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Dynamical and spatial correlations of eigenfunctions as well as energy level correlations in the Anderson
model on random regular graphs (RRG) are studied. We consider the critical point of the Anderson transition
and the delocalized phase. In the delocalized phase near the transition point, the observables show a broad
critical regime for system sizes N below the correlation volume Nξ and then cross over to the ergodic behavior.
Eigenstate correlations allow us to visualize the correlation length ξ ∼ ln Nξ that controls the finite-size scaling
near the transition. The critical-to-ergodic crossover is very peculiar, since the critical point is similar to the
localized phase, whereas the ergodic regime is characterized by very fast “diffusion,” which is similar to
the ballistic transport. In particular, the return probability crosses over from a logarithmically slow variation
with time in the critical regime to an exponentially fast decay in the ergodic regime. Spectral correlations
in the delocalized phase near the transition are characterized by level number variance �2(ω) crossing over,
with increasing frequency ω, from ergodic behavior �2 = (2/π 2) ln ω/� to �2 ∝ ω2 at ωc ∼ (NNξ )−1/2 and
finally to Poissonian behavior �2 = ω/� at ωξ ∼ N−1

ξ . We find a perfect agreement between results of exact
diagonalization and those resulting from the solution of the self-consistency equation obtained within the
saddle-point analysis of the effective supersymmetric action. We show that the RRG model can be viewed as
an intricate d → ∞ limit of the Anderson model in d spatial dimensions.

DOI: 10.1103/PhysRevB.99.024202

I. INTRODUCTION

Anderson localization [1] and, in particular, transitions
between localized and delocalized phases [2] belong to central
themes of the condensed matter physics. In the conventional
formulation, the Anderson localization refers to a problem
of noninteracting quantum particles subjected to a random
potential in d dimensions. Statistical properties of single-
particle eigenfunctions and energy levels in a finite system at
Anderson-transition critical points as well as in delocalized
and localized regimes have been extensively studied, see
Refs. [2,3] for reviews.

In recent years, the problem of many-body localization
(MBL) in interacting disordered systems at nonzero tem-
perature [4,5] has attracted a great deal of attention. This
interest is motivated by relevance of the MBL problem to
the low-temperature transport properties of a very broad class
of quantum systems as well as by its close connection to the
very general question of ergodicity in complex systems. The
prediction of the MBL transition [4,5] has been supported by a
number of subsequent analytical and numerical works, see, in
particular, Refs. [6–15]. Experimentally, the MBL transition
and the associated physics was studied in systems of cold
atoms and ions in optical traps [16–22], spin defects in a solid
state [23–26], and superconducting qubits [27], as well as in
InO films [28–30].

It was proposed in Ref. [31] in the context of the analysis
of quasiparticle decay in a quantum dot that the many-body

physics can be approximated by a model of a single quantum
particle moving on a Bethe lattice. Extensions of this idea
of a relation between the quantum many-body dynamics and
the single-particle physics on treelike graphs have been very
useful for analytical studies of MBL problems. The treelike
graphs with fixed coordination number (and without bound-
ary) are known as random regular graphs (RRG). As was
shown recently [32], there is a particularly close connection
between the Anderson model on RRG and the MBL transition
in a model with long-range interaction (decaying as a power-
law of distance). The many-body delocalization by power-law
interaction has been earlier studied in a number of theoreti-
cal works [33–36]. Experimentally, the long-range-interaction
model is relevant for a variety of systems, including localized
electron states, spin defects, superconducting circuits, trapped
ions, and others.

A close relative of the Anderson model on RRG is the
sparse random matrix (SRM) ensemble (also known as Erdös-
Rényi graphs in mathematical literature) studied analytically
in Refs. [37–39]. The difference between the two models is
that the coordination number is strictly fixed in RRG but can
fluctuate in SRM. These fluctuations are not important for the
localization-related physics. The key property of the RRG and
SRM ensembles is that they represent treelike models without
boundary (and with loops of typical size ∼ ln N , where N is
the number of sites).

