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Linear complex susceptibility of long-range interacting dipoles
with thermal agitation and weak external ac fields
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An analytical formula for the linear complex susceptibility of dipolar assemblies subjected to thermal
agitation, long-range interactions, and an externally applied uniform sinusoidal field of weak amplitude is derived
using the forced rotational diffusion equation of Cugliandolo et al. [Phys. Rev. E 91, 032139 (2015)] in the virial
approximation. If the Kirkwood correlation factor of the dipolar assembly gK exceeds unity, a thermally activated
process arising from the interaction-specific component arises, while for gK < 1 the susceptibility spectrum
normalized by its static value is practically unaltered with respect to that of the ideal gas phase.
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I. INTRODUCTION

Ensembles of interacting dipoles provide a useful ideal-
ization of the physics involved when modeling the linear
electric susceptibility of dense polar fluids and the magnetic
susceptibility of assemblies of single-domain ferromagnetic
particles. The theory was initiated by Debye [1], who calcu-
lated first the static susceptibility of an assembly of rigid polar
molecules, idealized as point dipoles, obtaining a result which
is essentially a replica of Langevin’s theory of paramagnetism
and so is called the Langevin-Debye theory. He then ex-
tended the calculation to include the linear dynamic dielectric
susceptibility (and therefore linear dielectric relaxation) of
polar molecules subjected to a weak ac electric field, which
unlike the static situation presents a nonequilibrium problem.
In order to accomplish this, he treated the effects of the
heat bath surrounding a dipole via the rotational diffusion
model, thereby generalizing Einstein’s theory of translational
Brownian motion. However, the Debye theory holds only
when long-range forces and torques are neglected.

Now, a comprehensive theory of the static dielectric per-
mittivity ε(0) has been given by Kirkwood [2] and Fröhlich
[3]. This theory properly accounts for long-range torques and
renders ε(0) as a function of the density of the specimen,
the dipole moment of a molecule in the ideal gas phase, the
absolute temperature T, and a parameter gK , the Kirkwood
correlation factor. Loosely speaking, the value of gK accounts
for dipolar order in the substance at equilibrium. If gK > 1
the dipoles have a trend to orient parallel, if gK < 1 they
have a trend to orient antiparallel, and if gK = 1 no orien-
tation is preferred although the molecules interact via long-
range forces and torques. The calculation of the frequency-
dependent linear permittivity ε(ω) of dense (isotropic) polar
liquids poses a much more involved theoretical problem be-
cause (1) the dynamics of the field seen by a typical molecule
in the Kirkwood-Fröhlich cavity is generally unknown, and
its relation to the ac Maxwell field is not easy to establish
for all ac field strengths [4], and (2) the account of dynamical

correlations that would allow an exact microscopic calculation
of the dynamical polarization has yet to be achieved.

The first author attempting a calculation of the dynamic
susceptibility of interacting dipoles from basic principles was
Zwanzig [5]. In the context of dielectrics, he considered
electric dipoles (each representing the polarization state of a
molecule) at the sites of a simple cubic lattice which in turn
altogether constitutes a spherical sample in vacuum. He then
used perturbation theory to calculate the polarizability of a
sample to demonstrate that long-range forces were responsi-
ble for a microscopic discrete distribution of relaxation times.
The overall relevant macroscopic relaxation time was found
to increase when increasing the amplitude of intermolecular
torques. However, Zwanzig’s calculations are not amenable to
comparison with experiment in practice, mostly because the
perturbation theory calculations involved were too restrictive
to be exploited for a dense system of molecules.

A different picture of dielectric relaxation was proposed by
Nee and Zwanzig [6], based on dielectric friction, a memory
mechanism that was introduced earlier by Zwanzig [7], its
intention being to generalize Onsager’s theory to the dy-
namical regime, objecting to the Onsager-Cole equation [8].
Proceeding, Nee and Zwanzig [6] were able to reproduce the
Fatuzzo-Mason equation for the frequency-dependent com-
plex permittivity ε(ω), which is [9]

ε(0)[ε(ω) − 1][2ε(ω) + 1]

ε(ω)[ε(0) − 1][2ε(0) + 1]

=
{

1 + iωτ + [ε(0) − 1][ε(0) − ε(ω)]

ε(0)[2ε(ω) + 1]

}−1

,

where τ is a relaxation time. The left-hand side of this
equation was related by Fatuzzo and Mason in a later paper
[9] to microscopic processes in an empirical manner. Nee
and Zwanzig [6] were further able to interpret quantitatively
dielectric relaxation data of glycerol at −60 °C. However,
their approach is subjected to criticism [10] in so far as
it is not easy to understand how short-range torques can
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combine with dielectric friction. Moreover, the theory cannot
be connected to the static values predicted by the Kirkwood-
Fröhlich equation because it completely neglects orientational
correlations.

Yet another contribution to the subject was made by
Madden and Kivelson [11], who attempted to generalize the
Kirkwood-Fröhlich equation to dynamics. They demonstrated
that three extraneous dynamical parameters in addition to
static ones must be included in order to describe linear di-
electric relaxation by curve fitting. They further proposed
a relation between microscopic and macroscopic quantities,
following a line of reasoning that was earlier proposed by
Fulton [12]. Their theory was successfully compared with
dielectric relaxation of CH2Cl2 at room temperature, taking
a Kirkwood correlation factor of unity. However, no other
temperature was considered, so that the temperature variation
of their three dynamical parameters is unknown, and may
be difficult to establish. Yet another formalism was pro-
posed by Bagchi and Chandra, who calculated the space- and
time-dependent linear dielectric function using a generalized
hydrodynamic formalism [13]. For practical purposes, these
authors confined themselves to a particular type of dynami-
cal random-phase approximation [14], where the interaction
potential to thermal energy ratio is replaced by the direct
rototranslational pair correlation function. Thus, their explicit
results are confined to very dilute systems. Finally, the most
complete analytical equation for the linear complex permit-
tivity that can be obtained using linear response theory was
derived by Scaife [4]. Yet, in order to use Scaife’s formula
in practice, a model for microscopic dynamics has to be
specified.

