β does not considerably alter the z component of the
spin torque, while the other two components are effectively changed by the Dresselhaus spin-orbit interaction.
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I. INTRODUCTION

Investigation of the interaction between spin-polarized
electric currents and locally inhomogeneous magnetic tex-
tures of the domain walls has recently attracted much at-
tention from both fundamental and technological viewpoints.
Controlled manipulation of the domain wall configuration by
spin-polarized currents is an important issue for its potential
applications in spintronic devices such as logic gates [1],
shift registers [2,3] as the basic building blocks of magnetic
racetrack memories [4], and nonvolatile magnetic random
access memories [5,6], whose functionalities are based on the
domain wall motion through the spin-transfer torque effect.
Thus a detailed understanding of the domain wall interaction
with spin-polarized current is essential to explore new func-
tionalities in spintronics.

Since the prediction of the current-induced spin-transfer
torque phenomenon by Slonczewski [7] and Berger [8], dif-
ferent formalisms have been proposed to treat the interaction
between the local magnetic moments and spin-polarized cur-
rents either in the ballistic [9,10] or diffusive regime [11–14].
For a thick domain wall of width d, the magnetization rotation
frequency in terms of the electron Fermi velocity ωWall =
πvF /d is negligible compared to the pseudo-Larmor fre-
quency of the spin, which is determined by the s-d exchange
interaction energy �ex as ωsd = �ex/h̄; so, the polarization
axis of the carriers can follow the local magnetic moments
adiabatically, and thus the diffusive regime is expected to
prevail. In the complete adiabatic limit, the dominant con-
tribution to the spin-transfer torque is due to the loss of the
spin angular momentum of the carriers passing through the
domain wall. This so-called adiabatic spin-transfer torque is
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a reactive torque that tends to twist the magnetization of the
domain wall. It preserves the time-reversal symmetry and is
proportional to −( j · ∇ )uM (r ), where uM (r ) is the unit vector
along the magnetization direction and j stands for the charge
current density vector. For domain walls of intermediate
widths, the mistracking between the carriers spin and the local
magnetization leads to a nonadiabatic spin torque normal to
the adiabatic term and proportional to −uM × ( j · ∇ )uM (r ).
Such a torque is not invariant under the time reversal transfor-
mation (uM −→ −uM ) and thus contributes to a dissipative
process. Although the nonadiabatic spin torque strength is two
orders of magnitude smaller than that of adiabatic term in the
wide domain walls, it determines the critical current density
needed to drive domain wall motion in zero magnetic field.
Furthermore, the nonadiabatic torque produces a pressure
directly on the domain wall when applying a dc current,
while it contributes to the wall motion in the ac current case
[15,16]. On the other hand, in the limit of narrow domain
walls (d � k−1

F ), the adiabaticity does not take place and
a strong reflection at the domain wall position may occur.
Surprisingly, an atomic-scale domain wall, constructed by
pulling off two antiparallel-aligned ferromagnetic electrodes
in contact [17–20] or fabricated by electrodeposition tech-
niques [21–23], shows an extremely huge magnetoresistance
[24–29] commonly known as ballistic magnetoresistance
(BMR). This may account for a significant enhancement of
local spin accumulation [30] and thus an increase in both adi-
abatic and nonadiabatic spin torques [31]. The spin-transfer
torque observed in ballistic domain walls can be understood
in terms of the electron’s scattering by geometrical domain
wall potential. Fully nonadiabatic scattering of the carriers
by the large induced magnetization gradient within the sharp
domain walls leads to a relatively large nonadiabatic torque
which results in the current-driven domain wall motion at low
current densities [32,33]. This improves the efficiency of the
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spin-transfer torque effect and provides a route towards low
power magnetic devices.

Another mechanism to influence the current-induced spin-
transfer torque is based on the spin-orbit interactions caused
by the D’yakonov-Perel’ mechanism. The D’yakonov-Perel’
spin relaxation in both metals and semiconductors, resulting
from the lack of inversion symmetry, is expected to affect
the current-induced spin torque through an increase in the
spin-flip rate. This mechanism typically dominates the spin
dynamics in p- (as well as in n-) doped samples, like the
situation in (Ga,Mn)As semiconductors with relatively low
hole densities [34–36]. The D’yakonov-Perel’ spin scatter-
ing is derived by two momentum-dependent magnetic fields
due to the bulk inversion asymmetry (Dresselhaus field) and
structure inversion asymmetry (Rashba field). It is expected
that in low-dimensional semiconductor structures, the nonadi-
abatic spin torque is considerably affected by the spin-orbit
couplings. Through the calculations based on the standard
Kohn-Luttinger Hamiltonian for a zinc-blende magnetic semi-
conductor, it has been shown that the spin-orbit interaction
strongly enhances the current-induced nonadiabatic torque
and thereby the domain wall velocity [37]. In an analogous
theoretical approach, Yuan and Kelly [38] demonstrated the
incremental contribution of the spin-orbit coupling to the
nonadiabatic spin-transfer torque parameter of clean Ni do-
main walls. Similar results were obtained by Obata and Tatara
[39], who considered the transport properties, in the presence
of Rashba interaction, through the analysis of an effective
Hamiltonian within the framework of Keldysh Green’s func-
tion formalism. The critical current density required to initiate
domain wall motion in a ferromagnetic semiconductor was
predicted to be about three to four orders of magnitude smaller
than that in a non-spin-orbit coupled system. Subsequently, a
simple physical picture was proposed by Manchon and Zhang
[40] to describe the combined effect of spin-orbit coupling
and exchange interaction using the Boltzmann formulation.
Focusing on the first-order terms of Rashba and Dresselhaus
spin-orbit coupling parameters, they theoretically predicted
that the spin-orbit torque can be effectively used to switch
the magnetization direction, utilizing critical current densities
as low as 104–106 A/cm2 in a single ferromagnetic layer.
The investigation was followed in Ref. [41], where Li et al.
found a strong correlation between the angular dependence of
the torque and the anisotropy of the Fermi surface. In both
works, they considered a uniformly magnetized single layer,
without any noncollinearity of the magnetization. In such a
system, the homogeneous current-induced spin polarization
provides a uniform torque on the collinear magnetization.
Comparable results would be found in a noncollinear structure
with low magnetization gradient, e.g., in a long domain wall,
where the adiabatic (or in-plane) spin-transfer torque remains
relatively constant in each segment of the whole structure. In
this case, the adiabatic spin-transfer torque would translate
the noncollinear magnetic texture without any distortion. On
the other hand, the emergence of a nonuniform spin torque
in a noncollinear structure with large magnetization gradient
would distort the magnetization profile. More especially, the
distortion seems to be significantly affected by the spin-orbit
torque induced by the Rashba and Dresselhaus effects in
a diluted magnetic semiconductor, which to my knowledge