It was shown in Refs. [37–39] that the delocalized phase on
the infinite cluster of the SRM model has ergodic properties
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in the large-N limit. More specifically, it was found that (i)
the level statistics has the Wigner-Dyson form and (ii) the
inverse participation ratio (IPR) P2 =∑i |ψi |4, with ψi being
the amplitude of a wave function ψ on site i, scales with
the system volume as 1/N . The derivation of these results
was based on a certain functional-integral representation of
the correlation functions of the model in the framework
of the supersymmetry formalism. In the large-N limit, the
integral can be evaluated by the saddle-point method. The
corresponding saddle-point equation has a form analogous
to the self-consistency equations obtained for the Anderson
model [40,41] and the σ model [42–47] on an infinite Bethe
lattice. On the delocalized side of the transition, the symme-
try is spontaneously broken, which results in a manifold of
saddle points [37–39]. Integration over this manifold yields
the ergodic properties of the level and eigenfunction statistics
quoted above.

More recently, there was a resurgence of interest to the
Anderson models on RRG and on related treelike graphs,
largely in view of their relation to the MBL problems. The
works in Refs. [48,49], which addressed the problem numer-
ically, questioned the ergodicity of the delocalized phase in
the RRG model as defined by the large-N limit of the energy-
level statistics and of the IPR scaling. Specifically, Ref. [48]
found that a part of the delocalized phase is nonergodic,
while the authors of Ref. [49] came to the conclusion that
the whole delocalized phase is nonergodic. These papers
stimulated an intensive numerical research on properties of
the delocalized phase in the Anderson model on RRG and
related graphs [50–52]. A thorough numerical study of the gap
ratio characterizing the level statistics and of the IPR scaling
on the delocalized side of the Anderson transition on RRG
performed in Ref. [50] confirmed the analytical predictions of
Refs. [37–39]. Specifically, the analysis of Ref. [50] reveals a
crossover from relatively small (N � Nξ ) to large (N � Nξ )
systems, where Nξ is the correlation volume. The values of
Nξ obtained from numerical simulations agree well with the
analytical prediction ln Nξ ∼ (Wc − W )−1/2 that implies an
exponential divergence of the correlation volume at the tran-
sition point. For N � Nξ , the system exhibits a flow towards
the Anderson-transition fixed point, which has RRG prop-
erties very similar to the localized phase. When the system
volume N exceeds Nξ , the direction of flow is reversed and the
system approaches its N → ∞ ergodic behavior. The over-
all evolution with N is thus nonmonotonic. In combination
with exponentially large values of the correlation volume Nξ ,
this makes the finite-size analysis very nontrivial. The main
conclusions of Ref. [50] have been supported by subsequent
studies of the IPR scaling in the SRM-like model [51] and of
the level number variance in the RRG model [52].

Before we turn to the goals of the present work, it is worth
emphasizing the following important point. When discussing
the eigenstate ergodicity and its manifestations in the energy
level and eigenfunction statistics, one should distinguish the
RRG and similar models (that are locally treelike but do not
have a boundary) from models on a finite Bethe lattice (which
is a tree and thus has a boundary). A dramatic difference be-
tween two types of models was demonstrated in Refs. [53,54]
(see also a recent preprint Ref. [55]). Contrary to RRG model,
for which delocalized states are ergodic, eigenstates on a

finite Bethe lattice are characterized by multifractality with
exponents that depend continuously on the position on the
lattice and on the disorder strength. In this paper, we focus
entirely on the RRG model.

The central goal of this work is to explore systematically
correlations between eigenstates of the Anderson model on
RRG, at criticality and on the delocalized side of the tran-
sition. More specifically, (i) we study spatial correlations
between amplitudes of one and the same eigenfunction. We
will show that this correlation function permits us to visualize
directly the correlation length ξ ∼ ln Nξ . (ii) We explore dy-
namical correlations, i.e., those between eigenstates separated
by an energy difference ω, at the same and at different spatial
points. (iii) As a closely related dynamical observable, we
analyze the time dependence of the return probability to a
given spatial point. (iv) We study the level number variance
that characterizes the energy level statistics in the whole range
of frequencies. This set of correlation functions is of central
importance for understanding the physics of the delocalized
phase and of the critical regime on RRG.