For single-domain ferromagnetic particles, the theoretical
subject was initiated by Néel [15]. In effect, Néel argued
that the magnetic stability of fine magnetic particles was the
manifestation of apparent magnetic states. More precisely,
if the time of measurement of the (noninteracting) magnetic
particles is shorter than a certain time scale (noted τref in
this paragraph for convenience), then the apparent magnetic
state is a stable one (ferromagnetic or blocked state), while, if
the time of measurement is larger than τref , then the apparent
magnetic state is paramagnetic (superparamagnetic state) as
a result of thermal fluctuations that randomize the direction of
the magnetic moment of a typical particle. Then he proposed
a formula [15] for τref which must have Arrhenius form at low
temperatures, since any apparently stable magnetic state is
associated with one of the minima of the magnetic free energy
of a particle, and thermal agitation may cause spontaneous
jumps from one state to the other. With this picture in mind,
for an energy landscape of a particle having minima at the
north and south poles of the unit sphere, τref is called the time
of reversal, or equally the thermally activated time scale of
magnetic nanoparticles, or the Néel time. The equation “time
of measurement = τref ” defines what is commonly called the
blocking temperature of the particle. From what precedes, it is
clear that τref also describes the duration of magnetic stability
of a particle. Yet Néel’s theory for τref lacked a derivation from
first principles. The theory of magnetization reversal under
thermal agitation was later put on a firm theoretical basis by
Brown, Jr. [16]. By emphasizing the need of a dynamical the-
ory, he set up the Langevin equation for the magnetization of

a tagged magnetic nanoparticle, treating the various energies
involved as arising from external causes and the magnetization
as a single mechanical entity. By deriving the Fokker-Planck
equation (FPE) corresponding to his Langevin equation, he
used both the Kramers treatment of thermally activated chemi-
cal reaction rates by diffusion processes [17] and a constrained
variational method applied to the calculation of the smallest
nonzero eigenvalue �1 of the FPE [18] in order to evaluate
τref = �−1

1 , demonstrating that in the overdamped case both
routes are equivalent and lead to an Arrhenius-Kramers-like
thermally activated process for magnetization reversal. The
theoretical range of validity of the so-called Néel-Brown for-
mula has been discussed in many occasions in a more precise
way than in Brown’s qualitative discussion [19]. Nevertheless,
like in the Debye theory, Brown’s treatment ignores the effect
of long-range interparticle interactions.

The importance of long-range interactions in assemblies
of magnetic nanoparticles is commonly admitted nowadays
[20,21], contiguously with that of particle size distributions
which have also a trend to broaden the magnetic low-
frequency absorption spectrum [22]. The relevant relaxation
time was believed to increase with the interaction strength
in a very large majority of systems [20]. This idea was first
theoretically put forward by Shtrikman and Wohlfarth [23],
who made simple mean-field-like considerations to justify
the Vogel-Fulcher-Tamman law for the relaxation time of
nanoparticle assemblies. This idea was also developed by Dor-
mann, Bessais, and Fiorani [24], who proposed an empirical
model for the relaxation time treating the interaction field as a
mean field. This model also predicts an increase of the median
blocking temperature (maximum in the peak of the zero-field
cooled magnetization and, therefore, the temperature peak of
the magnetic susceptibility) of the assembly. Many numerical
simulations concerning this problem have been achieved using
various techniques, which at times agree with this “law” of
relaxation-time increase (see, for example, [25]) and at times
are at variance (see, for example, [26]).

As a matter of fact, very few analytical approaches which
start from first principles exist. We mention here the approach
of Zubarev and Iskakova [27], who obtained very compli-
cated expressions for the resulting susceptibility. Restricting
themselves to a special orientational static pair distribution
function, in effect leading to a kind of mean field approxi-
mation, Ivanov and Kuznetzova [28] obtained an analytical
formula for the static susceptibility. These calculations were
extended to the dynamical regime and have been checked
against numerical simulations and experimental data [29] only
recently. Yet, restricting themselves to a mean-field-like ap-
proximation, orientational correlations have been neglected.
One of us calculated the thermally activated time scale of
magnetic relaxation of magnetic nanoparticle assemblies by
suitably adapting Berne’s theory [30] of dielectric relaxation
to magnetic particles having finite uniaxial anisotropy [31],
with a result for the reversal time that is similar to that of
Zwanzig [5]. However, although demonstrating an increase
of the thermally activated time scale while increasing the
concentration of the particles, this last approach is valid for
very low densities only, because it has a Curie point as a con-
sequence of ignoring interparticle correlations. In summary,
the starting points of all these models are special cases of
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the Dean-Kawasaki formalism [32] described by Cugliandolo
et al. for dipolar dynamics [33].

Returning to dielectrics, an analytical calculation of gK in
terms of dipole moment, density, and temperature has been
proposed quite recently using the Dean-Kawasaki formalism
adapted to rotational Brownian motion of interacting dipoles
[34]. This elegant formalism allows generalization of the
Debye theory to straightforwardly include intermolecular in-
teractions in the collective dipolar dynamics and can be solved
analytically in the virial approximation. Furthermore, it yields
excellent agreement with experimental data on the static lin-
ear dielectric constant versus temperature for many simple
polar liquids, including liquid water and liquid methanol,
showing that in the static regime the microstructure is mostly
concealed in the density of the liquid under study, and
that distortional polarization effects may not be completely
separated in the Kirkwood-Fröhlich equation of state [34].
Nevertheless, the results obtained in [34] are restricted to pure
statics.

The purpose of this paper is to obtain an analytical formula
for the polarizability α(ω) of a system of long-range inter-
acting dipoles via the Dean-Kawasaki rotational equation of
Cugliandolo et al. [33], in which orientational correlations are
no longer neglected, in order to extend the results of [34] valid
for statics. The language of dielectrics will be used throughout
this paper, but the calculations presented below can readily be
transposed to magnetic relaxation of fine particles with zero
anisotropy, in particular blocked ferrofluids and mechanically
frozen magnetic nanoparticle assemblies with zero individual
anisotropy. The derivation will start by stating the averaged
Dean-Kawasaki equations for the one-body and pair orienta-
tional density, showing the rise of a Bogolyubov-Born-Green-
Kirkwood-Yvon (BBGKY) like hierarchy. Then, a procedure
for stopping the BBGKY process at the pair density level
will be proposed, and an analytical formula for the dynamic
susceptibility of the assembly of interacting dipoles will be
derived.

II. MICROSCOPIC DIPOLAR DYNAMICS

We consider throughout this paper a sample of volume
ϒ made of polar molecules (of a single species) each of

which carries a dipole moment vector μ. These molecules are
coupled via long-range intermolecular interactions. We shall
further assume that such molecules are fixed in space, but can
rotate at their sites. The total dipole moment per unit volume
P (t ) at time t in the direction of an applied field is given by
the equation

P (t ) = ρ0μ

∫
(u · e)W (u, t ) d2u, (1)

where e denotes the direction of the applied field, u is a
unit vector along a tagged dipole moment, ρ0 is the number
of molecules per unit volume of the sample, and W (u, t ) is
the probability density of orientations of individual dipole
moments on the unit sphere. The computation of P (t ) by
microscopic means essentially requires the knowledge of
the dynamics of W (u, t ). We choose this dynamics to be
governed by the averaged rotational Dean-Kawasaki equation
[33], viz.,

2τD

∂W

∂t
(u, t ) = ∇u · [∇uW (u, t ) + βW (u, t )∇uV1(u, t )]

+β ∇u ·
∫

∇uUm(u, u′)W2(u, u′, t )du′,

(2)

where β = (kT )−1, k is Boltzmann’s constant, T is the abso-
lute temperature, τD = βς/2 is the rotational diffusion time,
ς is a phenomenological rotational friction coefficient, ∇u
is the del operator on the unit sphere, V1(u, t ) is a single
molecule potential that may be written

V1(u, t ) = −μF
(t ) · u, (3)

F
(t ) is the time-dependent internal field (assumed uni-
form), Um(u, u′) is the (long-range) pair interaction potential,
and W2(u, u′, t ) is the orientational pair probability density. It
has to be noticed that in writing Eq. (2) we restricted ourselves
to pair interactions only.

