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1/ f flux noise in low-Tc SQUIDs due to superparamagnetic phase transitions in defect clusters
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It is shown here that 1/f α flux noise in conventional low-Tc SQUIDs is a result of low temperature
superparamagnetic phase transitions in small clusters of strongly correlated color center defects. The spins
in each cluster interact via long-range ferromagnetic interactions. Due to its small size, the cluster behaves
like a random-telegraphic macrospin when transitioning to the superparamagnetic phase. This results in 1/f α

noise when ensemble averaged over a random distribution of clusters. This model is self-consistent and
explains all related experimental results which includes α ∼ 0.8 independent of system size. The experimental
flux-inductance-noise spectrum is explained through three-point correlation calculations and time-reversal
symmetry-breaking arguments. Also, unlike the flux noise, it is shown why the second-spectrum inductance
noise is inherently temperature dependent due to the fluctuation-dissipation theorem. A correlation-function
calculation methodology using Ising-Glauber dynamics was key for obtaining these results.
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I. INTRODUCTION

Ever since its first measurement in the 1920s [1], flicker
noise or 1/f noise has been seen in a wide variety of solid
state systems [2–4]. Examples include spin glasses [5–7],
Coulomb glasses [8,9], metal films [10], metal-insulator tun-
nel junctions [11–13], and various semiconductor devices
[14], such as such as field-effect transistors (FETs) [15,16],
core-shell nanowire FETs [17], GaN/AlGaN heterostructures
[18], and more recently in graphene devices [19,20]. Though
there is no common physical underlying mechanism that gives
rise to all these different manifestations [2], it has been argued
by Bak that 1/f noise will occur in barely stable dynamical
systems with extended spatial degrees of freedom [21] which
evolve into self-organized critical structures.

In many solid state systems the presence of parasitic two-
level-systems (TLSs), possibly due to the presence of defects,
generates random-telegraphic noise (RTN) [22,23]. Typically
if there are a large number of fluctuating TLSs then a log
normal distribution of their switching rates gives rise to a
1/f power spectrum within some frequency range. For solid
state quantum computing, 1/f noise is a major problem as it
is a significant source of decoherence [4,24–27]. In semicon-
ductor quantum dots (QDs), RTN is observed when electrons
randomly tunnel back and forth [28–30].

Currently low-Tc superconducting quantum interference
devices (SQUIDs) are at the forefront of quantum computing.
SQUID based qubits are promising as they can replicate
properties of natural qubits (such as electron and nuclear
spins) using macroscopic devices [35]. However, the practical
implementation of a scalable quantum computer based on
charge, flux, phase, or transmon qubits is severely impeded
by the presence of 1/f charge noise or 1/f magnetic noise.
This limits the phase coherence of SQUID based qubits [4].
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High-Tc SQUIDs, such as those made from YBCO, have
high 1/f flux noise due to vortex motions [31]. A key feature
of this type of flux noise is its dependence on the rate of
change of temperature [32–34]. Whereas low-Tc SQUIDs
generally do not have 1/f flux noise problems from vortex
motion.

This paper focuses on various puzzling features of 1/f

magnetization noise in low-Tc SQUIDs. In the case of flux
based qubits and phase qubits, experiments have revealed
that the magnetic flux noise has a 1/f α power spectrum
[36,37]. Although this type of magnetic flux noise was first
observed in SQUIDs in the 1980s [38,39], its origins were not
fully explained. The interest in this subject has however been
revived because of the recent activity in quantum computing.
A better understanding of the microscopic origins of this
noise could lead to better Josephson tunnel junction designs
[40] and possible elimination of a source of contamination in
SQUIDs, such as by surface treatment [41].

Magnetic noise in SQUIDs have several key features.
Among them is that the flux noise is only weakly dependent
on geometry. Recent measurements on qubits with different
geometries indicate that the flux noise scales as l/w, in the
limit w/l � 1 (where l is the length and w is the width
of the superconducting wires) [42]. This along with recent
experiments by Sendelbach et al. [43] suggests that flux
noise arises from unpaired surface spins which reside at the
superconductor-insulator interface in thin-film SQUIDs. The
estimated areal spin density from the paramagnetic suscep-
tibilities, for superconductor-insulator [43] interfaces (and
metal-insulator [44] interfaces) is about 5 × 1017 m−2. As a
result of this high spin density, the coherent magnetization of
the spins results in a large flux coupling to the SQUID.

Another key feature of this flux noise is that it is only
weakly dependent on parameters such as temperature, choice
of the superconducting material, and the area of the SQUID
[38,45]. In addition to the flux noise, the inductance noise was
also measured in the experiments of Ref. [43]. It was seen
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that inductance noise, which scales as 1/f α , decreases with
increasing temperature and α itself is temperature dependent
[0 < α(T ) < 1] [46].

This deduced areal density is consistent with some of the
theoretical models such as in terms of metal induced gap states
that arise due to the potential disorder at the metal-insulator
interface [47]. Several models have been suggested including
noninteracting electron hopping between traps with different
spin orientations and a 1/f distribution of trap energies [48]; a
dangling bond model [49] and interacting fractal spin clusters
with a varying number of spins to obtain a 1/f distribution of
relaxation rates [50] and a flux-vector model [51]. Sometime
ago Kozub [52] proposed a model where the amplitude of
1/f noise scaled as 1/T , however this model did not consider
spin-spin interactions.

Experimental evidence on the other hand suggests that
these surface spins are strongly interacting and that there is
a net spin polarization [43]. It is seen that the 1/f inductance
noise is highly correlated with the usual 1/f flux noise. Their
cross correlation is inversely proportional to the temperature
and is about the order of unity roughly below T = 100 mK.
Now inductance is even under time inversion, whereas flux is
odd under time inversion. This implies that their three-point
cross-correlation function must be zero unless time inversion
symmetry is broken. This is only possible by the appearance
of long-range magnetic ordering, unless an external magnetic
field is applied. The mechanism producing both the flux noise
and inductance noise is expected to be the same.

It has been suggested that the spins at the superconductor-
insulator interface interact with each other via the Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism [53] which is re-
sponsible for the spin polarization reported in experiments
[43]. The RKKY interaction can give rise to unusual magnetic
ordering in SQUIDs as the magnetic ordering can oscillate
between being ferromagnetic to being antiferromagnetic as
a function of distance. Antiferromagnetic RKKY interactions
can give rise to a spin glass type phase and 1/f noise related
to the magnetic fluctuations and low temperature kinetics
[5–7,54–56].

However, Monte Carlo simulations [57] ruled out the for-
mation of a spin glass phase to explain magnetization noise in
SQUIDs using an Ising model with random nearest neighbor
interactions. The model was shown to qualitatively reproduce
temperature dependent inductance noise features, but did not
show the time-reversal symmetry-breaking cross correlations
between inductance and flux noise. This is expected in spin
glasses due to zero net magnetic moment, which leads to
a vanishing three-point cross correlations between magne-
tization and susceptibility. In Ref. [58] we also found that
antiferromagnetic RKKY interactions for small spin clusters
resulted in negligibly small three-point correlations.