To explore these correlations functions for large matrix
sizes N , we use two complementary approaches. First, we per-
form exact diagonalization of the Anderson model on RRG.
Second, we use the saddle-point approximation mentioned
above, in combination with analytical and numerical solutions
of the resulting saddle-point equation. We find a perfect agree-
ment between the two approaches, which serves as an addi-
tional demonstration of validity of the saddle-point solution
of the problem. This is obviously an important conclusion—
in particular, since the derivation of the ergodicity of the
delocalized phase is based on the saddle-point analysis.

The research program that we pursue in this paper is largely
parallel to the one that has been earlier implemented for sys-
tems of finite dimensionality d, with a particular focus on d �
4, see Refs. [2,3] and references therein. It was argued long
ago [56,57] that the Anderson transition on treelike graphs
can be viewed as the d → ∞ limit of the “conventional”
Anderson transition and that this limit is very peculiar. This
peculiarity manifests itself, in particular, in the scaling of the
correlation volume Nξ that determines the properties of the
order-parameter function. Specifically, Nξ scales as a power
law of the correlation length for any finite d but exponentially
on treelike graphs. One of the fundamentally important im-
plications of this fact is the infinite value of the upper critical
dimension for the Anderson localization transition [56,57]. In
the present work, we use the connection to the d → ∞ limit
to better understand the physics of eigenstate and energy level
correlations in the Anderson model on RRG. We find that the
results on RRG, indeed, may be viewed as matching those at
large d but with a highly singular character of the d → ∞
limit.

The structure of the article is as follows. In Sec. II, we
define the microscopic model to be studied (Anderson model
on RRG) and also remind the reader about the equivalent
supersymmetric field-theoretical model that is obtained after
the disorder averaging. In Sec. III, we explore spatial and
dynamical correlations between eigenstates as well as the
time-dependent return probability. In Sec. IV, an analysis
of energy level correlations is performed. Our findings are
summarized in Sec. V.
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II. MODEL

We study noninteracting spinless fermion hopping over a
random regular graph (RRG) with connectivity p = m + 1 in
a potential disorder,

H = t
∑
〈i,j〉

(c†i cj + c
†
j ci ) +

∑
i=1

εic
†
i ci , (1)

where the sum is over the nearest-neighbor sites of the RRG.
The energies εi are independent random variables sampled
from a uniform distribution on [−W/2,W/2]; the hopping
amplitude t will be set to unity. The statistical properties
of observables (such as disorder-averaged products of Green
functions) in this model can be expressed in terms of certain
functional integrals, either in supersymmetric [37,41] or in
the replicated version [58–60]. These approaches are largely
equivalent (see, for example, Ref. [61]); we will use the
supersymmetric formulation in what follows.

The model, defined by Eq. (1), has two sources of dis-
order: configurational one (randomness in the structure of
the underlying graph) and fluctuations of on-site energies
εi . With the structure of the graph being fixed, averaging
over εi can be performed exactly. Various disorder-averaged
properties of a disordered system can be expressed in terms
of averaged products of Green functions. If one wants to
average a single Green function (like for the calculation of the
averaged density of states), one introduces a four-component
supervector attached to each node i of the graph,

�i = (S (1)
i , S

(2)
i , χi, χ

∗
i

)T
, �

†
i = (S (1)

i , S
(2)
i , χ∗

i ,−χi

)
,

(2)
where S stays for real commuting and χ for anticommuting
variables. For the analysis of localization-related properties,
averaged products of retarded and advanced Green functions
should be considered. This requires doubling of the size of the
supervector, �i = (�i,1, �i,2). Here, �i,1 corresponds to the
retarded and �i,2 to the advanced subspace; each of them is a
4-supervector with a structure given by Eq. (2).