As it stands, Eq. (2) is a rotational Smoluchowski equation
forced by pair interactions. In order to solve it, one requires
an equation for W2(u, u′, t ). Using the formalism provided in
[33], it may be shown that this equation is

2τD

∂W2

∂t
(u, u′, t ) = ∇u · [∇uW2(u, u′, t ) + βW2(u, u′, t )∇uV2(u, u′, t )] + ∇u′ · [∇u′W2(u, u′, t )

+βW2(u, u′, t )∇u′V2(u, u′, t )] + β ∇u ·
∫

∇uUm(u, u′′)W3(u, u′, u′′, t )du′′

+β ∇u′ ·
∫

∇u′Um(u′, u′′)W3(u, u′, u′′, t )du′′, (4)

where W3(u, u′, u′′, t ) is the three-body orientational proba-
bility density and

V2(u, u′, t ) = −μF
(t ) · (u + u′) + Um(u, u′) (5)

is a pair potential. The solution of Eq. (4) in turn requires an
equation for W3, which will involve the four-body probability

density W4 and so on. Thus, the Dean-Kawasaki formalism
generates a hierarchy of differential-integral equations that
are similar to the BBGKY hierarchy for partial densities.
As such, there is no known systematic way of truncating
this hierarchy [35] because stopping the BBGKY process by
setting Wn+1 ≡ 0 at the nth rank is an incorrect procedure.
Hence, one must resort to nontrivial approximation schemes
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to estimate the effect of Wn+1 at the nth rank. We describe
below a way to estimate W3 in Eq. (4) so as to roughly de-
scribe orientational dipolar relaxation beyond the mean field
approximation.

III. REDUCTION OF EQ. (4) TO A TWO-BODY
FOKKER-PLANCK EQUATION

Here, we show how to transform Eq. (4) into a two-body
rotational Smoluchowski equation with an effective two-body
potential. To achieve this, we first remark that W2 and W3 can
generally be written as

W2(u, u′, t ) = W (u, t )W (u′, t )g(u, u′, t ), (6)

W3(u, u′, u′′, t ) = W (u, t )W (u′, t )W (u′′, t )g3(u, u′, u′′, t ),

(7)

where g and g3 are the orientational pair and three-body
distribution functions, respectively, which are taken as time
dependent. This allows us, using Eqs. (6) and (7), to write W3

in terms of W2 as follows:

W3(u, u′, u′′, t ) = W2(u, u′, t )
g3(u, u′, u′′, t )

g(u, u′, t )
W (u′′, t ). (8)

This last equation allows us to write Eq. (4) as

2τD

∂W2

∂t
(u, u′, t ) = ∇u · [∇uW2(u, u′, t )

+βW2(u, u′, t )∇uV
eff

2 (u, u′, t )
]

+∇u′ · [∇u′W2(u, u′, t )

+βW2(u, u′, t )∇u′V eff
2 (u, u′, t )

]
, (9)

where we have introduced a two-body time-dependent effec-
tive potential V eff

2 (u, u′, t ) via the partial differential equa-
tions

∇uV
eff

2 (u, u′, t ) = ∇uV2(u, u′, t ) + 1

g(u, u′, t )

×
∫

∇uUm(u, u′′)W (u′′, t )

× g3(u, u′, u′′, t )du′′, (10)

∇u′V eff
2 (u, u′, t ) = ∇u′V2(u, u′, t ) + 1

g(u, u′, t )

×
∫

∇u′Um(u′, u′′)W (u′′, t )

× g3(u, u′, u′′, t )du′′. (11)

In its static version, V eff
2 (u, u′, t ) is analogous to the

“potential of mean force” introduced earlier by Kirkwood [36]
for translational degrees of freedom. In order to remove the
first term in the right-hand sides of Eqs. (10) and (11), we
seek V eff

2 (u, u′, t ) in the form

V eff
2 (u, u′, t ) = V2(u, u′, t ) + Vc(u, u′, t ), (12)

where we term Vc(u, u′, t ) the “effective complementary po-
tential” term, as it roughly contains the effects due to three-
body correlations. Furthermore, Eq. (12) allows the elimina-
tion of external field terms contained in V2. Using Eq. (12),
Eqs. (10) and (11) become

∇uVc(u, u′, t ) = 1

g(u, u′, t )

∫
∇uUm(u, u′′)W (u′′, t )

× g3(u, u′, u′′, t )du′′, (13)

∇u′Vc(u, u′, t ) = 1

g(u, u′, t )

∫
∇u′Um(u′, u′′)W (u′′, t )

× g3(u, u′, u′′, t )du′′. (14)

Now, since Vc(u, u′, t ) contributes to intermolecular inter-
actions only, its time dependence is only parametric and can
be neglected in Eqs. (13) and (14) in a first approximation.
In other words, we ignore memory effects due to three-body
correlations. This argument is reinforced by the fact that if
we exclude external field terms V eff

2 (u, u′, t ) should represent
electrostatic or magnetostatic interactions, in which the time
does not appear explicitly. Thus, Eqs. (13) and (14) become

∇uVc(u, u′) = 1

g(u, u′)

∫
∇uUm(u, u′′)W (u′′)

× g3(u, u′, u′′)du′′, (15)

∇u′Vc(u, u′) = 1

g(u, u′)

∫
∇u′Um(u′, u′′)W (u′′)

× g3(u, u′, u′′)du′′. (16)

These two equations are similar in form to Eq. (15) of Rice
and Lekner [37], the difference being that W is nonuniform
here and that the present paper is devoted to rotational motion
rather than translational and intermolecular vibrational ones.

It is evident that the statistical ensemble associated with
g3(u, u′, u′′) is made of representative samples consist-
ing of three molecules each carrying a single dipole. The
three dipoles in a representative sample have orientations
(u, u′, u′′). We proceed by introducing the Kirkwood super-
position approximation, which means that g3 is simply the
exponential of minus β times the three-body interaction (this
is the virial approximation for three bodies), and that the
three-body interaction is made of superposition of pair inter-
action terms. Furthermore, since in the virial approximation
g(u, u′) ≈ e−βUm(u,u′ ), we necessarily have

g3(u, u′, u′′) ≈ g(u, u′)g(u′, u′′)g(u, u′′). (17)

We note in passing that Eq. (17) is exact for the state of max-
imal Boltzmann-Shannon entropy for a statistical ensemble
made of representative samples composed of three interacting
bodies [38]. On using Eq. (17) in conjunction with Eqs. (15)
and (16), we have

∇uVc(u, u′) ≈
∫

∇uUm(u, u′′)W (u′′)g(u′, u′′)g(u, u′′)du′′,

(18)
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∇u′Vc(u, u′) ≈
∫

∇u′Um(u′, u′′)W (u′′)

× g(u′, u′′)g(u, u′′)du′′. (19)