In a related development, a few years ago surface ferro-
magnetism (SFM) was reported in thin films and nanopar-
ticles of a number of otherwise insulating metallic oxides
[59] (including Al2O3) where the materials were not doped
with any magnetic impurities. Further recent investigations
attribute this room temperature SFM in Al2O3 nanoparticles
[60] to Farbe+ (F+) center where it was found that amorphous
Al2O3 is more likely to host the number of F+ centers to
cross the magnetic percolation threshold than the crystalline
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FIG. 1. 1/f α noise model consisting of interacting and fluctu-
ating TLSs in a cluster. The clusters are assumed to form at the
metal-insulator interface or on the surface. They are sufficiently far
apart so that only spins within a single cluster interact. Number of
TLSs within a cluster and the lattice constant a vary.

variant. The origin of SFM in these otherwise nonmagnetic
metal oxides is itself somewhat controversial [61] where a
number of different exchange coupling mechanisms have been
proposed [62–64].

SFM and the SQUID geometry provides some important
clues on the microscopic origins of the 1/f flux noise. Typi-
cally low-Tc dc SQUIDs have an amorphous Al2O3 insulating
layer deposited on the surface of a metal (commonly Nb [43]
or Al [37]). Al2O3 is likely to cluster on the surface before
filling in and forming a homogeneous layer due to its higher
binding energy which could lead to the Volmer-Weber growth
mode. The lattice mismatch between the insulator and the
metal could also lead to the formation of clusters. Near the
metal surface, the clusters can host a number of point defects
in the form of O vacancies that can capture one electron—
Farbe+ (F+) center, or two (F center). Surface absorption of
O2 [41,65], intrinsic vacancies [66], and even hydrogen [67]
are among some of the suggested origins of the magnetic
moments responsible for the flux noise.

If the magnetic moments are at the SQUID’s metal-
insulator interface, then because of the proximity to the metal,
these local magnetic moments can spin polarize the metal’s
conduction band electrons which can lead to an RKKY
type long-range interaction [53]. However, if these parasitic
magnetic moments are on the surface then other long-range
ferromagnetic interactions come into play [41]. Recently, it
has been suggested that the TLS interact via phonon modes
[68]. However in order for this paper’s results to be applicable
and to explain the flux-inductance cross spectrum noise, the
long-range phonon mediated TLS-TLS interactions need to
be ferromagnetic.

A temperature dependent spin-cluster model with ferro-
magnetic RKKY interactions was proposed recently to ex-
plain various puzzling features of 1/f magnetization noise
in SQUIDs [58]. This spin-cluster model explains various
experimental results self-consistently and is representative of
a disordered system at the SQUID’s metal-insulator interface
(see Fig. 1). The results are nearly identical with other types
of long-range ferromagnetic interactions which applies to the
O2 surface absorption picture [41,65]. However short-range
ferromagnetic interactions lead to flux noise that varied con-
siderably more with temperature due to weaker correlations.
The current paper builds on this previous work [58].
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A key relation between the noise exponent α and su-
perparamagnetic phase transitions (SPTs) is uncovered here
while trying to explain the measured flux-inductance noise
cross correlations. Sharp looking SPTs are shown to occur,
for a single cluster, at temperatures much lower than the
Curie temperature. Even the smallest temperature fluctuations
will then result in random-telegraphic magnetic noise. This
is because each cluster behaves like a fluctuating macrospin
because of SPTs. Using three-point correlation function calcu-
lations, it is shown how this relates to the experimentally ob-
served flux noise and inductance noise cross-spectrum noise.

In general, SPTs are well known to occur in single domain
nanomagnets [69–73]. Similarly here, because of the small
cluster size, the magnetic anisotropy energy per particle can
become comparable to the thermal energy, which leads to
SPTs. Hence the ferromagnetic to superparamagnetic phase
boundaries are very sharp looking even though each cluster
size is small. The long-range ferromagnetic RKKY interac-
tions makes the cluster very strongly correlated.

Additionally, the SPTs are also accompanied by the ex-
pected smooth superparamagnetic to paramagnetic crossovers
at the higher Curie temperatures. An experimental observation
of this would validate this model. Whereas experimentally,
the sharp SPTs would be difficult to observe directly for a
single defect cluster. However, these SPTs will lead to the
observable 1/f α magnetization noise as a result of the cluster
ensemble. When considering multiple random clusters (with
a spread in the critical temperatures)—it is shown that 1/f α

noise occurs in the same temperature range where the SPTs
occur. α(T ) ∼ 0.8 over a range of temperatures and α drops
off as the system becomes superparamagnetic. Experimental
evidence for a dynamical paramagnetic environment has also
recently emerged from the frequency-asymmetric 1/f flux
noise at very low temperatures [74].

The model used in this paper is fully self-consistent.
Multiple spin clusters are considered with a normal random
distribution of lattice constants, which is representative of
defects. It is shown here that 1/f α noise (where α ∼ 0.8)
arises naturally from the just following two: long-range fer-
romagnetic spin-spin interactions and multiple spin clusters
with random spin spacing. Both of these features must be there
for the 1/f α flux noise. The spin-flip rates here are determined
by Ising-Glauber dynamics. There is no prior assumption on
a log-normal distribution of fluctuation rates to get 1/f noise.
Such a heuristic assumption typically leads to α ∼ 1 instead
of the α ∼ 0.8 obtained here and in experiments [41,43].
Furthermore, the flux noise is shown to be independent of
system size—similar to experiments.

Next, the inductance noise spectra, which is also the second
spectrum (or the noise of the noise), is also extensively
discussed here. It is not obvious as to why the experimentally
measured second spectra shows a huge temperature depen-
dence while the first spectrum does not even though they have
the same underlaying noise microscopics. Here it is analyt-
ically shown why the measured inductance noise inherently
has a huge T −2 temperature dependence, even though the flux
noise (first spectrum) does not have any such dependence.
This dependence arises from the fluctuation-dissipation the-
orem. Analytical expressions are provided for the four-point
correlation power spectra.

A new correlation-function calculation technique is key
to all of these results. The suggested method systematically
extracts any nth order correlation function for N interacting
Ising spins, within the framework of Ising-Glauber dynam-
ics. Time correlations, spatial correlations, interactions, and
temperature are all taken into account. Detailed discussions
are presented in this paper along with some simple examples.
Overall this method is well suited for numerics as well as
for analytics in smaller systems and is inspired by the quasi-
Hamiltonian open quantum systems formalism [27,75–80].

This paper is organized as follows. In Sec. II the model
and the technique for calculating the correlation functions is
discussed. The flux noise is discussed in Sec. III along with the
noise exponent in Sec. III. The most important magnetic phase
transition results and its relation to 1/f α noise are presented in
Sec. IV. The flux-inductance noise cross spectrum, three-point
correlations are discussed here. In Sec. IV C the higher Curie
temperature pseudophase transitions are compared against the
noise exponent. Monte Carlo simulations are used only in this
section. This is followed by the inductance noise calculations
along with various analytical expressions presented in Sec. V.
The summary is followed by Appendix A where a two-spin
example is worked out. The Gaussian approximation for four-
point correlations is discussed in Appendix B.