has not been addressed in the literature. Here, I assume a
finite-sized ballistic domain wall between two ferromagnetic
regions and study the effect of the Rashba and Dresselhaus
spin-orbit couplings on the spin polarization and spin-transfer
torque in the ballistic transport regime. The outline of the
remainder of this paper is as follows.

In Sec. II, I discuss the general algorithm used to solve
the coupled spin channels Schrödinger equation with mixed
Dirichlet-Neumann boundary conditions in details. The ap-
proach presented in this section, can be utilized for do-
main walls with complex magnetic textures. Also, the spin-
dependent transport properties of a ballistic domain wall
pinned at a semiconducting magnetic nanocontact, such
as conductance, nonequilibrium spin density and spin-orbit
torque, are explored. In Sec. III, the quantum conductance
of carriers is calculated for an atomic-scale domain wall in
the presence of the Rashba and Dresselhaus spin-orbit cou-
plings. The accumulated spin density within the wall and its
surroundings is computed and then the resulting spin-transfer
torque exerted on the local magnetization is quantified. The
effect of the spin-orbit couplings on the spin density and
spin-transfer torque components are also discussed. Finally,
a brief summary and conclusions will be provided in Sec. IV.

II. THEORETICAL CONSIDERATIONS

I consider a p-type semiconducting ferromagnetic
nanowire containing a head-to-head domain wall of width d.
The thickness of the nanowire (a few monolayers) is selected
in such a way that just one transverse channel participates in
the transport. In such an ultrathin nanowire, Néel-type domain
walls would be more favorable below a critical wire thickness
(less than the wall width d), while the Bloch walls would be
found in the bulk materials. The magnetization profile in the
walls formed in nanocontacts has been mostly described by a
simple tanh profile in the theoretical literatures [42–44].

As illustrated in Fig. 1, the local magnetic moments ori-
entation in the domain wall plane is well described by the
function θ (z) = cos−1 [− tanh ( π2z

2d
)], for −∞ � z � ∞. The

single-hole Hamiltonian of the system in the presence of
the Rashba and Dresselhaus spin-orbit couplings, utilizing an

FIG. 1. Sketch of a head-to-head domain wall pinned at
a nanocontact between two p-type semiconducting magnetic
nanowires.
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effective one-band model approach, can be written as

H = p2

2m∗ + V⊥(x, y) − �ex

2
σ̂ · uM (z) + HR + HD, (1)

where �ex is the spin splitting energy, V⊥(x, y) represents the
confinement potential, σ̂ denotes the spin operators in terms
of the Pauli spin matrices, and uM (z) = [sin θ (z), 0, cos θ (z)]
indicates the unit vector parallel to the local magnetization.
HR and HD are the Rashba and Dresselhaus Hamiltonians,
respectively. The confinement potential can be considered as

V⊥(x, y) = U (x) + U (y) + Vg (x, y), (2)

in which U (x) and U (y) are the confining potentials arising
from the dimensional constraints in the lateral directions
which define the transverse modes in the system. The potential
Vg (x, y) attributes to the lateral gates in the system that
alters the strength of the lateral confining potential. The
confinement potential in the lateral dimensions offers the
possibility of defining a quasi-one-dimensional Hamiltonian.
On the other hand, the nanometric cross-sectional dimensions
of the nanowire are small enough compared to the Fermi
wavelength of the carriers; so, only a single transverse channel
participates in the transport, a situation typically achieved
in low-dimensional magnetic semiconductors. Therefore one
can introduce one-dimensional Hamiltonians for the Rashba
and Dresselhaus spin-orbit terms by averaging of the trans-
verse momenta over the ground-state eigenfunction of the
confinement potential.

In general, there is a major difference between the Rashba
spin splitting terms in the hole systems and the more familiar
electron gas systems. However, the effective Rashba Hamilto-
nian for the light-hole states is the same as the corresponding
Hamiltonian for the electron states in the �c

6 conduction
band [45]:

H 6c
e = γRk × E · σ , (3)

in which γR is the strength of the Rashba spin-orbit interac-
tion, k refers to the wave vector and E is the electric field that
characterizes the spatial inversion asymmetry of the confining
potential. As can be seen, H 6c

e is linear in k, while there is
a cubic dependence of the spin splitting term on the in-plane
wave vector in the �v

8 valence band for the heavy-hole states
in two-dimensional hole systems. However, in the theoretical
work performed by Kernreiter et al. [46], it has been suggested
that when the holes are confined in the quasi-one-dimensional
systems, the Rashba term once again becomes linear in k
term. Then, the effective magnetic field vector induced by the
Rashba term always lies perpendicular to the one-dimensional
channel, similar to the electron case.