Now, we assume that a representative sample (u, u′, u′′) is
such that the dipole having orientation u′′ is far away from the
pair of dipoles with orientations (u, u′). To the lowest order
of approximation, this results in

g(u′, u′′) ≈ 1, g(u, u′′) ≈ 1. (20)

Thus, Eqs. (18) and (19) using Eqs. (20) become

∇uVc(u, u′) ≈
∫

∇uUm(u, u′′)W (u′′)du′′, (21)

∇u′Vc(u, u′) ≈
∫

∇u′Um(u′, u′′)W (u′′)du′′. (22)

These two equations now allow us to seek Vc(u, u′) as a
superposition of single-body terms, namely,

Vc(u, u′) = Uan(u) + Uan(u′), (23)

where Uan(u) is an even function of u on the unit sphere.
Hence, Eqs. (21) and (22) become one and the same partial
differential equation, viz.,

∇uUan(u) ≈
∫

∇uUm(u, u′′)W (u′′)du′′. (24)

We note here that W (u′′) cannot be chosen as an equilibrium
one-body probability density, because this would cause the
right-hand sides of Eqs. (24) to vanish; this is similar to
ignoring the integral terms in Eq. (4). This is, however, not
permitted, because this would break the BBGKY-like nature
of the averaged Dean-Kawasaki equations.

Now, we need to make a statement regarding W (u′′) in
Eq. (24). We set u = u′′ in Eq. (2) and write Eq. (6) as

W2(u, u′, t ) ≈ W (u, t )W (u′, t )g(u, u′), (25)

so that in the absence of external field Eq. (2) with u = u′′ is

2τD

∂W

∂t
(u′′, t ) = ∇u · [∇uW (u′′, t ) + β W (u′′, t )

×
∫

∇uUm(u′′, u′)W (u′, t )g(u′′, u′)du′].

(26)

Hence, via Eq. (20), the integral term vanishes to leading order
since as a consequence of the virial approximation for the
orientational pair distribution function we have Um(u′′, u′) ≈
0. Thus, instead of Eq. (26) we effectively have

2τD

∂W

∂t
(u′′, t ) ≈ ∇2

uW (u′′, t ), (27)

an equation that is meaningful only if we take (this is similar
to Singer’s point of view [38])

W (u′′, t ) = δ(u′′ − u) = W (u′′). (28)

Hence, Eq. (24) becomes effectively

∇uUan(u) ≈ ∇uUm(u, u′′)|u′′=u. (29)

This last equation is the final result of the phase-space reduc-
tion initiated at the start of this section. For the model pair
interaction potential

βUm(u, u′) = ∓λ cos ϑ cos ϑ ′, (30)

ϑ being the angle a dipole with orientation u makes with the
local field F
(t ) and λ = 4πβρ0μ

2/3, the ∓ sign expressing
the parallel (gK > 1) or antiparallel (gK < 1) alignment of
dipoles, Eq. (29) leads to (z = cos ϑ)

β
dUan

dz
(z) = ∓λz, (31)

so that we have

βUan(z) = ∓λ

2
z2. (32)

From this equation and Eqs. (12), (23), and (30) we may
rebuild the effective pair interaction potential V eff

2 (z, z′). We
have four possible expressions given by all combinations of
signs, viz.,

βV eff
2 (z, z′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− λ
2 (z + z′)2

− λ
2 (z − z′)2

λ
2 (z + z′)2

λ
2 (z − z′)2

. (33)

Of these four expressions, the last two of them must be
rejected because they lead to an artificial equilibrium position
(ϑ, ϑ ′) = (π/2, π/2) for a pair of dipoles, which is physically
meaningless here. Hence, the two final effective pair interac-
tion potentials corresponding to Eq. (30) are given by

βV eff
2 (z, z′) =

{
− λ

2 (z + z′)2

− λ
2 (z − z′)2

. (34)

Finally, we may superpose externally applied fields onto
Eq. (34) so that for the interaction potential given by Eq. (30)
we have

βV eff
2 (u, u′, t ) = −λ

2
(cos ϑ ± cos ϑ ′)2

− ξ
(t )(cos ϑ + cos ϑ ′), (35)

where ξ
(t ) is a time-dependent reduced local field amplitude.
This equation was used in its static version in [34]. Hence,
Eqs. (9)–(11) reduce to the Fokker-Planck equation

2τD

∂W2

∂t
(u, u′, t ) = ∇u · [∇uW2(u, u′, t )

+βW2(u, u′, t )∇uV
eff

2 (u, u′, t )
]

+∇u′ · [∇u′W2(u, u′, t )

+βW2(u, u′, t )∇u′V eff
2 (u, u′, t )

]
, (36)

with V eff
2 (u, u′, t ) now given by Eq. (35). We remark that

Eq. (36) is similar to the dynamical equation that was given
in [39], with the exceptions that ξ
(t ) explicitly involves
the dynamical internal field, that the Fokker-Planck equation
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is a two-body one, and that the “anisotropy parameter” is
expressed in terms of the molecular density and the individual
dipole of a molecule.

Proceeding, we must compute the solution of Eq. (36) in
the linear response regime, i.e., when ξ
(t ) � 1. This is the
purpose of the next section.

IV. MATRIX CONTINUED FRACTION SOLUTION OF THE FOKKER-PLANCK EQUATION (36)

We may solve Eq. (36) starting from an expansion of W2(u, u′, t ) in a series of Legendre polynomials Pn(cos ϑ ), viz.,

W2(u, u′, t ) =
∞∑

n=0

∞∑
m=0

(
n + 1

2

)(
m + 1

2

)
bn,m(t )Pn(cos ϑ )Pm(cos ϑ ′), (37)

and combine the recurrence and orthogonality of these polynomials with Eq. (36) to obtain the hierarchy of differential recurrence
relations:

τDḃn,m(t ) = q (0 0)
nm bn,m(t ) + q (−2 0)

nm bn−2,m(t ) + q (2 0)
nm bn+2,m(t ) + q (0 −2)

nm bn,m−2(t ) + q (0 2)
nm bn,m+2(t )

+ q (−1 −1)
nm bn−1,m−1(t ) + q (1 1)

nm bn+1,m+1(t ) + q (1 −1)
nm bn+1,m−1(t ) + q (−1 1)

nm bn−1,m+1(t )

+ ξ
(t )
[
p(−1 0)

nm bn−1,m(t ) + p(1 0)
nm bn+1,m(t ) + p(0 −1)

nm bn,m−1(t ) + p(0 1)
nm bn,m+1(t )

]
, (38)

where the coefficients q
(ij )
nm are specified in the Appendix. The set of Eqs. (38) may in turn be transformed into vector form, viz.,

τD ċn(t ) = q− −
n cn−2(t ) + qncn(t ) + q+ +

n cn+2(t ) + ξ
(t )(p−
n cn−1(t ) + p+

n cn+1(t )), (39)

where

cn(t ) =

⎛
⎜⎜⎜⎝

bn,0(t )
bn−1,1(t )

...
b0,n(t )

⎞
⎟⎟⎟⎠, c0 = (1), (40)

and

qn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
(0 0)
n 0 q

(−1 1)
n 0 0

. . . 0

q
(1 −1)
n−1 1 q

(0 0)
n−1 1 q

(−1 1)
n−1 1

. . .
. . .