II. METHOD: CORRELATION FUNCTIONS
FROM ISING-GLAUBER DYNAMICS

Fluctuating two-level systems can be treated as Ising spins
which flip randomly in time. Their stochastic dynamics is
therefore governed by the master equation [81]

dW(t )

dt
= VW(t), (1)

where V is a matrix of transition rates (such that the sum of
each of its columns is zero) and W is the flipping probability
matrix for the TLS. For N TLS, V and W are 2N × 2N

matrices.
For correlated spin fluctuations, the system’s overall tem-

poral dynamics is also governed by the master equation (1).
The Ising-Glauber model (also known as the kinetic Ising
model) can be used to treat the nonequilibrium dynamics
for fluctuating spins [82,83]. Single-site Glauber dynamics
requires that a single spin is flipped at a given site, and that the
new configuration agrees with the old one everywhere except
where the spin was flipped. This is a Markov process where
the new distribution of spins depends only on the current
spin configuration. And for Glauber dynamics, the conditional
probability for a spin to flip is determined by the Boltzmann
factor. The matrix elements of V for correlated spin flips are
therefore

V(s → s′) =

⎧⎪⎪⎨
⎪⎪⎩

γ e−βH (s′ )

e−βH (s)+e−βH (s′ ) for s �= s′ and∑
i (1 − sis

′
i ) = 2,

−∑
s �=s′ V (s → s′) for s = s′.

(2)

Here s′ is a vector denoting the present spin configuration of
the lattice, s denotes the spin configuration of the lattice at an
earlier instance of time, and γ is the relaxation rate of the spin

024305-3



AMRIT DE PHYSICAL REVIEW B 99, 024305 (2019)

that is flipped. The non-negative off-diagonal matrix elements
in Eq. (2) satisfy the detailed balance condition and the diag-
onal terms is the just negative sum of the off-diagonal column
elements so that all column elements sum up to zero, which
ensures the conservation of probability. The systems temporal
dynamics is then governed by the flipping probability matrix,
which is W = exp(−Vdt ). The eigenvalues of V are either
zero, which corresponds to the equilibrium distribution, or are
real negative which also eventually tend to the equilibrium
distribution as time t → ∞ [81].

The overall system Hamiltonian in the Boltzmann factor in
Eq. (2) is

H (s) = −1

2

∑
i,j

Jij sisj − B
∑

i

si , (3)

where B is the magnetic field and Jij is the spin-spin inter-
action between the ith and j th spins. In this paper two types
of Jij s are considered. For the first type, it is assumed that
within a single cluster, the spins interact via an oscillatory
RKKY-like form:

Jij = Jo

[kF Rij cos(kF Rij ) − sin(kF Rij )]

(kF Rij )4
, (4)

where Jo is assumed to be ferromagnetic. Here Rij is the
separation between two spins (on a lattice of lattice con-
stant a), and kF is a Fermi wave vector type parameter. For
the calculations here Jo ≈ 1011 Hz/h̄ is taken as a fitting
parameter independent of kF . A short-range ferromagnetic
nearest neighbor interaction (NNI) is also considered where
Jij ∝ 1/Rij .

In general, for N spins (either interacting or noninteract-
ing), any nth order correlation function between arbitrary
spins can be exactly calculated as follows:

〈s�(t1)sj (t2) · · · sκ (tn)〉
= 〈f |σ (κ )

z W(tn) · · · σ (j )
z W(t2)σ (�)

z W(t1)|i〉, (5)

where it is implied that

σ (κ )
z = σo

1
⊗ σo

2
· · · σo

κ−1
⊗ σz

κ

⊗ σo
κ+1

· · · ⊗ σo
N

. (6)

Here W and σ (κ )
z are in the same lexicographically ordered

Ising spin basis. |i〉 = |f〉 are the initial and final state vec-
tors that correspond to the equilibrium distribution such that
W|i〉 = |i〉. An example is given in Appendix A.

III. FIRST SPECTRUM

A. Flux noise

The coherent magnetization of the spins strongly couples
to the SQUID’s magnetic flux because of the high estimated
areal spin density. In addition, the magnetization noise spec-
trum can be related to the imaginary part of the susceptibility
P (ω) = 4χ ′′(ω)/βω, by the fluctuation-dissipation theorem
[45,84,85]. If all the surface spins couple to the SQUID
equally, the flux noise from the �th spin cluster is

P
(�)
φ (ω) = 2μ2

oμ
2
B

ρ

π

R

r

∫ ∞

0

N∑
i,j=1

〈si (0)sj (t )〉eıωtdt, (7)
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FIG. 2. Comparison between calculated net correlation functions
and fits to

∑
Cν exp(−�ν t ) at various temperatures. The fits are in

perfect agreement with the calculations done for 50 spin clusters,
each with seven spins.

where R is the radius of the loop, r is the radius of the wire,
R/r = 10 (see Ref. [45]), and ρ is the surface spin density.

Using Eq. (5),
∑〈si (0)sj (t )〉 = 〈f |σ iW(t )σ j W(0)|i〉 is

calculated by considering all possible combinations of two-
point autocorrelation functions (i = j ) and cross-correlation
(i �= j ) functions for a given cluster. Here W is a 2Nj × 2Nj

flipping probability matrix. Each cluster is assumed to be
sufficiently far apart and noninteracting and the total flux
noise power is

Pφ (ω) =
∑

�

P
(�)
φ (ω). (8)

At finite temperatures, for two interacting spins in the γj =
1 limit, it can be analytically shown (see Appendix A) that the
correlation functions are

〈si (0)sj (t )〉 = 1
2e−2�′

−|t | + (
δij − 1

2

)
e4βJ e−2�′

+|t |, (9)

where �′
±=[1+ exp(±2βJ )]−1. Note that

∑
ij 〈si (0)sj (t )〉 =

2e−2�′
−|t |. In this case the two interacting TLSs behave like a

single quasispin with effective flipping rate �′
−.

The sum of all two-point correlation functions for
an arbitrary number of interacting spins can always be
expressed as ∑

i,j

〈si (0)sj (t )〉 =
∑

ν

Cνe
−2�ν t , (10)

where, from the master equation, it follows that �νs are
eigenvalues of V.

This can also be used to numerically fit to
∑

ij 〈si (0)sj (t )〉
for all the clusters. In Fig. 2 the fits are shown to be in
exceptionally good agreement with the calculations. A to-
tal of seven terms were used in the expansion over ν in
Eq. (10). Fitting the net correlation functions to Eq. (10) first,
is advantageous for numerics. In the case of ferromagnetic
interactions, the correlations functions can be very long lived
at low temperatures. This can be a significant problem for
numerically calculating the Fourier transform for the power
spectrum. Instead the fitting parameters (to

∑
Cνe

−2�ν t ) can
be used to directly obtain the power spectrum, which will just
be a sum of Lorentzians weighted by Cν .
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(
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FIG. 3. (a) Net correlation function for 400 spin clusters, each
with 6–9 spins. (b) The corresponding power spectrum for the flux
noise Pφ and (c) the slope of the flux noise. (d) The distribution of
kF a for each spin cluster. The mean and standard deviation (�) are
as indicated.

The temperature dependent net correlation function, power
spectrum of the flux noise Pφ (ω), and its respective slope,
is shown in Figs. 3(a)–3(c). For these calculations 75 spin
clusters were considered where each cluster has a random kF a

and between 6–9 spins. The normalized lattice constants (kF a)
were uniformly distributed as shown in Fig. 3(d). If Eq. (4) is
expanded up to second order for small kF a, then it can be
shown that

Jij ∝ 1

kF Rij

. (11)

This leading order term implies that a uniform distribution
of the lattice constants will result in ∼1/Jij distribution of
interaction strengths, which in turn gives ∼1/f noise.