In general, averaged products of retarded and advanced
Green functions (with energies E + ω/2 and E − ω/2, re-
spectively) can be evaluated as superintegrals of the form [41]

∫ ∏
k

[d�k]e−L(�)U (�), (3)

where the preexponential factor U (�) represents the quantity
in question and

[d�k] = dS
(1)
k,1dS

(2)
k,1dχ∗

k,1dχk,1dS
(1)
k,2dS

(2)
k,2dχ∗

k,2dχk,2

is the supervector integration measure. The action L(�) is
given by

e−L(�) =
∫ ∏

i

dεiγ (εi )e
i
2 �

†
i �̂(E−εi )�i+ iω

4 �
†
i �i

∏
〈i,j〉

e−i�
†
i �j ,

(4)

where �̂ is a diagonal supermatrix with the first four com-
ponents (retarded sector) equal to +1 and the last four com-
ponents (advanced sector) equal to −1. Further, γ (ε) is the

distribution of on-site random potentials; for the box distri-
bution γ (ε) = 1

W
θ ( W

2 − |ε|). In the last factor in Eq. (4), the
product goes over pairs 〈i, j 〉 of nearest-neighbor sites.

It is useful to consider also an n-orbital generalization of
the problem (with n � 1), which can be viewed as describing
an electron hoping between metallic granules located at the
nodes of the same RRG. The Hamiltonian of such a granular
system reads

H =
∑
〈i,j〉

n∑
p,q=1

(
t
pq

ij c
†
ipcjq + H.c.

)

+
∑

i

n∑
p,q=1

(
ε

pq

i c
†
ipciq + H.c.

)
. (5)

For large n, the n-orbital problem can be mapped onto a su-
persymmetric σ model [42–45,47]. While the derivation of the
σ model becomes simpler under the assumption that t

pq

ij and
ε

pq

i are Gaussian-distributed random variables, the mapping
applies under much more general conditions. Physically, the
underlying condition is the ergodicity on the scale of a single
granule. The action of the σ model reads

S[Q] = −J
∑
〈i,j〉

Str(Qi − Qj )2 + πη

2δ0

∑
i

Str(�̂Qi ). (6)

Here, Qi are 8 × 8 supermatrices satisfying the condition
Q2 = 1, the symbol Str denotes the supertrace (defined as
trace of the boson-boson block minus trace of the fermi-fermi
block), and δ0 = ν−1 = W/n is the mean level spacing on
a granule. The dimensionless coupling constant J is given
by J = (t/δ0)2, where t is the characteristic amplitude of
the hopping, t2 = 〈|tpq

ij |2〉. If all amplitudes are real, the
microscopic model (5) belongs to the orthogonal (AI) sym-
metry class, determining the corresponding symmetry of the
σ model. When the time-reversal symmetry is broken (e.g.,
the hopping amplitudes t

pq

ij are complex with random phases),
the symmetry class becomes unitary (A). The physics that
we discuss in this paper is essentially the same in both
cases. Since the unitary-symmetry case is somewhat simpler
technically, we will focus on it below for the sake of trans-
parency of exposition. In this case, Qi in Eq. (6) become
4 × 4 supermatrices, and the action (6) acquires an additional
overall factor of two.

While the n = 1 Anderson model and its n � 1 general-
ization (σ model) turn out to exhibit the same gross features,
analytical calculations are usually somewhat simpler within
the σ model. The investigation of the model with n = 1 on an
infinite Bethe lattice was pioneered by Abou-Chacra et al.,
Ref. [40]; its solution in the framework of supersymmetry
approach was obtained in Ref. [41]. The σ model (i.e., the
large-n model) on an infinite Bethe lattice was solved via
the supersymmetry approach in Refs. [42–45,47]. It is worth
stressing that observables that can be defined in the delocal-
ized phase on an infinite Bethe lattice are finite-frequency
correlation functions. This corresponds to taking the limit
N → ∞ at fixed nonzero frequency (energy separation) ω.
This limit is exactly opposite to what one is interested in
when studying correlations in a single eigenstate (ω = 0) or
between nearby-in-energy eigenstates (small ω) on a finite
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lattice. In the latter case, the boundary conditions are crucially
important, as has been already emphasized in Sec. I: the RRG
studied in this paper is essentially different from a finite Bethe
lattice.