0 q
(1 −1)
n−2 2 q

(0 0)
n−2 2

. . . 0
. . .

. . .
. . .

. . . q
(−1 1)
1 n−1

0
. . . 0 q

(1 −1)
0 n q

(0 0)
0 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

q++
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
(2 0)
n 0 q

(1 1)
n 0 q

(0 2)
n 0 0

. . . 0 0

0 q
(2 0)
n−1 1 q

(1 1)
n−1 1 q

(0 2)
n−1 1 0

. . . 0
. . . 0 q

(2 0)
n−2 2 q

(1 1)
n−2 2 q

(0 2)
n−2 2

. . .
. . .

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . . 0 q

(2 0)
0 n q

(1 1)
0 n q

(0 2)
0 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q−−
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
(−2 0)
n 0

. . . 0

q
(−1− 1)
n−1 1

. . .
. . .

q
(0 −2)
n−2 2

. . . q
(−2 0)
2 n−2

. . .
. . . q

(−1 −1)
1 n−1

0
. . . q

(0 −2)
0 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p+
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(1 0)
n 0 p

(0 1)
n 0 0

. . . 0 0

0 p
(1 0)
n−1 1 p

(0 1)
n−1 1 0

. . . 0
. . . 0 p

(1 0)
n−2 2 p

(0 1)
n−2 2

. . .
. . .

0
. . .

. . .
. . .

. . . 0

0 0
. . . 0 p

(1 0)
0 n p

(0 1)
0 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, p−
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
(−1 0)
n 0 0

. . . 0

p
(0 −1)
n−1 1 p

(−1 0)
n−1 1

. . .
. . .

0 p
(0 −1)
n−2 2

. . . 0
. . .

. . .
. . . p

(−1 0)
1 n−1

0
. . . 0 p

(0 −1)
0 n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Finally, we introduce the column vector

Cn(t ) =
(

c2n−1(t )
c2n(t )

)
,

so that Eq. (39) may be written

τDĊn(t ) = Q−
n Cn−1(t ) + QnCn(t ) + Q+

n Cn+1(t ) + ξ
(t )[P−
n Cn−1(t ) + PnCn(t ) + P+

n Cn+1(t )], (41)

where

Q±
n =

(
q±±

2n−1 0

0 q±±
2n

)
, Qn =

(
q2n−1 0

0 q2n

)
, (42)

P−
n =

(
0 p−

2n−1

0 0

)
, Pn =

(
0 p+

2n−1

p−
2n 0

)
, P+

n =
(

0 0

p+
2n 0

)
. (43)

The set of Eqs. (41) lends itself easily to perturbation theory, and the equations are furthermore tridiagonal, so that the
resulting equations can be solved via the matrix continued fraction method [40]. Thus, we proceed by setting

bn,m(t ) = b(0)
n,m + b(1)

n,m(t ), (44)

where the superscript (i) indicates the order of the field strength. It naturally follows that

Cn(t ) = C(0)
n + C(1)

n (t ), (45)

so that Eq. (41) is immediately transformed into the vector perturbation equations

Q−
n C(0)

n−1 + QnC(0)
n + Q+

n C(0)
n+1 = 0 (46)

and

τDĊ(1)
n (t ) = Q−

n C(1)
n−1(t ) + QnC(1)

n (t ) + Q+
n C(1)

n+1(t ) + ξ
(t )K(0)
n , (47)

where

K(0)
n = P−

n C(0)
n−1(t ) + PnC(0)

n + P+
n C(0)

n+1.

Since we are interested to the linear response to a sinusoidal ac field, we can set

ξ
(t ) = ξ̃
(ω)eiωt , C(1)
n (t ) = ξ̃
(ω)C̃(1)

n (ω)eiωt (48)

in Eq. (47), so that this equation finally becomes

iωτDC̃(1)
n (ω) = Q−

n C̃(1)
n−1(ω) + QnC̃(1)

n (ω) + Q+
n C̃(1)

n+1(ω) + K(0)
n . (49)

Now, Eqs. (46) and (49) are algebraic vector equations that may be solved. By introducing the matrix continued fraction

�n(s) = [sI − Qn − Q+
n �n+1(s)Q−

n+1]−1 (50)

and the notation

Sn(s) = �n(s)Q−
n , (51)

however, the exact solution of Eqs. (46) and (49) can be written in terms of Sn(s), �n(s), and K(0)
n only [19,40]. In particular,

we have

C(0)
n = Sn(0)Sn−1(0) . . . S1(0), n > 1, (52)

C(0)
1 = S1(0), (53)

C̃(1)
n (ω) = �n(iωτD )

⎧⎨
⎩Q−

n C̃(1)
n−1(ω) + K(0)

n +
∞∑

p=1

p∏
k=1

Q+
n+k−1�n+k (iωτD )K(0)

n+p

⎫⎬
⎭, n > 1, (54)

C̃(1)
1 (ω) = �1(iωτD )

⎧⎨
⎩K(0)

1 +
∞∑

p=1

p∏
k=1

Q+
k �k+1(iωτD )K(0)

p+1

⎫⎬
⎭. (55)
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Thus, Eqs. (52)–(55) lead to the exact steady-state solution
of Eq. (36) in terms of matrix continued fractions, which in
turn will yield the solution of Eq. (2) in the linear regime,
demonstrated in the next section.

V. DYNAMICAL EQUATION OF STATE FOR
INTERACTING DIPOLES

Here we first develop an exact solution of Eq. (2) from
which we will deduce an exact equation for the complex linear
polarization response obtained from molecular considerations.
We start from Eqs. (2) and (30), and expand W (u, t ) in series
of Legendre polynomials, viz.,

W (u, t ) =
∞∑

n=0

(
n + 1

2

)
an(t )Pn(cos ϑ ),

so that accounting for Eq. (37) we have

2τD

n(n + 1)
ȧn(t ) + an(t ) = ξ
(t )

(2n + 1)
(an−1(t ) − an+1(t ))

∓ λ

(2n + 1)
(bn+1,1(t ) − bn−1,1(t )).

(56)

Now Eq. (1) can be written

P (t ) = ρ0μa1(t ). (57)

Thus we are strictly interested in the steady-state solution of
Eq. (56) for n = 1. This equation is

τDȧ1(t ) + a1(t ) = ξ̃
(ω)

3
eiωt [1 − a2(t )]

∓ λ

3
(b2,1(t ) − b0,1(t )). (58)

We may solve Eq. (58) by perturbation theory just like in the
preceding section. We set

an(t ) = a(0)
n + ξ̃
(ω)A(1)

n (ω)eiωt ,
(59)

bn,m(t ) = b(0)
n,m + ξ̃
(ω)B (1)

n,m(ω)eiωt ,

so that

a
(0)
1 = ∓λ

3

(
b

(0)
2,1 − b

(0)
0,1

) = 0, (60)

as it must be, since this coefficient determines the static
polarization in the absence of external field, and

a
(0)
2 = ∓λ

5

(
b

(0)
3,1 − b

(0)
1,1

) 	= 0. (61)

Because of Eq. (57), the steady state linear polarization is

P (t ) = ρ0μξ̃
(ω)A(1)
1 (ω)eiωt , (62)

where Eq. (59) has been used. Using Eqs. (58), (59), and (61),
we have

A
(1)
1 (ω) = 1

3(1 + iωτD )

×
{

1 ± λ

5

(
b

(0)
3,1 − b

(0)
1,1

)∓ λ
(
B

(1)
2,1(ω) − B

(1)
0,1(ω)

)}
.