So, the Rashba spin-orbit interaction can be stated as

HR = γR

h̄
{σx (〈∂yV⊥〉pz − 〈∂zV⊥〉〈py〉)

+ σy (〈∂zV⊥〉〈px〉 − 〈∂xV⊥〉pz)

+ σz(〈∂xV⊥〉〈py〉 − 〈∂yV⊥〉〈px〉)}. (4)

Since the carriers transport along the z axis, one should con-
sider pz in the Hamiltonian as an operator, −ih̄∂/∂z. Denot-
ing the cross-sectional dimensions of the nanowire by Lx and
Ly , one can obtain: 〈px〉 = 0, 〈py〉 = 0, 〈p2

x〉 = h̄2π2/L2
x ,

and 〈p2
y〉 = h̄2π2/L2

y . Therefore HR can be rewritten as

HR = −i(αyσx − αxσy )
∂

∂z
, (5)

where αq = γR〈∂qV⊥〉, (q = x, y) is the Rashba coupling
constant. It has been shown that the average values of 〈∂qV⊥〉
are of the order of a few meV/Å [47]. Taking into account
the values of γR for different semiconductors, the value of αq

can vary in the range of a few meVnm to a few tens meVnm
in low-dimensional systems [47–49]. As pointed, the Rashba
spin-orbit coupling term arises from the lateral confining
potentials and its strength can be modified by applying an
additional field via lateral gates. Moreover, both negative and
positive values are possible for the Rashba spin-orbit constant,
depending on the direction of the applied field.

The Dresselhaus spin-orbit interaction can be controlled by
choosing the crystallographic growth direction in which the
sample is fabricated. Moreover, the strain-induced spin-orbit
coupling of the Dresselhaus type would be found, when a
p-type ferromagnetic semiconductor with zinc-blende crys-
tal structure is subjected to strain [50,51]. One can there-
fore assume a linear dependence on the wave vector in the
case of Dresselhaus spin-orbit coupling, in order to consider
the effective magnetic field vector parallel to the transport
direction:

HD = −iβσz

∂

∂z
, (6)

where β denotes the Dresselhaus coupling constant. The real
III-V magnetic semiconductors like (Ga,Mn)As are known to
have rather complex band structures consisting of several hole
subbands with the spin-orbit interactions included in the hole
Hamiltonian. The effective one-band model with parabolic
subbands is only valid for energies much less than the energy
of the spin-orbit splitting �SO . However, in a general case,
the theory of hole transport in p-(Ga,Mn)As needs special
consideration.

The coupled Schrödinger equations for “up” and “down”
components of the wave function (�↑(↓)) are then

[
d2

dz2
+ k2

F − k2
ex tanh

(
π2z

2d

)]
�↑(z) − 2ikD

d

dz
�↑(z)

+ k2
exsech

(
π2z

2d

)
�↓(z) − 2kRe−iϕR

d

dz
�↓(z) = 0 (7a)

and[
d2

dz2
+ k2

F + k2
ex tanh

(
π2z

2d

)]
�↓(z) + 2ikD

d

dz
�↓(z)

+ k2
exsech

(
π2z

2d

)
�↑(z) + 2kRe+iϕR

d

dz
�↑(z) = 0, (7b)

in which kF =
√

2m∗εF

h̄2 is the Fermi wave vector, and the
exchange coupling term is described by the wave vector kex =√

m∗�ex

h̄2 . The strengths of the Rashba and Dresselhaus spin-
orbit couplings are measured in terms of the characteristic
wave vectors kR = m∗αR

h̄2 and kD = m∗β
h̄2 , respectively, where

αR =
√

α2
x + α2

y is the Rashba spin-orbit coupling strength,
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and ϕR = tan−1 αy

αx
represents the direction of the Rashba

field.
These coupled spin channels Schrödinger equations can

be solved numerically using an appropriate finite difference
scheme and utilizing boundary conditions defined at the
boundaries [52]. However, the boundary conditions in the
aforementioned problem that contains the central scattering
region (domain wall) and two semi-infinite left and right leads,
are not clearly defined; they depend on the unknown values
of reflection (r↑(↓)) and transmission (t↑(↓)) amplitudes that
would be obtained, later. In the proposed algorithm, which
is applicable to both adiabatic and nonadiabatic transport
regimes, first, the mixed boundary conditions in the left and
right leads, far away from the domain wall, are found by
eliminating the reflection and transmission amplitudes, and
then the coupled Schrödinger equations are solved using a
finite difference method based on the three-stage Lobatto IIIa
implicit Runge-Kutta formula. According to Fig. 1, that shows
a noncollinear magnetic structure between two uniformly
magnetized leads, the whole structure including the domain
wall and ferromagnetic leads is divided into N segments along
the z axis in a way that the direction of magnetization remains
approximately constant in each segment.