Our analytical treatment of the n = 1 model defined by
Eq. (1) will be based on the supersymmetry approach, Eqs. (3)
and (4). Upon averaging over configurational disorder, one
obtains an action that can be treated, in the limit of a large
system (N � 1) via the saddle-point approximation. As dis-
cussed in more detail in Sec. III, the resulting saddle-point
equation is equivalent to the self-consistency equation for the
same (n = 1) model defined on an infinite Bethe lattice. This
is a very important property which is a manifestation of the
fact that, with probability unity, RRG has locally a structure
of a tree with fixed connectivity p in the vicinity of any of its
sites. [The mathematically accurate statement is that, at large
N , a 1 − o(1) portion of RRG nodes (i.e., almost all nodes)
have their κ lnm N -neighbourhood loopless for κ < 1/2.] In a
similar way, an n-orbital model (with n � 1) on RRG, Eq. (5),
is described by the σ model, Eq. (6), which leads, in the limit
N → ∞, to the corresponding Bethe-lattice self-consistency
equation. We emphasize once more the crucial difference
between RRG and a finite Bethe lattice: investigation of the
eigenfunction statistics in the latter case leads to a recurrence
(rather than self-consistency) relation, see Refs. [53,54], re-
sulting in multifractality of wave functions.

III. WAVE-FUNCTION CORRELATIONS

A. From finite-d models to RRG

One of the most remarkable features of Anderson transi-
tions in d dimensions is multifractal spatial statistics of critical
wave functions. We begin this section by reminding the reader
of the basic results on eigenfunction statistics for finite d; after
this, we will return to the case of RRG.

We consider first the scaling of the average inverse par-
ticipation ratio (IPR) of eigenstates, P2 = 〈∫ ddr|ψ (r )|4〉,
with the (linear) system size L in the large-L limit. Here,
the angular brackets denote averaging over the ensemble of
random Hamiltonians. It is well known that three different
scaling laws exist depending on the phase of the system [2]:

P2 ∝
⎧⎨
⎩

L−d , metallic;
L−d−�2 , critical;
L0, localized.

(7)

The second line of Eq. (7) describes the fractal scaling at
the critical point of the Anderson transition characterized by
an anomalous dimension �2 (which depends on the spatial
dimensionality d and satisfies −d < �2 < 0).

More generally, one can study correlations of the same
wave function at different spatial points defined formally as

αE (r1, r2) = �

〈∑
k

|ψk (r1)|2|ψk (r2)|2δ(E − Ek )

〉
. (8)

Here, ψk are eigenstates and Ek are the corresponding en-
ergy levels, E is the energy at which the statistics is stud-
ied, � = 1/ν(E)N is the mean level spacing, and ν(E) =
N−1〈Tr δ(E − Ĥ )〉 is the density of states. For coinciding

points, this correlation function reduces to the IPR, P2 =∫
ddrαE (r, r ) ∼ LdαE (r, r ). At finite spatial separation, a

wave function in the delocalized phase near the Anderson
transition exhibits strong self-correlations up to the correlation
length ξ ,

L2dαE (r1, r2) ∼ (|r1 − r2|/ min(L, ξ ))�2 , (9)

for |r1 − r2| < ξ . At the Anderson-transition point, the cor-
relation length ξ diverges, and the critical correlations (9)
extend over the whole system. If the system is slightly off
the Anderson-transition point (ξ finite but large), it remains
effectively critical as long as L � ξ .

Further, we recall the finite-d properties of correlations
of different (but close in energy) wave functions. The corre-
sponding correlation function is formally defined as

βE (r1, r2, ω)

= �2R−1
E (ω)

〈∑
k �=l

|ψk (r1)ψl (r2)|2δ
(

E − ω

2
− Ek

)

× δ

(
E + ω

2
− El

)〉
, (10)

where ω is the energy difference between the states, and we
have introduced the level correlation function

RE (ω) = 1

ν2(E)
〈ν(E − ω/2)ν(E + ω/2)〉. (11)

The correlation function (10) exhibits the scaling

L2dβE (r1, r2, ω) ∼ (|r1 − r2|/ min(Lω, ξ ))�2 (12)

for |r1 − r2| < min(Lω, ξ ). Here, Lω ∼ (ων)−1/d is the length
scale associated with the frequency ω (or, equivalently, with
the time ∼ω−1) at criticality. The exponent �2 determines also
the scaling of the diffusion propagator at criticality [62].