From the experimentally estimated areal surface spin den-
sity [43,44] of ρ ∼ 5 × 1017 m−2, one can estimate kF and
the average spin separation 〈a〉. Note that these results are
independent of the cluster size or the number of spins in a
cluster. In Fig. 4 the noise spectra calculations are repeated
for 20 clusters, with six spins per cluster. It can be seen that
the noise spectra in Fig. 4 is qualitatively very similar to that
of Fig. 3. This is consistent with experiments where the flux
noise was seen to be more or less independent of the area of
the SQUID [38,45] or the cluster size.

As shown in Figs. 3(c) and 4(c), at very high frequencies,
the 1/f α flux noise power spectra has a slope of 2 which
corresponds to the Lorentzian tail of the noise power. For
an intermediate range of frequencies, a region of slope (α <

∼1) is seen at the highest temperature. Eventually for all
temperatures, α → 0 at very low frequencies.

Here the 1/f α noise (with α < 1 like the experiments
[43]) is shown to manifest naturally from the combination
of long-range ferromagnetic interactions and multiple clusters
with a normal distribution of lattice constants. In the infinite
temperature limit or if the interactions are turned off for these
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FIG. 4. Power spectrum comparison for different cluster sizes.
(a) Power spectrum and (b) corresponding noise slope for 75 cluster
with 6–9 spins. (c) Power spectrum and (d) corresponding noise
slope for 20 clusters with six spins.

calculations, then the same distribution of kF a results in just a
simple Lorentzian power spectra. Finally, the upper and lower
frequency cutoffs for the 1/f type behavior depends on the
distribution of kF a and the interaction strength—which is also
evident from the temperature dependence in Figs. 3 and 4.

To get a better understanding of the role of the interactions
and the cluster-size randomness, we next consider a NNI
model with ferromagnetic interactions for each cluster. The
ferromagnetic interaction strength was of the order of Jo and
depends on the distance between nearest neighbors and hence
varies randomly. The NNI model also results in a 1/f α noise
spectrum at 200 and 300 mK, as shown in Fig. 5.

This is similar to the case of the RKKY interactions. Even
though the RKKY interactions oscillate between being fer-
romagnetic to being antiferromagnetic, the neighboring spins
will always experience a large ferromagnetic interaction (if
Jo < 1 and for small kF a).

However, the variations with temperature are larger for
the case of the NNI model as finite size effects are more
pronounced for the small spin clusters considered here. For
the NNI, 1/f noise type behavior is obtained here only for one
temperature value, whereas experimentally this behavior was
observed over a wide range of temperatures with almost no
variation [38,43,45]. Hence the ferromagnetic NNI small-spin
cluster model can be ruled out due to the weaker nature of the
1/f noise effects mentioned above.

B. Noise exponent α

Experimentally, α < 1 for 1/f α flux noise [38,41,43,45].
The Ising-Glauber dynamics model self-consistently gives
α < 1 without assuming any distribution of fluctuation rates.
A normal distribution of kF a is assumed however, which when
combined with RKKY interactions gives α < 1.
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FIG. 5. Calculations for spin clusters with nearest neighbor fer-
romagnetic interactions showing the (a) net correlation function. (b)
The corresponding power spectrum for the flux noise and (c) the
slope of the flux noise. (d) The distribution of kF a for each spin
cluster. The mean and standard deviation (�) are as indicated. The
calculations are for 400 clusters with 6–9 spins.

The noise slope is obtained from the flux noise spectra in
the earlier section

α(T , ω) = dPφ

dω
. (12)

The frequency dependence can be integrated out within a
finite spectral window where α ∼ 1 at low temperatures,

α(T ) = 1

ωu − ωl

∫ ωu

ωl

α(T , ω)dω. (13)

This range of temperatures over which α remains relatively
constant depends on the range of frequencies over which
α(T , ω) is integrated. Here a 10−3 to 10−1 Hz frequency
window was chosen based on where the 1/f noise was
predominant.

As shown later in Figs. 10 and 11, there is a range of T over
which α does not vary much. This model explains some of the
temperature dependence of α seen in flux noise experiments
[38,43,45]. In some experiments flux noise was almost inde-
pendent of temperature [38,43,45]. However, in some of the
early experiments [39], it was not so under all circumstances.
While there was no temperature dependence below 1 K, there
was a low temperature dependence for certain parameters
and materials, such as for PbIn/Nb and Pb/Nb [39]. Quite
strikingly, for the same set of used materials (i.e., PbIn/Nb
for the SQUID’s loop/electrode), the flux noise can be either
independent or inversely proportional or even oscillatory with
temperature depending on the construction. Such conflicting
and some times opposite temperature dependence of 1/f

noise is not uncommon for glassy systems [5,86].
Much of this oscillatory α(T ) behavior arises when the

frequency dependence is retained in α. In Figs. 3(c) and 4(c)
it can be seen that for any particular frequency slice, α is
not completely constant and shows some sort of oscillatory
type behavior as a function of temperature, which is similar to

Ref: [39]. This variation though is small. This sort of behavior
is expected for the RKKY interactions considered here, espe-
cially if the lattice constant is small. Low temperatures more
drastically affect α and also make it more oscillatory.

IV. PHASE TRANSITIONS, THREE-POINT
CORRELATIONS, AND FLUX-INDUCTANCE

NOISE CROSS SPECTRUM

In this section the time-reversal symmetry-breaking phase
transitions are closely examined. This is done using three-
point correlation functions which directly related to the
inductance-flux noise cross spectrum [43]. The results are
compared with α.

It is shown that 1/f α noise occurs in a glassy phase where
each cluster acts like a macrospin. The experiments will not
directly observe any time-reversal symmetry-breaking phase
transitions but instead observe the cross-spectrum noise. The
three-point correlations further signify that the same mech-
anism produces both the flux noise and inductance noise.
The SQUID’s surface spins show a net polarization in the
experiments [43] as the 1/f α inductance noise was found to
be highly correlated with the 1/f α flux noise.

A. Three-point correlations

This relation between the inductance and flux noise relates
to the three-point correlation functions defined here as

C3pt ≡ 1

N3

∑
i,j,k

〈si (0)sj (t1)sk (t2)〉. (14)

The following expression gives the flux and inductance noise
cross-power spectrum:

PLφ (ω) = 1

kBT

(
2ρμ2

oμ
2
B

R

r

)3/2 ∫ ωb

ωa

∫ ∞

0

∫
C3pt(t0, t1, t2)

× eıω−τ eıω+τ ′
dτdτ ′dω′, (15)

where τ = t1 − t0, τ ′ = t2 − t1, ω± = ω ± ω′, and ωb − ωa

defines the bandwidth.
In the experiments PLφ was found to be inversely propor-

tional to T and ∼1 roughly below 100 mK. PLφ depends
on the sum of all C3pt. As inductance is even under time
inversion and magnetic flux is odd, the flux-inductance C3pt

can only be nonzero if time-reversal symmetry is broken such
that there is some net magnetization (M) in the sample.
This indicates the appearance of long-range ferromagnetic-
type order. Though antiferromagnetic interactions break time-
reversal symmetry, they give negligibly small C3pt, since there
is no net magnetization as a macroscopic observable. In terms
of bounds without an external magnetic field C3pt � M/N3.
For ferrimagnetic effects (which are present in this system),
C3pt < M/N3.