The full wave function of an incident (reflected) carrier in
the left side (L) and transmitted carrier to the right side (R)
with the Fermi energy εF may be written as

� = e±iki(r )(t )z√|Ai(r )(t )|2 + |Bi(r )(t )|2
(

Ai(r )(t )

Bi(r )(t )

)
, (8)

in which ki(r )(t ) represents the longitudinal wave vector of the
spin states at the Fermi surface (the subscripts i, r , and t refer
to the incident, reflected, and transmitted waves, respectively).
In order to find the wave vectors of the incident (k↑(↓)

i ) and

reflected (transmitted) (k↑(↓)
r (t ) ) spin states, the determinant of

the matrix |H − εF I | must be set to zero:(
k2 − k2

F

)2 − (
k2

ex ∓ 2kkD

)2 − 4k2k2
R = 0. (9)

By substituting the wave vectors k
↑(↓)
i(r ) in the characteristic

equation of the matrix H , I can find the spin function coeffi-
cients Ai(r )(t ) and Bi(r )(t ) for both up- and down-spin states:

|↑〉i(r )(t ) =

[ 1
− tan θi(r )(t )

2 eiφi(r )(t )

]
√

1 + tan θi(r )(t )

2 tan
θ∗
i(r )(t )

2

, (10a)

|↓〉i(r )(t ) =

[
tan

θ∗
i(r )(t )

2 e−iφi(r )(t )

1

]
√

1 + tan θi(r )(t )

2 tan
θ∗
i(r )(t )

2

, (10b)

in which

θ
↑(↓)
i(r ) = 2 tan−1

± 2k
↑(↓)
i(r ) kR

k2
ex∓2k

↑(↓)
i(r ) kD

1 +
√

1 +
(

2k
↑(↓)
i(r ) kR

k2
ex∓2k

↑(↓)
i(r ) kD

)2
, (11a)

θ
↑(↓)
t = 2π − 2 tan−1

2k
↑(↓)
t kR

k2
ex+2k

↑(↓)
t kD

1 +
√

1 +
(

2k
↑(↓)
t kR

k2
ex+2k

↑(↓)
t kD

)2
, (11b)

and φi(r )(t ) = ϕR − π
2 defines the direction of the spin quan-

tization axis in spherical coordinates (θ , φ) for incident, re-
flected, and transmitted spin states. Then, I can write the wave
functions on both sides of the nanocontact as

�k,L(z) = I↑
(

A
↑
i

B
↑
i

)
eik

↑
i z + r↑

(
A

↑
r

B
↑
r

)
e−ik

↑
r z + I↓

(
A

↓
i

B
↓
i

)
eik

↓
i z + r↓

(
A

↓
r

B
↓
r

)
e−ik

↓
r z (12a)

and

�k,R(z) = t↑
(

A
↑
t

B
↑
t

)
eik

↑
t z + t↓

(
A

↓
t

B
↓
t

)
eik

↓
t z, (12b)

where I↑(↓) are the incoming “up” and “down” spin wave intensities. The scattering states �k,L(z) and �k,R(z) describe the
incoming spin waves from z = −∞ to the right, which are partially reflected and partially transmitted into the two spin channels.
The coefficients t↑(↓) and r↑(↓) are the transmission and reflection amplitudes, respectively. In order to calculate the transmission
amplitudes, I first assume the incoming wave to be entirely “up” and then consider purely “down” spin state. The full wave
function in the scattering and its surrounding regions can be obtained numerically by solving the second-order differential
equations that satisfy the following boundary conditions at z = ±L, sufficiently far from the scattering region:

∣∣∣∣∣∣∣
ik

↑
i A

↑
i −ik

↑
r A

↑
r −ik

↓
r A

↓
r

A
↑
i A

↑
r A

↓
r

B
↑
i B

↑
r B

↓
r

∣∣∣∣∣∣∣I
↑e−ik

↑
i L +

∣∣∣∣∣∣∣
ik

↓
i A

↓
i −ik

↑
r A

↑
r −ik

↓
r A

↓
r

A
↓
i A

↑
r A

↓
r

B
↓
i B

↑
r B

↓
r

∣∣∣∣∣∣∣I
↓e−ik

↓
i L =

∣∣∣∣∣∣∣
�′↑(1) −ik

↑
r A

↑
r −ik

↓
r A

↓
r

�↑(1) A
↑
r A

↓
r

�↓(1) B
↑
r B

↓
r

∣∣∣∣∣∣∣, (13a)

∣∣∣∣∣∣∣∣
ik

↑
i B

↑
i −ik

↑
r B

↑
r −ik

↓
r B

↓
r

A
↑
i A

↑
r A

↓
r

B
↑
i B

↑
r B

↓
r

∣∣∣∣∣∣∣∣
I↑e−ik

↑
i L +

∣∣∣∣∣∣∣∣
ik

↓
i B

↓
i −ik

↑
r B

↑
r −ik

↓
r B

↓
r

A
↓
i A

↑
r A

↓
r

B
↓
i B

↑
r B

↓
r

∣∣∣∣∣∣∣∣
I↓e−ik

↓
i L =

∣∣∣∣∣∣∣∣
�′↓(1) −ik

↑
r B

↑
r −ik

↓
r B

↓
r

�↑(1) A
↑
r A

↓
r

�↓(1) B
↑
r B

↓
r

∣∣∣∣∣∣∣∣
, (13b)
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∣∣∣∣∣∣∣
�′↑(N ) ik

↑
t A

↑
t ik

↓
t A

↓
t

�↑(N ) A
↑
t A

↓
t

�↓(N ) B
↑
t B

↓
t

∣∣∣∣∣∣∣ = 0, (13c)