One can extend the above analysis to arbitrary moments
of the wave function, Pq = 〈∫ ddr|ψ (r )|2q〉, whose scaling at
criticality defines a spectrum of multifractal exponents �q .
It was shown that the multifractality can be used to devise
an efficient finite-size scaling procedure [63,64]. Recently,
the multifractal properties of the critical wave functions have
attracted additional attention in view of their importance for
interaction effects [65–72].

After this reminder, we turn to the analysis of the eigen-
function statistics on RRG. First, we will formulate con-
jectures for the RRG correlation functions based on an ex-
trapolation of the finite-d results to d → ∞. Then we will
perform their accurate derivation in the framework of the
supersymmetric field theory, which will support these con-
jectures and also make them more precise. Finally, we will
corroborate the analytical results by exact-diagonalization
numerics. Our main focus will be on the system at the critical
point as well as in the delocalized phase not too far from the
transition.

To understand what happens with the multifractal exponent
�2 in the extrapolation to RRG (d → ∞), we note that the
scaling of IPR at criticality is on RRG the same as in the
localized phase, P2 ∼ 1. The fact the IPR remains of order
of unity when the system approaches the critical point from
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the localized side is known for n � 1 [44] and n = 1 [41]
models on an infinite Bethe lattice. Since boundary conditions
do not matter for the IPR of localized wave functions [73],
this also applies to the localized phase on RRG. By virtue of
continuity, it follows that P2 ∼ 1 holds also at criticality on
RRG. Comparing with Eq. (7), we see that the RRG behavior
of IPR can be interpreted as the d → ∞ limit of the finite-d
result with �2(d → ∞) → −d, which corresponds to the
strongest possible multifractality.

Now we translate Eq. (9) to RRG. First, we use the fact
that the factor Ld is nothing but the system volume and thus
becomes the RRG number of sites N . Second, we use the limit
�2 → −d for the multifractal exponent. Finally, we replace
the factors of the type rd , which represent a number of sites
within a distance r from a given site, by their RRG counterpart
mr . This yields the following conjecture for the scaling of the
self-correlation function (9) on RRG:

αE (r1, r2) ∼
{
N−2mξ−r12 , metallic, r12 < ξ ;
N−1m−r12 , critical.

(13)

Here, r12 is the distance (the length of the shortest path)
between the two points r1 and r2 on RRG. Proceeding in
the same way with the correlation function of two different
eigenfunctions, Eq. (12), we obtain its expected behavior on
RRG:

βE (r1, r2, ω) ∼
{
N−2mξ−r12 , metallic, r12 < ξ ;
N−2ω−1m−r12 , critical.

(14)

In what follows, we will derive more rigorously these scal-
ing formulas [including also subleading factors missing in
Eqs. (13) and (14)] and will compare the analytical results
(combined with numerical solution of the saddle-point equa-
tion) with those of the exact diagonalization.

B. Field-theoretical approach

1. Supersymmetric field theory for the n = 1 Anderson
model on RRG

To proceed with the analytical derivation, we use the
approach based on supersymmetric field theory. Such a deriva-
tion was performed with applications to the level statistics
and to the IPR scaling in the SRM model, in Refs. [37,38].
We will follow these works (with minor modification re-
lated to a difference between the RRG and SRM ensembles)
and generalize the results to other eigenfunction correla-
tions. It is worth pointing out that a closely related saddle-
point analysis was performed in the replica formalism for
the level statistics on RRG in Refs. [52,59,60]. The self-
consistency equations representing the saddle-pont condition,
as obtained in the supersymmetry and replica approaches, are
equivalent.