C3pt ∼ O(10−7) for RKKY interactions with antiferro-
magnetic Jo (for these small spin clusters at initial times)
because M is very small. This in turn happens because for
the range of kFa, the antiferromagnetic part dominates in the
RKKY interaction. On a regular bipartite lattice this then leads
to the magnetization of the two sublattices canceling each
other.
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Hz

FIG. 6. Sum of all three-point autocorrelation and cross-
correlation functions C3pt, for N = 9 spins with ferromagnetic
RKKY interactions at (a) T = 200 mK, (b) T = 300 mK, and (c)
T = 400 mK where we note that the z axis is 103 times smaller. (d)
The corresponding normalized power spectrum.

Therefore, all of this and the flux noise features discussed
earlier indicates that Jo must be ferromagnetic. To understand
PLφ , the C3pt (for all spin combinations) is calculated for
a single cluster of nine spins with ferromagnetic RKKY
interactions. The C3pt are extremely long lived at the two
lower temperatures. At initial times, C3pt ∼ 1 at 200 and
300 mK but decreases by over two orders of magnitude at
400 mK (see Fig. 6). In Fig. 6(d) the power spectrum for these
C3pt is normalized for easier comparison since the raw power
spectrum for 400 mK is much smaller.

B. Magnetic phase transitions

In this section we show superparamagnetic phase transi-
tions occur for these small clusters by examining C3pt(T ) and
showing that the relaxation rates scale as per an Arrhenius law.
At temperatures much lower than the Curie temperature, tran-
sitions from the ferromagnetic to superparamagnetic phase
are known to occur in small single-domain nanomagnets
[69–71]. This is very similar to the case here, where due to
the small magnetic cluster size, the thermal energy becomes
comparable to the magnetic anisotropy energy per particle
(which is what holds the net magnetic moment). When this
happens the cluster will transition from a ferromagnetic state
to a superparamagnetic state at the blocking temperature (Tf ).
This is also similar to the crossover from a thermally activated
regime to a quantum tunneling regime [87].

We examine the temperature dependence of C3pt and ig-
nore its time dependence since C3pt is extremely long lived
(∼1015 s), and mostly flat and symmetric in t1 and t2. Hence it
is sufficient to consider C3pt only at t1 = t2 = 0. These values
are shown in Fig. 7 as a function of normalized T for different
kF a and N .

Figure 7 clearly shows very distinct magnetic phase transi-
tions. The critical temperature Tf (or blocking temperature)
inversely depends on kF a as expected, since smaller kF a

lead to stronger interactions. In addition, the C3pt persists
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FIG. 7. Superparamagnetic phase transitions for a single TLS
cluster as a function of temperature. (a) Sum of three-point correla-
tions C3pt, (b) susceptibility χ shown for N = 6 with varying kF a, (c)
C3pt, and (d) χ for varying N with kF a = 1. All values are obtained
at initial times (t1 = t2 = 0).

longer with T as N increases. Here the phase boundaries are
sharp even though the cluster size is small. These are sudden
superparamagnetic phase transitions which occur because of
the small size as explained below. Whereas in case of the
two-point correlations (see Fig. 9), the transitions at the Curie
temperature are gradual crossovers as expected far from the
thermodynamic size limit.

In addition, the susceptibility (at t = 0) is also shown in
Fig. 7:

χ ∝ 1

T

∑
ij

(〈sisj 〉 − 〈si〉〈sj 〉). (16)

The phase transitions also appear in the order parameter χ

which follows C3pt. This is because N2 ∑〈sj 〉 = C3pt every-
where, in this temperature range, except at Tf [where the
difference is negligible and around O(10−8)]. Note that χ in
Fig. 7 was calculated for equal time correlations, t1 = t2 = 0.
If t2 is increased then the peak position of χ in Fig. 7 does not
change at all, as a function of T , for an extremely long period
of time. For example, for N = 6, T (χmax) does not change
until t2 > 1014 s.

For a single cluster the phase transitions at Tf are sharp
looking for the C3pt order parameter. However, over a small
range near Tf , several very sharp fluctuations occur as shown
in Fig. 7. This is because the thermal energy near Tf is
similar to the magnetic anisotropy energy. If a dT were
finer, more 1 ↔ 0 fluctuations for C3pt would appear as a
function of T . This is a key result, because it implies that
small temperature fluctuations can cause rapid fluctuations
in M . This behavior indicates that each cluster acts like a
flip-flopping macrospin (with magnetic moment NμB) or a
source of random-telegraphic-magnetic noise.

The magnetic RTN behavior can be better understood
by examining the system dynamics near criticality. The
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FIG. 8. Relaxation times τr as a function of inverse temperature,
leading up to Tf , shown for (a) N = 6 and (b) N = 7 for various
kF a = 1. The lines are fits to an Arrhenius equation τ0 exp(Eb/T ).

T -dependent scaling laws for the relaxation times can be
characterized [69,88–90] as the system approaches Tf . A
single cluster’s overall spin relaxation time τr was obtained
by fitting

∑〈si (0)sj (t )〉/N2 to A exp(−t/τr ), where the curve
fits were excellent. Next, τr is further fit to a simple Arrhenius
equation

τr = τ0 exp(Eb/T ), (17)

where Eb is the barrier energy and τ0 is a constant. For some
nonlinear systems, τ0 can also be temperature dependent [91].

In Fig. 8 τr is shown as a function of 1/T leading up
to Tf for N = 6 and 7 for various kF a. Note that there
are two distinct relaxation timescales for each kF a in these
small clusters. The τr exponentially slows down and follows
an Arrhenius law as shown in Fig. 8. On a logarithmic
scale, the simple Arrhenius form τr are straight lines as a
function of 1/T . Small deviations from the straight lines
are shown as T approaches Tf and as kF a gets smaller. For
kF = 1, τo = [0.11, 0.07, 0.04] s and the barrier energy Eb =
[3.42, 4.09, 5.26] J/kB for N = 6, 7, and 8, respectively.
These parameters are reasonable for the small system size. As
expected Eb ∝ Tf and increases as N increases. Overall, the
Arrhenius scaling of τr indicates SPTs.

In Fig. 8, for all the cases, a prominent second relaxation
timescale appears as T → Tf . This is due to another local
energy minima with its own spin configuration—an indication
of glassy behavior. The macrospin relaxation rate is very
different from the main timescale, even though they have
similar energies. Small temperature fluctuations can lead to
the selection of either state. The second set of τr are higher,
their scaling is less steep than the Arrhenius law and slightly
deviate from it as kF a gets smaller. The second timescale is
more prominent and well separated for smaller N , and as N

increases it merges with the first timescale.
The sum of two-point correlations (at t = 0) should also

be examined and is shown in Fig. 9 as a function of T .
Strong finite size effects are seen. At large T , the two-point
correlations gradually decay to = 1/N (sum of T-independent
autocorrelations). As N increases the transitions become
sharper and tend to 0. Above Tf , M = 0, but the two-point

(b)(a)

FIG. 9. Sum of two-point correlations as a function of normal-
ized temperature at initial times (t = 0) shown for (a) N = 6 with
varying kF a and (b) varying the number of spins with kF a = 1.

correlation function is not zero (compare Figs. 7 and 9) and
hence this denotes a glassy paramagnetic phase.

C. 1/ f α noise from an ensemble of magnetic phase transitions

In the previous section it was shown how a single cluster
becomes a source of magnetic RTN because of SPTs. In order
to better understand the cause of the 1/f α noise, we next
compare the cluster ensemble averaged C3pt with α. Figure 10
shows the ensemble averaged C3pt and α, as a function of
normalized T . The ensemble average was over the exact same
75 random kF a and N , which gave the 1/f α noise in Fig. 4(a).