∣∣∣∣∣∣∣
�′↓(N ) ik

↑
t B

↑
t ik

↓
t B

↓
t

�↑(N ) A
↑
t A

↓
t

�↓(N ) B
↑
t B

↓
t

∣∣∣∣∣∣∣ = 0, (13d)

in which �′↑(↓) indicate the derivatives of the two-component
spinor wave function. The aforementioned mixed boundary
conditions in the left and right leads are obtained by elimi-
nating the unknown reflection and transmission amplitudes in
the continuity relations of the wave function and its derivative.
Subsequently, the reflection and transmission coefficients will
be obtained as follows:

t↑(↓) = ±B
↓(↑)
t �↑(N ) − A

↓(↑)
t �↓(N )

A
↑
t B

↓
t − A

↓
t B

↑
t

e−ik
↑(↓)
t L, (14)

r↑(↓) = ±

∣∣∣A↓(↑)
r A

↑
i I↑e−ik

↑
i L + A

↓
i I↓e−ik

↓
i L − �↑(1)

B
↓(↑)
r B

↑
i I↑e−ik

↑
i L + B

↓
i I↓e−ik

↓
i L − �↓(1)

∣∣∣
(A↑

r B
↓
r − A

↓
r B

↑
r )eik

↑(↓)
r L

.

(15)

I use the two-probe Landauer formula to obtain the conduc-
tivity from the transmission coefficients. The transmission
coefficients are evaluated as the ratio of the transmitted to the
incident probability current density as follows:

T pq = k
q
t |tq |2

k
p

i |Ip|2 �
(
k

p

i

)
�

(
k

q
t

)
, p, q =↑ and ↓ . (16)

Then, the total transmission coefficients for the incoming
up- and down-spin states will be equal to T ↑ = T ↑↑ + T ↑↓
and T ↓ = T ↓↑ + T ↓↓, respectively. The Heaviside function
�(k) is considered in order to eliminate evanescent spin wave
functions. In this way, �(k) will be equal to zero in the case
of Im(k) �= 0.

Assuming that the incoming electronic spin is an
unpolarized statistical mixture, i.e., ρin = 1

2 (|↑〉〈↑| + |↓〉
〈↓|), the output will be obtained by ρout =
1
2 [(T ↑↓ + T ↓↓)|↑〉〈↑| + (T ↓↑ + T ↑↑)|↓〉〈↓|] [53]. Therefore
the overall transmission coefficient of the unpolarized
electrons will be given by T = 1

2 (T ↑ + T ↓). In the case
reported here, the possibility that electrons could be partially
polarized before ballistic transport through the ferromagnetic
material is not take into account.

At low bias voltage, the domain wall conductance is cal-
culated according to the Landauer-Büttiker formalism [54].
This approach, which is widely used in mesoscopic physics,
expresses the conductance in terms of the transmission prop-
erties of coherent electron states as follows:

G = 2e2

h
T . (17)

The nonequilibrium spin density (spin accumulation) pro-
duced in the domain wall with inhomogeneous magnetic
texture can exert a torque on the domain wall and the neigh-

boring ferromagnetic contacts. In the limit of infinitesimal
bias voltage applied across the domain wall, eδV = μL −
μR, I considered both right-going “up” spin holes from the
left lead and left-going “down” spin holes from the right
lead at the chemical potentials μL = εF + eδV

2 and μR =
εF − eδV

2 , respectively. For the process to be possible, the
majority spin holes must be available at the chemical potential
μL(∇) in the left (right) lead [fL(∇)(ε)], while the right (left)
lead must be unoccupied [1 − fR(L)(ε)]. Functions fL(∇) =
[exp ( ε−μL(r )

kBT
) + 1]

−1
are Fermi-Dirac distributions in the left

and right lead at temperature T , respectively. Based on the
single-electron model, the nonequilibrium spin density of
the system could be estimated by integrating over the entire
energy as follows:

〈m〉ne = 1

eδV

∫ +∞

−∞
dε[

L→R
〈m〉fL(ε)(1 − fR(ε))

−
R→L
〈m〉fR(ε)(1 − fL(ε))], (18)

where m = μBσ represents the magnetization of the carriers,
and μB is the Bohr magneton. The Fermi distribution function
is expanded around the point (ε − εF ) as fL(∇)(ε) = �(εF −
ε) ∓ eδV

2 δ(ε − εF ) in the limit of absolute zero temperature
to derive the above equation [55]. This equation is analogous
to Eq. (14) in Ref. [38] for right-going electrons from the left
lead and left-going holes from the right lead. The spatial pro-
file of the transverse (x − y plane) and longitudinal (z-axis)
components of the spin accumulation would be calculated
numerically as follows:

〈m(z)〉ne =
L→R

〈m(z)〉 +
R→L

〈m(z)〉
2

. (19)

The total spin accumulation density induced by the external
current I0 = e2δV

πh̄
T , can be obtained as the integral of the spin

density over all energies between εF − eδV
2 and εF + eδV

2 :

〈m〉ne
tot = eδVN (εF )〈m〉ne = 3epI0

4GεF

〈m〉ne, (20)

in which N (εF ) = 3p/4εF denotes the density of states in
terms of the Fermi energy and p is the hole density.