(63)

This result is central to our paper. For purely polar
molecules, ξ̃
(ω) is given by [4]

ξ̃
(ω) = 3ε(ω)ξM

2ε(ω) + 1
, (64)

where ξM = βμE and E is the amplitude of the Maxwell
field. By using the macroscopic definition of the polarization
in terms of that field, viz.,

4πP (t ) = [ε(ω) − 1]Eeiωt , (65)

we have, equating the right-hand sides of Eqs. (62) and (64),
the dynamical equation of state for purely polar dielectrics,
viz.,

[ε(ω) − 1][2ε(ω) + 1]

3ε(ω)
= 3λA

(1)
1 (ω) = 4πα(ω)

ϒ
, (66)

where the linear dynamic polarizability α(ω) is given by

α(ω) = βNμ2A
(1)
1 (ω) (67)

and where N is the number of molecular dipoles contained in
the specimen of volume ϒ under consideration.

It is also possible to obtain an analytical representation for
the complex polarizability using the formula described in [19],
chapter 2, for the low-frequency linear response of systems
governed by Fokker-Planck equations. This formula is

B
(1)
n,1(ω)

B
(1)
n,1(0)

= �n,1

1 + iω/�1
+ 1 − �n,1

1 + iωτW
n,1

, (68)

where �1 is the smallest nonvanishing eigenvalue of the
Fokker-Planck equation (36), and [19,39]

�n,1 = τn,1/τ
eff
n,1 − 1

�1τn,1 − 2 + (
�1τ

eff
n,1

)−1 , (69)

τW
n,1 = �1τn,1 − 1

�1τ
eff
n,1 − 1

τ eff
n,1, (70)

τn,1 = lim
ω→0

B
(1)
n,1(ω) − B

(1)
n,1(0)

iωB
(1)
n,1(0)

, (71)

τ eff
n,1 = lim

ω→∞
B

(1)
n,1(0)

iωB
(1)
n,1(ω)

. (72)

Equation (68) shows that the response of a pair of dipoles
consists of two relaxation processes, namely, one Kramers-
like thermally activated interwell process onto which is su-
perposed an (overdamped) intrawell relaxation process. By
substituting Eq. (68) into Eq. (63), one may see that the
relaxation dynamics of the polarization is governed by not less
than four relaxation time scales in the idealized picture of a
real system that we have chosen here. These time scales are
τD , the free rotational diffusion time; �−1

1 , the time scale for
thermally activated reversal of the dipoles (interwell process);
and τW

0,1 and τW
2,1. The two latter time scales are related to the

same phenomenon, i.e., relaxation of the dipolar motion inside
the two potential wells (intrawell process) [19].
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FIG. 1. The imaginary part of Eq. (63) as a function of frequency
for various values of λ for gK > 1.

VI. RESULTS AND DISCUSSION

The analytical formula that we have obtained for the dy-
namic permittivity through Eqs. (63) and (66) is a simple one
in terms of physical interpretation: the polarizability of the
sample Eq. (63) is made of a superposition of an ideal gas part
and a part due to intermolecular interactions. Then, the second
degree Eq. (66) is solved in such a way that the retained root
is positive at zero frequency. The results of the computations
of Eq. (63) are given in Figs. 1 (gK > 1) and 2 (gK < 1).

For gK > 1, when λ is increased, the dielectric spectra
evolve from a single Lorentzian having its maximum at
ω = 1/τD to two separate Lorentzians, one of them peaking
at ω = �1 and the other having a maximum at ω = 1/τD .
Hence, at large λ values, the amplitudes of the time scales τW

n,1
are masked by the contribution of the Debye peak, because
�n,1 ≈ 1. Therefore, at large values of the interaction param-
eter λ, the peak of lowest frequency may be associated with
a collective mode (synchronous reversal of a pair of strongly

FIG. 2. The imaginary part of Eq. (63) as a function of frequency
for various values of λ for gK < 1.

FIG. 3. The smallest nonvanishing eigenvalue of the Fokker-
Planck equation (36). Solid line: Numerical calculation from
Eq. (73). Dots: Eq. (74).

coupled dipoles), while the peak of frequency ω = 1/τD may,
to some extent (because the amplitude of this peak depends
on λ), be associated with single molecular motion since τD

is the relaxation time scale of a molecule in the absence of
long-range interactions.

In contrast, for gK < 1, there is effectively only one peak.
This peak first shifts to higher frequencies and its amplitude
flattens as the parameter λ increases, as illustrated in Fig. 2.
Then, the peak shifts back to the value ω = 1/τD , and its
amplitude increases again. Thus, the dynamics reflects that
of an effective single molecule, where quasistatic interactions
have no effect on the relaxation characteristic time scales.

Next, it is possible to compute �1 with the help of the
matrix continued fraction method. More precisely, this quan-
tity can be computed as the smallest nonvanishing root of the
equation [40]

det[�I + Q1 + Q+
1 �2(−�)Q−

2 ] = 0. (73)

In practice, Eq. (73) is solved using the Newton-Raphson
method. Not more than five iterations of the Newton-Raphson
algorithm are necessary to obtain numerical convergence in
the majority of the cases.

Furthermore, �1 has Arrhenius-Kramers behavior. This is
shown in Fig. 3, where �1 is plotted as a function of λ.
By using the Kramers-Langer [17,41] theory, the asymptotic
behavior of �1 is given by

�1τD ≈ 64

(
λ

π

) 5
2

e−2λ, λ � 1. (74)

Clearly, Eq. (74) yields an excellent representation of �1 for
large λ. For small λ, we have instead

�1τD ≈ 1 ∓ λ

3
, λ � 1, (75)

the two signs corresponding to gK > 1 and gK < 1, respec-
tively. The preceding analysis clearly shows the absence of
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thermally activated behavior for gK < 1 because the two
equilibrium states are those of antiparallel alignment (0, π )
and (π, 0), which cannot be distinguished since the system
we consider here is made of identical molecules; i.e., for
gK < 1, we have �n,1 ≈ 0. This is so in spite of the fact that
Eq. (73) yields the same smallest nonvanishing eigenvalue for
both signs in Eq. (30) at large λ. This is in contrast with the
situation for gK > 1 where a pair of dipoles has two distinct
equilibrium orientations given by (0, 0) and (π, π ) and where,
indeed, a thermally activated process takes place. Thus, we
may write