Remarkably, 1/f α noise occurs in the same temperature
range where the ensemble averaged C3pt gradually transitions
to 0. This is the temperature range in which each cluster
in the superparamagnetic phase can act like a macrospin.
There is a range of temperatures over which α does not vary
much, which is based on the 10−3 to 10−1 Hz frequency
integration window. Here α ∼ 0.8 when more clusters are
in the ferromagnetic phase. α(T ) falls off as fewer clusters
remain ordered.

It should also be pointed out that the experiments would
not directly observe the phase transitions of Fig. 7 because it
is not easy to isolate a single cluster. Instead, because of the
ensemble averaging effects, a gradual temperature dependent
decline would be seen. This decline in Fig. 10 is further
augmented by a 1/T factor in Eq. (15) for the flux-inductance
cross-spectrum noise [43].

FIG. 10. Left axis shows the ensemble averaged sum of three-
point correlations (C3pt) as a function of temperature (at t1 = t2 = 0
initial time). The ensemble average is over the exact same 75 random
kF a and N , which gives the noise exponent α on the right axis.
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D. 1/ f α noise and crossovers: Monte Carlo simulations

Since it is unlikely that the experiments can directly ob-
serve the magnetic phase transitions of Fig. 7 for a single
cluster—it is important to find other distinct features that
might still be experimentally observable despite the ensemble
averaging. In addition to the SPTs discussed in Eq. (14),
crossovers from the superparamagnetic to paramagnetic phase
(or pseudophase transitions) are also expected to occur at
higher Curie temperatures. For small clusters far from the
thermodynamic limit, the specific heat Cv has the appearance
of a smooth crossover rather than a sharp phase transition.
These crossovers would be experimentally observable and
would provide a further validation of this cluster model. Also
because of finite size effects, the critical temperature T ′

c at
which these crossovers occur can provide more insight into
the number of spins in a cluster and their interaction strengths.

In this section a numerical Monte Carlo method is used to
compliment the main correlation-function technique used in
this paper. More specifically, the temperature dependent phase
transitions were obtained using a Monte Carlo technique with
parallel tempering. The order parameter was the specific heat:
Cv = (〈E〉2 − 〈E2〉)/T 2, where E is the total energy. For the
Monte Carlo steps, first a complete sweep of all the TLSs in
all lattices was taken at various temperatures. Here, unlike
NNI models, since RKKY interactions are involved, while
updating a spin configuration, the acceptance decision is made
based on the energy of the entire interacting cluster. This is
numerically feasible for all systems sizes considered here.
Next for the parallel tempering part, the different replicas at
different temperatures was swapped using the detailed balance
condition: min(R, exp[(E1 − E2)(T −1

1 − T −1
2 )/kB]), where

0 < R < 1 is random. The whole process was repeated over
104 times.

The T dependent Cv is also compared with α. Since the
following comparisons between pseudophase transitions and
α involved two different calculation methods, a number of
steps were taken to ensure that the calculations were fully
consistent. Exactly the same spin-cluster configuration and
seeds for random-number generation was used to generate
the kF a distribution for both methods. Both Monte Carlo and
α(T ) calculations were done for 75 spin clusters, each with
6–9 spins and a uniform distribution was chosen for kF a.
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FIG. 11. (a) Comparison of the noise exponent α against the
specific heat Cv for 75 spin clusters, each with 6–9 spins. Cv is calcu-
lated using the Monte Carlo method. This is the same distribution
of spin clusters that gives the 1/f noise shown in Fig. 4(a) with
〈kF a〉 = 0.63. (b) A close up of α.
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FIG. 12. Critical temperature T ′
c from Monte Carlo simulations

for the spin clusters with RKKY interactions as a function of cluster
size N for various normalized lattice spacing kF a.

Cv is shown in Fig. 11 along with α as a function of
temperature. A close up view of α over a narrower range
of temperatures is shown in the figure inset. A second-order
pseudophase transition is shown in Fig. 11(a) which occurs
at T ′

c ≈ 1.2Jk−1
B . At the lowest temperature α tends to rise

towards 1. As discussed earlier, at very low T as the system
heads towards Tf it is difficult to extract α since a single
cluster’s correlations times scale exponentially as per an Ar-
rhenius law.

There are strong finite size effects in this system. For
clusters with 6–9 spins the transition takes place at a lower
T ′

c , diverging away from the thermodynamic limit. Compare
this to T ′

c ∼ 2.2 Jk−1
B for a disorder free large-N limit 2D NNI

model. Figure 12 shows T ′
c as a function of N , for a single

cluster with ferromagnetic RKKY interactions, for various
kF a. These were obtained from Monte Carlo simulations.
Because of the RKKY interactions, T ′

c is very sensitive to kF a

and N for small sized systems. An experimental measurement
of T ′

c will provide more insight into the average number of
spins in a cluster and their interaction strengths.

Overall it is shown in this section that the distinct
phase-transition-like peaks would still be observable for
Cv crossovers despite the cluster ensemble averaging. This
crossovers occur at temperatures that are well above where
1/f α noise occurs. An experimental observation of this will
validate this model.

V. SECOND SPECTRUM: INDUCTANCE NOISE

This section discusses various features of the inductance
noise PL which is the associated noise spectrum or the second
spectrum. It is a quantitative measure of the spectral wander-
ing of the first spectrum and is interpreted as the noise of the
noise [92]. In the experiments of Ref. [43], PL was measured
bellow 2 K and varied considerably with temperature. Despite
having the same noise microscopics, it is not obvious why
the second spectrum should have this strong temperature
dependence while the flux noise (first spectrum) does not vary
with temperature. It is analytically shown here why this is the
case.

The flux noise is related to the imaginary part of the
susceptibility via the fluctuation-dissipation theorem

P (ω) = 2h̄ coth

(
h̄ω

kBT

)
χ ′′ = lim

kBT �h̄ω
2
kBT

ω
χ ′′. (18)
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Assuming all spins couple to the SQUID equally [27,45],
the imaginary part of the inductance then relates to the spin
susceptibility within a layer of thickness d on the surface as
follows:

L′′ = μod
R

r
χ ′′, (19)

where L′′ is the imaginary part of the inductance. If ρ is
the surface spin density, then d = ρ/ñ, where ñ is the spin
density. Therefore, again from the fluctuation dissipation
theorem,

χ ′′(ω) = 2
ñμoμ

2
Bω

kBT

∑
i,j

∫ ∞

0
〈si (0)sj (t )〉eıωtdt. (20)

The sum of all two-point correlation functions for the
system of interacting spins can be expressed in terms of the
eigenvalues of V as follows:∑

i,j

〈si (0)sj (t )〉 =
∑

ν

Cνe
−2�ν t . (21)

Also see the two spin example in Eq. (A9). Hence,

χ ′′(ω) = 2ñμoμ
2
B

ω

kBT

∑
ν

Cν�ν

�2
ν + ω2

(22)

and the real part from Kramers-Kronig relation is

χ ′(ω) = 2

π
P

∫ ∞

0

χ ′′(ω′)
ω′2 − ω2

dω′ (23)

= 2ñμoμ
2
B

kBT

∑
ν

Cν�
2
ν

�2
ν + ω2

, (24)

where P is Cauchy’s principal value. Hence from the total
susceptibility χ (ω) = χ ′(ω) + iχ ′′(ω):

χ (t ) =
∫ ∞

0
χ (ω)eıωtdω = 2ñμoμ

2
B

kBT

∑
i,j

〈si (0)sj (t )〉. (25)

The real part χ ′ has to be considered in order to establish the
T −1 dependence analytically.