It has been well known that the transverse components of
the spin accumulation exert a torque on the magnetization of
the domain wall. This torque would lead to the deformation
of the wall and its surroundings on the scale of the Larmor
precession length. The spin torque can be formulated in terms
of the spin current density. The charge current density ( j ) and

the spin current density (
←→Q ) in the presence of the spin-orbit

coupling can be defined by

L�R
j = e

m∗ Re〈ψ |L�R
π |ψ〉, (21)

L�R←→Q = μB

m∗ Re〈ψ |σ ⊗ L�R
π |ψ〉, (22)

where
L�R
πx(y) = 0 and

L�R
πz = ±pz ± αy

h̄
σx ∓ αx

h̄
σy ± β

h̄
σz are

three components of kinetic momentum operator which have
odd symmetry under time reversal. The spin-orbit coupling
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adds some extra terms to the canonical momentum pz. Since

the steady current flow is along the z axis, the tensor
←→Q can

be considered as a vector with three components Qxz, Qyz,
and Qzz in spin-space coordinates. Similar to the spin accu-
mulation, the charge current density and the three components
of the spin current density would be calculated as follows:

〈jz(z)〉 =
L→R

〈jz(z)〉 +
R→L

〈jz(z)〉
2

, (23)

〈Q(z)〉 =
L→R

〈Q(z)〉 +
R→L

〈Q(z)〉
2

. (24)

The total charge and spin current densities can be written as
follows:

〈jz,Q〉tot = 3epI0

4GεF

〈jz,Q〉. (25)

The spin current is not conserved upon passing through the
ferromagnetic structures with either collinear or noncollinear
geometries. This is due to the possibility of reorientation of
the carriers spin caused by the local exchange field in the
ferromagnetic structures. However, the total angular momen-
tum must be conserved as a result of Lorentz invariance.
Thus the lost spin current must have been transferred to the
local magnetic moments that acts as the so-called spin-transfer
torque on the local magnetic moments. The net spin-transfer
torque (per unit area) acting on the domain wall is then given

by
←→N STT,tot = ←→Q tot (z = − d

2 ) − ←→Q tot (z = + d
2 ), while the

local spin-transfer torque per unit area (per unit distance) is

calculated as
←→N STT(z) = − ∂

∂z

←→Q tot (z).
The spin-transfer torque can be decomposed into two

parts: the adiabatic torque term which is proportional to
m × (m × ∂

∂z
m) (known as in-plane component that lies in

the xz plane), and the nonadiabatic one which arises from the
dissipation processes in spin dynamics [56], and is propor-
tional to m × ∂

∂z
m (parallel to y axis, namely, out-of-plane

component).

III. RESULTS AND DISCUSSION

The calculations have been performed for a 1-nm-thick
domain wall residing in a nanoconstriction between two semi-
conducting magnetic nanowires with a constant spin splitting
energy �ex = 0.5 eV and valence hole effective mass m∗ =
(m3/2

HH + m
3/2
LH )2/3m0 = 0.47 m0, where mHH and mLH denote

the heavy hole and light hole effective masses in units of
the free electron mass m0, respectively. The Fermi energy
in a Mn-doped GaAs material has been considered to be
εF = 0.2 eV. The magnetic semiconductors with εF < �ex

2 ,
referred to as half-metallic ferromagnets, can produce 100%
spin polarization at the Fermi level. The spin relaxation length
is typically of the order of tens of nanometers for the short spin
relaxation time (≈0.1 ps) found in (Ga,Mn)As ferromagnetic
semiconductors [57,58], which allows the spin-polarized car-
riers to preserve their spin orientation over a few nanometers,
the length scale of the wall width. Therefore I considered the
case in which the incident wave coming from the left (right)
ferromagnetic lead is a pure spin-up (-down) state.

FIG. 2. The contour plot of the linear-response conductance (in
the units of e2

h
) of a 1-nm-thick head-to-head domain wall in a

(Ga,Mn)As nanowire with spin splitting energy �ex = 0.5 eV, and
Fermi energies (left) εF = 0.0, (middle) 0.1, and (right) 0.2 eV as a
function of the Rashba spin-orbit coupling parameter in the complex
plane αReiϕR , and in the case of β = 0.

In the linear response regime, the dependence of the do-
main wall conductance on the Fermi energy as a function of
the complex Rashba parameter, αReiϕR , has been shown in
Fig. 2 for the symmetric lateral confinement potential U (x) =
U (y), where the Dresselhaus coupling constant is equal to
zero. As can be seen, the conductance of a single-mode half-
metallic ferromagnetic point contact is bounded by the upper
limit e2

h
(half of the expected limit of a one-dimensional per-

fect transmission channel), due to the spin blockade effect. It
shows that the domain wall conductance increases (decreases)
with the Fermi energy for positive (negative) αx [59]. In
contrast to the asymmetric behavior of the conductance as
a function of αx , a symmetric increase is observed in the
wall conductance relative to the Rashba coupling strength
|αy |, which is brought about by the transverse electric field
−∂yV⊥ along the y axis. Indeed, asymmetric spin precession
around the magnetic field along the y axis, induced by the
Rashba interaction (αx), results in the asymmetry of the wall
conductance. On the other hand, the symmetric behavior in
the conductance is caused by the symmetric Rashba cou-
pling parallel to the Néel-type domain wall plane. Increase
(decrease) of the domain wall conductance as increasing
the positive values (decreasing the negative values) of αx can
be explained in terms of the spin mistracking effect. In fact,
the positive (negative) Rashba coupling αx can be viewed as
an effective magnetic field with the amplitude 2h̄

e
kRk

↑
i parallel

(antiparallel) to the y axis for carriers coming from the left
lead. This effective magnetic field makes the electrons spin
precess counterclockwise (clockwise) about the y axis that
facilitates (inhibits) the tracking between electron spin and
the local magnetization direction uM (z). The net effect is to
increase (decrease) the domain wall conductance.