B
(1)
n,1(ω)

B
(1)
n,1(0)

≈ 1

1 + iω/�1
(76)

for gK > 1 and

B
(1)
n,1(ω)

B
(1)
n,1(0)

≈ 1

1 + iωτW
n,1

(77)

for gK < 1. In the latter situation, one may demonstrate using
the effective eigenvalue method [19] that we have

τW
n,1 ≈ τD

(
1 + λ

3

)−1

, (78)

and from our numerical results this formula is largely suffi-
cient for all values of λ. Equations (63) and (74)–(78) allow
us to obtain two analytical formulas for A

(1)
1 (ω), according to

the value of gK . These are

A
(1)
1 (ω) ≈ 1 + λ

(
b

(0)
3,1 − b

(0)
1,1

)/
5

3(1 + iωτD )

+ λ

3

B
(1)
0,1(0) − B

(1)
2,1(0)

(1 + iωτD )(1 + iω/�1)
(79)

for gK > 1 and

A
(1)
1 (ω) ≈ 1 − λ

(
b

(0)
3,1 − b

(0)
1,1

)/
5

3(1 + iωτD )

− λ

3

B
(1)
0,1(0) − B

(1)
2,1(0)

(1 + iωτD )
(
1 + iωτD

1+λ/3

) (80)

for gK < 1. In Eq. (79), �1 may safely be replaced by Eq. (74)
for λ > 10. Comparisons of Eqs. (79) and (80) with the
exact solution computed with the help of matrix continued
fractions are shown on Figs. 4 and 5. Clearly, Eqs. (79) and
(80) represent A

(1)
1 (ω) fairly well in the whole frequency

range for all values of λ, demonstrating the correctness of
our analysis in terms of significant eigenmodes of the Fokker-
Planck equation (36).

The complex susceptibility can also be calculated analyti-
cally from Eq. (66). It is given by

4πχ (ω) = 1

4

[
9λA

(1)
1 (ω) − 3 +

√
8 + [

1 + 9λA
(1)
1 (ω)

]2]
,

(81)

FIG. 4. Imaginary part of A
(1)
1 (ω) vs ωτD for several values of λ

that are relevant to polar fluids. Solid line: Eq. (63) for gK > 1 (upper
sign). Dots: Eq. (79).

resulting in two expressions for this quantity, one for gK > 1
and one for gK < 1. Furthermore, from Eq. (66), we have

χ (ω)

χ ′(0)
G(ω) = A

(1)
1 (ω)

A
(1)
1 (0)

= α(ω)

α′(0)
, (82)

where we have introduced a reduced dynamical internal field
factor G(ω) defined by

G(ω) = 1 + [2ε(ω)]−1

1 + [2ε′(0)]−1 = G′(ω) + iG′′(ω). (83)

As we have seen before, the thermally activated process
occurs for gK > 1 only. By plotting G′(ω) and G′′(ω) at
λ = 10 using Eq. (81) (i.e., a value at which the thermally
activated process is well resolved in frequency), in the fre-
quency region of the thermally activated process G′(ω) does

FIG. 5. Im[A(1)
1 (ω)] vs ωτD for various values of λ. Solid line:

Eq. (63) for gK < 1. Dots: Eq. (80).

024304-10



LINEAR COMPLEX SUSCEPTIBILITY OF LONG-RANGE … PHYSICAL REVIEW B 99, 024304 (2019)

FIG. 6. The real and imaginary parts of G(ω) vs ωτD for λ = 10.

not seriously depart from unity while G′′(ω) is vanishingly
small. This is illustrated in Fig. 6.

Therefore, in the frequency range of the thermally activated
process, to a very good approximation

χ (ω)

χ ′(0)
≈ α(ω)

α′(0)
, (84)

where we have introduced the dielectric complex susceptibil-
ity via χ (ω) = [ε(ω) − 1]/(4π ). This implies that to analyze
the thermally activated process there is no need to account
for dynamical internal field effects. At higher frequencies,
this analysis is more difficult to perform analytically. This
is why we construct a Cole-Cole plot for χ (ω)/χ ′(0) and
superimpose that of α(ω)/α′(0) for gK > 1 for λ = 10 on the
same figure. The result of this superposition is shown in Fig. 7.

As frequency increases, slight deviations occur between
χ (ω)
χ ′(0) and α(ω)

α′(0) ; however, these are less than 5% in relative
error, and therefore we may state that up to that relative

FIG. 7. Cole-Cole plots of the susceptibility and the polarizabil-
ity of polar fluids for λ = 10 and gK > 1.

theoretical error Eq. (84) holds at all frequencies beyond the
resonant ones, so that the dynamical effect of the internal field
can be neglected at the lowest approximation order. This is
indeed not so at the static level.

VII. COMPARISON WITH PREVIOUS
THEORETICAL RESULTS

Now, we compare our results with those obtained in
[28,29], which are relevant to single-domain ferromagnetic
particles, but which we believe to be relevant for long-range
interacting dipole systems in general and, therefore, to polar
fluids also. In [28,29], the preferred parallel alignment was
handled; however, in their approach gK ≈ 1 since this is a
modified mean field approach. There, the static susceptibility
(in our notation) was found to be

4πχ ≈ λ

(
1 + λ

3
+ λ2

144
+ . . .

)
(85)

and in this approach clearly the cubic term is negligible since
λ � 1, so that it contributes nothing. In our approach where
correlations are accounted for, we find in the same context
before internal field corrections the formula for the complex
polarizability

4πα ≈ λ

(
1 + λ

3
+ λ2

15
+ . . .

)
, gK > 1, λ � 1 (86)

and, after internal field corrections, we find

4πχ ≈ λ

(
1 + 2λ

3
+ 8λ2

45
+ . . .

)
. (87)

This means that even at very low concentrations the static
effects due to the internal field on the static susceptibility
cannot be ignored. Including internal field effects, the suscep-
tibility derived in [28] becomes

4πχ ≈ λ

(
1 + 2λ

3
+ 17λ2

144
+ . . .

)
(88)

so that the formalism derived in [28] agrees in all respects
with the present one provided λ � 1, since the cubic terms
of Eqs. (87) and (88) are nearly the same numerically. Com-
parison for higher values of λ cannot be carried out since the
results presented in [28] are valid for low λ only. These for-
mulas are, however, to be compared with Onsager’s formula
for which correlations are totally neglected, viz.,

4πχO ≈ λ

(
1 + λ

3
− λ2

9
+ . . .

)
, gK = 1, λ � 1,

(89)

emphasizing that gK = 1 (therefore a temperature-
independent Kirkwood correlation factor) is a special case
that still has to be worked out [34]. It has to be remarked that
Eq. (87) is also in agreement with the approach developed in
[31], where the standard mean field approach was developed
and where the applicability to real systems was not possible
because of the existence of a Curie point. As expected, the
formalism presented here removes this point due to inclusion
of orientational correlations. To conclude with static internal
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field effects, we have derived large λ approximations for the
static susceptibility. These are

4πχ (λ) ≈ 21
4 λ − 133

32 , λ � 1 (90)

for gK > 1 and

χ (λ) ≈ 3
4λ − 11

16 , λ � 1 (91)

for gK < 1. These equations can be applied for λ > 4. They
show the static effect of the internal field in that the suscep-
tibility is grossly five times that of the ideal gas of dipoles
for gK > 1 and 75% of the susceptibility of the ideal gas for
gK < 1.