The inductance noise can be generally expressed as

PL(ω) =
(

μod
R

r

)2 ∫ ∞

0
〈χ (0)χ (t )〉eıωtdt. (26)

The inductance noise can then be further explicitly expressed
in terms of the spectral density of the dynamical four-point
noise correlation functions [22],

P
[2]
L (ω) =

(
2ρ

μ2
oμ

2
B

kBT

R

r

)2 ∫ ωb

ωa

∫
S[2](ω,ω1, ω2)dω1dω2,

(27)

where

S[2](ω,ω1, ω2) =
∫ ∫ ∞

0

∫ ∑
j,k,l,m

〈sj (t1)sk (t2)sl (t3)sm(t4)〉

× ei(ωa−ω)τ ′
ei(ωb+ω)τ ′′

eiωτ dτ ′dτ ′′dτ. (28)

Here τ ′ = t2 − t1, τ ′′ = t4 − t3 and τ = t4 + t3 − t2 − t1,
�ω = ωb − ωa is the bandwidth within which the second
spectrum is observed and j, k, l,m are spin indices.

Numerical second spectrum calculations can be consid-
erably difficult. The Gaussian approximation for the four-
point correlation functions can make these calculations much
more feasible. For the model considered here, to an excellent
approximation:∑

j,k,l,m

〈sj (t1)sk (t2)sl (t3)sm(t4)〉

≈
∑

j,k,l,m

〈sj (t1)sk (t2)〉〈sl (t3)sm(t4)〉. (29)

In Appendix B it is shown that this is an exceptionally good
approximation for ferromagnetic RKKY interactions in the
temperature regime of interest for 1/f noise. This because the
terms in the Gaussian approximation relate to the order param-
eter (see Appendix B). However, note that this is not a good
approximation for antiferromagnetic RKKY interactions.

Therefore, using the Gaussian approximation

S[2](ω,ω1, ω2) = δ(τ )P ′(ω,ωa )P ′(ω,ωb ), (30)

where P ′(ω,ωa(b) ) = ∑
Cν[2�ν + i(ω − ωa(b) )]−1 based on

the two-point correlations. Substituting this into Eq. (27), the
following expression is obtained for the associated spectrum
of correlated Ising spin fluctuations:

P
[2]
L (ω) ≈ δ(τ )

(
2ρ

μ2
oμ

2
B

kBT

R

r

)2
∣∣∣∣∣
(∑

ν

Cν log

[
ωb + ω + 2i�ν

ωa + ω + 2i�ν

])(∑
ν

Cν log

[
ωb − ω + 2i�ν

ωa − ω + 2i�ν

])∣∣∣∣∣, (31)

P
[2]
L looks similar to a Lorentzian spectral function where its

amplitude is determined by �ν = ωb − ωa .
Equation (31) is used for the numerical inductance noise

calculations for the ensemble of spin clusters. The T -
dependent inductance noise spectrum and its slope is shown
in Fig. 13 for different �ν = ωb − ωa , since second spectrum
calculations are sensitive to �ν. In Figs. 13(a) and 13(b)
nearly the whole spectrum is covered. While in the other
subplots the ωa is consecutively reduced by an order of
magnitude. Varying ωa affects the power spectrum more than

varying ωb. It is shown that when �ν nearly covers the
full spectrum, the noise power spectrum now shows 1/f α

behavior at intermediate frequencies. The average integrated
α between 0.001–0.05 Hz varies from ∼1.57 (at 200 mK) to
∼1.24 (at 500 mK). As the temperature further increases α →
0. The α = 4 at high frequencies is due to the square of the
Lorentzian tail while at the lowest frequencies α eventually
rolls over to zero. Overall the inductance noise shows a large
variation with temperature and the calculations agree very
well with experiment [43,46].
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FIG. 13. Inductance noise plots for different �ν = ωb − ωa

showing the (a) Power spectrum and (b) its respective slope for ωb =
10 Hz and ωa = 10−3 Hz. (c) Power spectrum and (d) its respective
slope for ωb = 10 Hz and ωa = 10−2 Hz. (e) Power spectrum and (f)
its respective slope for ωb = 10 Hz and ωa = 10−1 Hz. Calculations
are for 400 cluster with 6–9 spins.

VI. SUMMARY

In this paper a self-consistent model is proposed that ex-
plains various observed features of the temperature dependent
1/f α(T ) magnetization noise in SQUIDs. 1/f α flux noise with
α ∼ 0.8 over a range of low temperatures and frequencies.
The flux noise is further shown to be independent of sys-
tem size. The model comprises of multiple finite sized spin
clusters with ferromagnetic RKKY interactions. Similar noise
results can be obtained with other long-range ferromagnetic
interactions. This model is representative of spatially disorder
from defects or substitutional impurities. Furthermore, here
both a random normal distribution of cluster sizes and ferro-
magnetic long-range interactions are essential for obtaining
1/f α noise. There is no a priori assumption made on a
log normal distribution of fluctuation rates for obtaining the
1/f α noise. All results, including α ∼ 0.8, are obtained self-
consistently from Glauber dynamics.

Calculated cross correlations between flux and inductance
noise with ferromagnetic RKKY interactions shows that there
is a magnetically ordered phase for the TLS, as seen in
experiment [43]. The cross spectrum is obtained from three-
point correlation functions.

Furthermore, the three-point correlation and susceptibility
order parameters reveal sharp-looking low temperature super-

paramagnetic phase transitions. This happens in the temper-
ature range where 1/f α magnetization noise is seen. Each
cluster transitions from a ferromagnetically ordered phase to
a glassy paramagnetic phase. Recent experiments suggest a
dynamical paramagnetic environment due to the asymmetry
in the flux noise for positive and negative frequencies [74].

A single cluster behaves like a macro-spin in this super
paramagnetic phase transition, where even the smallest tem-
perature fluctuations near criticality can lead to random tele-
graphic net-magnetization fluctuations. However the experi-
ments would not directly see the phase-transitions of Fig. 7
because of the ensemble averaging effects. Here 1/f α noise is
the observable for an ensemble of clusters that are individually
phase transitioning.

Monte Carlo specific heat calculations also show pseu-
dophase transitions from the superparamagnetic to paramag-
netic phase at the higher Curie temperature. On the tempera-
ture scale, 1/f α noise occurs prior to the onset of the pseu-
dophase transition. This would be experimentally observable
despite ensemble averaging and would further validate this
model. Overall, as a function of temperature, there appear
to be at least four macrostates available to each cluster, one
ferromagnetic phase, two superparamagnetic phases, and one
paramagnetic phase. Note that each cluster can behave like a
macrospin and that there is some randomness in their positions
and the net magnetic moment. If the interactions between
the macrospins then become sufficiently strong, then this can
lead to some additional phases [93] as the number of clusters
approach the thermodynamic limit.

For the inductance noise, based on the fluctuation dissi-
pation theorem, it is analytically shown why the inductance
noise is inherently T −2 dependent while the flux noise is
not. Analytical expressions are provided for easier four-point
correlation function calculations.