The asymmetry in the lateral confinement potential
U (x) �= U (y) would introduce an additional linear Dres-
selhaus spin-orbit interaction in the quantum wire system.
In homogeneous systems, there is no difference between
the linear Dresselhaus interaction and the Rashba term, as
they are related to each other by a unitary transformation.
However, the Hamiltonian of the systems with noncollinear
magnetization is not invariant under spin rotation and, thus,
these spin-orbit couplings may result in different behaviors in
the domain wall conductance. Figure 3 shows the conductance
G(αR, ϕR, β ) isosurface plots for a 1-nm-thick domain wall.
The asymmetric (symmetric) behavior of the conductance
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FIG. 3. The conductance isosurface plots of a 1-nm-thick domain
wall in a (Ga,Mn)As nanowire with spin splitting energy �ex =
0.5 eV and Fermi energy εF = 0.2 eV as a function of the Rashba
spin-orbit coupling parameter in the complex plane αReiϕR and
Dresselhaus spin-orbit coupling strength β.

relative to the parameter αx (αy) can be clearly seen also in
the presence of the Dresselhaus spin-orbit interaction. The
domain wall conductance increases with the increase of the
Rashba parameter |αy |, while it decreases (increases) by αx

for αx < 0 (αx > 0). Similarly, the Dresselhaus spin-orbit
interaction has negative (positive) effect on the conductance
of the domain wall for negative (positive) values of αx .
Positive values of αx cause less growth of the domain wall
conductance, whereas negative values of αx are found to be
more effective in reduction of the conductance.

It is well-known that the scattering of the carriers by
geometrical domain wall potential leads to the nonequilibrium
spin density within the wall and its surroundings. The local
spin density normalized to the current density can be obtained
using Eqs. (20) and (25). In accordance with the conventional
definition of the differential magnetic moment, μ = 1

2 r × j ,
the local spin density per unit current density could be ex-
pressed in units of length, which is depicted in Fig. 4 for
different widths of the domain wall without the inclusion of
spin-orbit coupling. For a 1-nm-thick domain wall, some dips
(peaks) appear in the longitudinal spin density, 〈mz〉ne, that
resulted from quantum interference between injected carriers
and those reflected off of the wall barrier with a set of
interfering points with a period of 2π/k↑. As can be seen,
they disappear when the domain wall width scales up. For
wide domain walls, where the adiabatic transport is dominant,
carriers spin follows the local magnetization profile. It is noted
that the y component of the transverse spin density 〈my〉ne

is always zero, unless the domain wall width scales down to
2 nm and below, where the adiabaticity does not take place
and hence the precession of the electron spin about the local
magnetization generates the out-of-plane component of spin
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FIG. 4. The normalized nonequilibrium spin densities calculated
for a wall pinned at a nanoconstriction in a p-type semiconducting
ferromagnetic nanowire with the Fermi energy εF = 0.2 eV and the
spin splitting energy �ex = 0.5 eV, without considering the spin-
orbit couplings. Calculations have been performed for different wall
widths, i.e., d = 1, 2, 5, and 10 nm.

density. Simultaneously, the spin density component 〈mx〉ne

oscillates symmetrically along the domain wall with a period
of 2π/k↑ and decays far outside the domain wall.

Now, I discuss the effect of the nonequilibrium spin density
on the spin torque, which translates the magnetic texture,
without considering the spin-orbit coupling. The calculated
spin-transfer torques have been shown in Fig. 5 for a Néel-
type domain wall with different widths of 1, 2, 5, and 10 nm.
Calculation based on the ballistic transport of the carriers
indicate that oscillatory spin-transfer torque may appear in a
system with an atomic-scale domain wall, as a consequence
of the nonadiabatic coupling between the carriers spin and the
local magnetization. As can be seen, the nonadiabatic (out-
of-plane) spin-transfer torque dramatically increases when the
domain wall width scales down to the atomic dimensions
which realized at the nanoconstrictions and nanocontacts.
Furthermore, the adiabatic (in-plane) spin-transfer torques as
well as the nonadiabatic one do not depend anymore on the
magnetization gradient for such atomic-scale domain walls. In
the opposite limit, when the adiabatic condition is completely
fulfilled, the out-of-plane torque vanishes and the in-plane
components follow the adiabatic form that is proportional to
−( j · ∇ )uM (r ), as expected.

When a spin current is driven between two ferromag-
netic leads with opposite magnetization directions, a nonequi-
librium spin density is created in the domain wall which
tends to decay in the leads away from the wall interfaces.
However, the nonequilibrium spin density may be induced
in the ferromagnetic leads as well as the nonferromagnetic
ones in the presence of the spin-orbit interactions [60]. The
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FIG. 5. The normalized spin-transfer torques calculated for a
wall pinned at a nanoconstriction in a p-type semiconducting ferro-
magnetic nanowire. Calculations have been performed for different
wall widths, i.e., d = 1, 2, 5, and 10 nm. Other parameters are the
same as in Fig. 4.