The dynamical approach to the magnetic susceptibility
developed in [29] leads to the analytical expressions for the
real and imaginary parts:

4πχ ′(ω) = λ

1 + ω2τ 2
D

[
1 + λ

(
1 − ω2τ 2

D

)
3
(
1 + ω2τ 2

D

)
]
, (92)

4πχ ′′(ω) = λωτD

1 + ω2τ 2
D

[
1 + 2λ

3
(
1 + ω2τ 2

D

)
]
. (93)

Our results agree with Eqs. (92) and (93) for λ � 1 since
the second terms in between brackets in the right-hand sides
of these equations are small. Furthermore, the leading term
in these equations is exactly the mean field one [42]. The
second terms in the right-hand sides of Eqs. (92) and (93)
have similar behavior with the one found in Eq. (63) at low
λ values, therefore both results are in qualitative agreement
again for λ � 1.

At large λ and for gK > 1, a thermally activated process
sets in. A scaling law for the barrier occurring in the ex-
pression for the relaxation time of glass forming liquids was
suggested by Tarjus et al. [43] in the form

ln τ = ln τ0 + βE∞(ρ0)�{[βE∞(ρ0)]−1}, (94)

where τ0 is a pre-exponential factor, E∞(ρ0) is the energy
barrier away from the glass transition temperature Tg , and
�(z) is a monotonically decreasing function of z that scales
the effective activation energy related to the α process and
which decreases to unity at large z. This scaling law is valid
for isochoric situations, and was found in agreement with
numerical simulations. Of course, our present calculations are
unable to reproduce Eq. (94), mainly because of our premature
“truncation” of the BBGKY process generated by the Dean-
Kawasaki equation. Yet, from Eq. (74), we suggest that if such
a scaling law could be used for dielectric relaxation then we
may write E∞(ρ0) = Cλ, where C is a numerical factor that
depends of the kind of interaction considered in the liquid
phase, since our calculations are clearly not valid near Tg . In
the example treated here, C = 2, while in the framework of
other intermolecular interactions C might be different [44].

Finally, a word concerning the full dipole-dipole interac-
tion is necessary. On taking the interparticle distance along the
Z axis, the long-range interaction potential is, in our notation,

βUm(u, u′) = −2λ cos ϑ cos ϑ ′ + λ sin ϑ sin ϑ ′ cos(ϕ − ϕ′)

where ϕ and ϕ′ are the azimuthal angular coordinates of the
dipoles with respective orientations u and u′. This results in

the effective pair interaction potential

βV eff
2 (u, u′) = −2λ cos ϑ cos ϑ ′ + λ sin ϑ sin ϑ ′ cos(ϕ − ϕ′)

− 3λcos2ϑ − 3λcos2ϑ ′. (95)

This effective potential exhibits minima separated by po-
tential barriers. Therefore according to the Kramers theory, a
thermally activated process will exist in this case too. Hence,
our results will be qualitatively unchanged.

VIII. CONCLUSION

In this paper, we have derived an analytical formula for
the dynamic susceptibility of dipolar assemblies beyond the
mean field approximation. In order to accomplish this, we
have suggested a way of stopping the BBGKY-like pro-
cess generated by the Dean-Kawasaki formalism, suitably
adapted to rotational Brownian motion of long-range interact-
ing molecules by Cugliandolo et al. [33]. The main result of
our paper is that we could derive our formula (63) beyond
the mean field approximation, which allowed us in turn to
derive an analytical formula for the complex susceptibility
of interacting dipoles with Eq. (81). There it was shown that
if long-range intermolecular interactions are accounted for
beyond the mean field approximation then such interactions
may induce a thermally activated process in the dynamics
provided the Kirkwood correlation factor gK is larger than
unity. In the opposite situation gK < 1, no thermally activated
process arises and the position of the dipolar low-frequency
absorption peak is practically unaffected. Typical values for λ

for polar liquids at room temperature are around 10, while
for magnetic nanoparticles particles λ is between 5 and 8
(for Co and Fe nanoparticles, respectively), having diameter
around 20 nm (slightly above the critical size for single-
domain behavior), and goes down to values of at most 0.5
for particles having 8-nm diameter (Co and Fe have very
high bulk saturation magnetization), so that the various for-
mulas derived in this paper may be of some use in such
nanoparticle assemblies. The magnetocrystalline anisotropy
of the particles together with local demagnetizing effects has
been ignored here. Yet, we believe that the relevant relaxation
time would be of the form τ ≈ τ0 exp(σ + Cλ) for gK > 1
and τ ≈ τ0 exp(σ ) for gK < 1, where τ0 is a pre-exponential
factor, C is a numerical constant, and σ is the anisotropy
to thermal energy ratio. In particular, the above result for
gK > 1 validates the empirical procedure used in [20,24] for
the estimation of the relaxation time of magnetic nanoparticle
assemblies.

It may further be possible that in such assemblies λ as
defined in this paper would render values that are too small
to allow consistent contribution of dipole-dipole interactions.
Thus, if interparticle interactions are to play a role in the dy-
namic susceptibility beyond these sizes, another mechanism
than the dipole-dipole interaction has to be found in order to
explain experimental data.
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE COEFFICIENTS IN THE DIFFERENTIAL
RECURRENCE EQUATIONS (38)

Here we give explicit expressions for the coefficients that are involved in Eqs. (38). These are

q (0 0)
n m = −n(n + 1)

2

[
1 − λ

(2n − 1)(2n + 3)

]
− m(m + 1)

2

[
1 − λ

(2m − 1)(2m + 3)

]
,

q (−2 0)
n m = λ(n − 1)n(n + 1)

2(2n − 1)(2n + 1)
, q (2 0)

n m = − λn(n + 1)(n + 2)

2(2n + 1)(2n + 3)
,

q (0 −2)
n m = λ(m − 1)m(m + 1)

2(2m − 1)(2m + 1)
, q (0 2)

n m = − λm(m + 1)(m + 2)

2(2m + 1)(2m + 3)
,

q (−1 −1)
n m = ± λmn(m + n + 2)

2(2n + 1)(2m + 1)
, q (1 1)

n m = ∓λ(n + 1)(m + 1)(n + m)

2(2n + 1)(2m + 1)
,

q (1 −1)
n m = ±λm(n + 1)(m − n + 1)

2(2n + 1)(2m + 1)
, q (−1 1)

n m = ∓λn(m + 1)(m − n − 1)

2(2n + 1)(2m + 1)
,

p(±1 0)
n m = ∓ n(n + 1)

2(2n + 1)
, p(0 ±1)

nm = ∓ m(m + 1)

2(2m + 1)
.
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