Finally, the method suggested here for obtaining the n-
point correlation functions is key to these calculations and
is discussed in detail. This is a fully self-consistent method
and model that takes time dependence, spatial correlations,
interactions, and temperature dependence into account. By
incorporating Glauber dynamics, this method also expands
the scope of the existing 1/f noise calculation methods in a
self-consistent way. This method is useful for numerics and
analytics as shown here.
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APPENDIX A: EXAMPLE: TWO CORRELATED TLSS

An analytical example is given here for the correlation
functions, and the power spectrum for a pair of interacting
spins using this paper’s model.
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Master equations: If the average occupation of the two
states is the same (for unbiased fluctuators), then for single
spin-i Vi = γi (σx − σo), where γi is the ith spin’s relaxation
rate. γi is a phenomenological parameter. It will be shown
that the Ising-Glauber model naturally gives a temperature
dependent relaxation rate from the spin-flip probability.

The corresponding flipping probability matrix is

Wi (t ) = exp(Vi t ) = 1 + e−2γi t

2
σo + 1 − e−2γi t

2
σx. (A1)

For N uncorrelated (noninteracting) Ising spins, it is straight-
forward to express the entire system’s flipping probability
matrix as a tensor product of individual Wis:

W = W1 ⊗ W2 ⊗ · · · WN . (A2)

The matrix V = ẆW−1 which is also

V = −
∑

j

γj I +
∑

j

γjσ
(j )
x , (A3)

where I is the identity matrix. For self-consistency it can be
verified that this is the same as what is obtained from Eq. (2)
in the T → ∞ limit.

Correlated TLS fluctuations: In order to obtain the power
spectrum of a given pair of interacting TLSs or Ising spins, the
corresponding two-point correlation functions have to be ob-
tained first. Consider the Ising-Glauber model outlined in the

main body of the paper for two fluctuating Ising spins that are
correlated. If B = 0, then the V matrix in the {11, 11̄, 1̄1, 1̄1̄}
basis has the following form:

V = 2

ε

⎡
⎢⎢⎢⎣

−∑
i γi γ2ε

′ γ1ε
′ 0

γ2 −ε′ ∑
i γi 0 γ1

γ1 0 −ε′ ∑
i γi γ2

0 γ1ε
′ γ2ε

′ −∑
i γi

⎤
⎥⎥⎥⎦
(A4)

or

V = Vo

[
I + tanh(βJ )σ (1)

z σ (2)
z

]
, (A5)

where ε′ = exp(2βJ ) and ε = 1 + exp(2βJ ) and

Vo = γ1σ
(1)
x + γ2σ

(2)
x − (γ1 + γ2)I. (A6)

Obviously if βJ = 0, then V = Vo which is just the V matrix
for two uncorrelated TLS. Also σ (1)

x = σx ⊗ σo and σ (2)
x =

σo ⊗ σx .
Limits: More general expressions for the correlation func-

tions and the power spectrum are given in Ref. [56]. In the
T → ∞ limit all cross correlations are zero and the two-
point autocorrelation function just reduces to that of two
uncorrelated Ising spins/TLS:

〈si (0)sj (t )〉 = δij e
−2γi t . (A7)

Whereas at finite temperatures and in the γj = 1 limit,
the flipping probability matrix [W = exp(−Vt )] has the
following form:

W = 1

2ε

⎡
⎢⎢⎢⎢⎣

ε′e−4t + εe−4tε′/ε + 1, 1 − e−4t , 1 − e−4t , ε′e−4t − εe−4tε′/ε + 1

−ε′(e−4t − 1), e−4t + ε(1 + e−4t/ε ) − 1, e−4t + ε(1 − e−4t/ε ) − 1, −ε′(e−4t − 1)

−ε′(e−4t − 1), e−4t + ε(1 − e−4t/ε ) − 1, e−4t + ε(1 + e−4t/ε ) − 1, −ε′(e−4t − 1)

ε′e−4t − εe−4tε′/ε + 1, 1 − e−4t , 1 − e−4t , ε′e−4t + εe−4tε′/ε + 1

⎤
⎥⎥⎥⎥⎦. (A8)

This gives the corresponding correlation functions for two
interacting TLSs:

〈si (0)sj (t )〉 = 1
2e−2�′

−|t | + (
δij − 1

2

)
e4βJ e−2�′

+|t |, (A9)

where �′
± = [1 + exp(±2βJ )]−1. Note that here∑

ij 〈si (0)sj (t )〉 = 2e−2�′
−|t |. This implies that in this special

case the two interacting TLS can be expressed as a single
effective TLS with flipping rate �′

−.

APPENDIX B: THE GAUSSIAN APPROXIMATION
FOR THE FOUR-POINT CORRELATION FUNCTION

In this Appendix the accuracy of the Gaussian approxima-
tion [see Eq. (29)] is more closely examined. The four-point

correlation function and its approximation using the two-point
correlations can be defined as

C4pt ≡
∑

j,k,l,m

〈sj (0)sk (t1)sl (t2)sm(t3)〉, (B1)

C
(2)
2pt ≡

∑
j,k,l,m

〈sj (0)sk (t1)〉〈sl (t2)sm(t3)〉. (B2)

In the Gaussian approximation C4pt ≈ C
(2)
2pt . The accuracy

of this can be quantified by the relative error 1 − C4pt/C
(2)
2pt

which is shown in Figs. 14(a) and 14(b). In this example N =
6 and t1 = t2 = t3. Very similar results, where the errors were
of the same order of magnitude, were obtained for N = 7 and
8 and for randomly chosen t2 and t3.

As shown in Fig. 14(a), the Gaussian approximation is
exceptionally good for ferromagnetic RKKY interactions
in the temperature regime of interest for inductance noise.
Whereas Fig. 14(b) shows that for antiferromagnetic RKKY
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FIG. 14. The errors signifying how good the Gaussian approx-
imation is for (a) ferromagnetic (FM) RKKY interaction and (b)
antiferromagnetic (AFM) RKKY interactions. Here t1 = t2 = t3 for
N = 6 and kF a = 0.75. The results are of the same order for larger
N and randomly sampled t1 and t2. (c) Corresponding specific heat
for t1 = 0.

interactions, the Gaussian is quite poor, especially at low
T . For the ferromagnetic case, the errors are significantly
less than 0.001%, in the 1/f noise temperature regime (see
Fig. 11 for comparison). The errors drop exponentially with
decreasing temperature. At the T where C3pt ∼ 1 (see Fig. 7),
the errors drop to ∼10−9 for ferromagnetic RKKY interac-
tions. Hence the Gaussian noise approximation is excellent
for calculating the 1/f inductance noise.

The reason for this is as follows. Note that C4pt − C
(2)
2pt

is like an order parameter. In fact, the specific heat Cv ∝
(C4pt − C

(2)
2pt )/T 2, minus the autocorrelation terms at t = 0.

This is shown in Fig. 14(c). The Cv curves are smooth (unlike
C3pt), since N is small, and represent a pseudophase transi-
tion. As long as the two-point cross correlations persist, the
Gaussian approximation holds well. Figure 14(c) also shows
why the Gaussian approximation is poor for antiferromag-
netic RKKY interactions in the low temperature regime of
interest.

It should be pointed out that while the correlation func-
tion calculation method used in this paper can reproduce
the crossover phase transition features (such as at T ′

c for
Cv) obtained from Monte Carlo simulations—the oppo-
site was found to be not true. The Monte Carlo calcula-
tions could not quite capture the SPT that occurs at Tf

for χ .
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