nonequilibrium spin densities in a ferromagnetic nanowire
including a 1-nm-thick domain wall with the Fermi energy
εF = 0.2 eV and the spin splitting energy �ex = 0.5 eV have
been shown as contour plots in Fig. 6, where normalized with
respect to the current density for different types of spin-orbit
interactions, including the Rashba coupling with the effective
magnetic field directed along the x axis (top panel), the y

axis (middle panel), and the Dresselhaus coupling with the
effective field along the z axis (bottom panel). As can be
seen, the nonequilibrium spin density is not only induced
within the domain wall, but also it extends to the leads,
due to the coupling between the carriers spin and the mo-
mentum dependent effective field induced by the spin-orbit
interactions. All components of the spin density oscillate
with a period 2π√

k2
F +2k2

R+
√

(k2
F +2k2

R )2+k4
ex−k4

F

within the leads,

when the Dresselhaus coupling is absent. The strength of
the oscillations strongly depends on the direction of Rashba
interaction. For example, the strength of the oscillations in the
out-of-plane spin density, 〈my〉ne, increases by the negative
αx , while it decreases when the direction of Rashba interaction
is reversed, i.e., with increasing positive values of αx . This is
in agreement with the corresponding conductance behavior, in
which the decrease in conductance for negative αx represents
the increase of the nonadiabaticity and vice versa. On the other
hand, the nonadiabaticity increases with |αy |, regardless of its
sign. In addition, the behavior of the spin densities relative
to the positive values of αy is similar to that with respect to
the negative ones, but spatially reversed. In other words, the
local distribution of the spin densities has inversion symmetry
relative to the wall center. In the presence of the Dressel-
haus spin-orbit interaction without considering the Rashba

FIG. 6. Spatial distribution of the normalized in-plane
(〈mx〉ne, 〈mz〉ne) and out-of-plane (〈my〉ne) nonequilibrium spin
density components in a p-type semiconducting ferromagnetic
nanowire includes a 1-nm-thick head-to-head domain wall with
Fermi energy εF = 0.2 eV and spin splitting energy �ex = 0.5 eV,
in the presence of the Rashba spin-orbit interaction with the effective
magnetic field directed along the x axis (top), the y axis (middle),
and in the presence of the Dresselhaus spin-orbit coupling with the
effective field along the z axis (bottom).

coupling, the spin density oscillations are superpositions of
incoming and reflected waves with periods 2π

kD+
√

k2
D+k2

F +k2
ex

and 2π

−kD+
√

k2
D+k2

F +k2
ex

, respectively [61]. So, the asymmetric

behavior of the spin densities relative to the Dresselhaus
parameter β can be understood.

A similar discussion can also be applied to the spin-orbit
torque components as depicted in Fig. 7. The Rashba coupling
parameter αx with negative sign has a large effect on the spin
torque, while the positive values of αx are not so effective
in enhancing the spin-torque components. Also, this coupling
parameter produces an oscillatory out-of-plane torque at the
leads that may change the magnetic texture of the leads. The
Rashba coupling parameter αy with inversion symmetry can
increase the spin torque, too. The Dresselhaus coupling does
not considerably alter the z component of the spin torque,
while the other two components are effectively changed when
the Dresselhaus spin-orbit interaction is taken into account.
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FIG. 7. Spatial distribution of the normalized in-plane
(NSTT,x , NSTT,z) and out-of-plane (NSTT,y) spin-transfer torque
components in the presence of the Rashba spin-orbit interaction with
the effective magnetic field directed along the x axis (top), the y axis
(middle), and in the presence of the Dresselhaus coupling with the
effective field directed along the z axis (bottom). Parameters are the
same as in Fig. 6.

IV. CONCLUSION

In summary, I have investigated the influence of the
D’yakonov-Perel’ mechanism on the ballistic domain wall
conductance, the induced nonequilibrium spin density, and
the spin-transfer torque at the wall and its surroundings. The
calculations have been performed for a narrow domain wall
residing in a p-type spin-polarized semiconducting ferromag-

netic (Ga,Mn)As nanowire with a nanoconstriction. I have uti-
lized a helpful algorithm to solve the boundary value problem
for a system of coupled differential equations arising from
the Schrödinger equation with the spin-dependent potential
in the magnetic wall, considering spin-orbit interactions. The
transport properties of the carriers have been studied by cal-
culating the ballistic conductance via the Landauer-Büttiker
formula for a 1-nm-thick domain wall. It has been shown
that the domain wall conductance increases (decreases) with
the Fermi energy for positive (negative) values of αx , while
a symmetric increase is observed in the wall conductance,
relative to the Rashba coupling parameter |αy |, which is
due to the transverse electric field −∂yV⊥ along the y axis.
Similar features have also been revealed in the presence of the
Dresselhaus spin-orbit interaction. Additionally, it has been
found that the Dresselhaus spin-orbit coupling has negative
(positive) effect on the conductance of the domain wall for
negative (positive) values of αx .

The effect of the domain wall width on the nonequilib-
rium spin density and the spin-transfer torque has also been
explored, without considering spin-orbit couplings. It has
been revealed that the out-of-plane component of the spin
density 〈my〉ne is always zero, unless the domain wall width
scales down to 2 nm and below. For such an atomic-scale
domain wall, the in-plane torques as well as the out-of-plane
one do not depend anymore on the magnetization gradient.
Specifically, the spin-transfer torque components have been
observed to become oscillatory in the leads far from the
nanoconstriction, when the spin-orbit couplings are included.
It has been found that the spin density and spin torque
strongly depend on the sign of the spin-orbit parameters. The
Rashba coupling parameter αx with negative sign has been
shown to have a large effect on the spin torque, while the
positive values of αx do not effectively change the spin-torque
components. Also, the spin torque effect has been enhanced
by the Rashba coupling parameter αy , regardless of its sign. It
has been demonstrated that the Dresselhaus coupling does not
considerably alter the z component of the spin torque, while
the other two components have been effectively changed by
the Dresselhaus spin-orbit interaction.
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