In order to obtain the partition function of the theory,
Eqs. (3) and (4), averaged over the RRG ensemble, we
consider an ensemble of N × N Hamiltonians with the fol-
lowing joint distribution of diagonal Hii and off-diagonal

Hij = Hji = Aij tij matrix elements:

P ({Hii}, {Aij }, {tij })

=
∏

i

γ (Hii )
∏
i<j

[(
1 − p

N

)
δ(Aij ) + p

N
δ(Aij − 1)

]

×
∏

i

δ

⎛
⎝∑

j �=i

Aij − p

⎞
⎠∏

i<j

h(tij ). (15)

Here, Aij is the adjacency matrix. For the purpose of gener-
ality (and for simplifying a comparison with Refs. [37,38]),
we have included in Eq. (15) an arbitrary distribution h(t )
of nonzero hopping matrix elements. For an RRG model
with fixed hoppings t = 1, as defined in Sec. II, we have
h(t ) = δ(t − 1). We will consider the generalized RRG en-
semble (with random nonzero hoppings) in the present section
and will return to the “standard” version with t ≡ 1 starting
from Sec. III C. In comparison with Refs. [37,38], where the
SRM ensemble was considered, we have done the following
modifications. First, we have included the randomness in local
potentials characterized by the distribution γ (ε). Second, we
have imposed a condition of fixed connectivity, which is equal
to p not only in average (as in the SRM model) but also
exactly for every vertex.

Now we introduce the supersymmetric partition function,
as in Eqs. (3) and (4). Before averaging, the action reads

LH (�) = − i

2

∑
ij

�
†
i �̂
{[

E +
(ω

2
+ iη

)
�̂
]
δij − Hij

}
�j ,

(16)

where η > 0 is an infinitesimal imaginary part of the fre-
quency. To get the partition function, we perform the
averaging of the weight e−LH (�) over the distribution (15).
This generates the required ensemble of tight-binding Hamil-
tonians on RRG, with random diagonal and hopping matrix
elements. In order to decouple the integrations over Aij , we
represent δ-functions imposing the condition of fixed connec-
tivity p in Eq. (15) as integrals over auxilary variables xi , in
analogy with the replica calculation in Ref. [59]. The averaged
partition function reads, in close analogy with Refs. [37,38],

〈Z〉 =
∫ ∏

i

d�i

dxi

2π
eipxi exp

{∑
i

[
i

2
�

†
i �̂(E − JiK̂ )�i

+ i

2

(ω

2
+ iη

)
�

†
i �i + ln γ̃

(
1

2
�

†
i �̂�i

)]

+ p

2N

∑
i �=j

[e−i(xi+xj )h̃(�†
i �̂�j ) − 1]

⎫⎬
⎭. (17)

Here, the function γ̃ (z) is the Fourier transform of the distri-
bution γ (ε) of energies, γ̃ (z) = ∫ dε e−iεzγ (ε). Further, h̃(z)
is the Fourier transform of the distribution h(t ) of hoppings;
for an RRG model with fixed hoppings t = 1, we have h̃(z) =
e−iz. Finally, Ji in Eq. (17) are source fields; variation of
〈Z〉 with respect to these fields (and then setting them to
zero) allows one to generate the observables of interest. The
corresponding matrix K̂ is a diagonal matrix with elements
equal to +1 for bosons and −1 for fermions.
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The next step is the decoupling of integrations over vari-
ables �i associated with different sites. This is done by means
of a functional generalization of the Hubbard-Stratonovich
transformation:

exp

⎡
⎣ p

2N

∑
i �=j

e−i(xi+xj )h̃(�†
i �̂�j )

⎤
⎦

=
∫

Dg exp

[
−Np

2

∫
d�d� ′g(�)C(�,� ′)

+p
∑

i

e−ixi g(�i )

]
, (18)

where C(�,� ′) is a kernel of an integral operator inverse
to that with the kernel h̃(�†�̂�). The integration

∫
Dg runs

over functions of a supervector g(�). Substituting this in
Eq. (17) and performing integrations over �i , we obtain the
expression for the physical observables in terms of an integral
over functions g(�):

〈O〉 =
∫

Dg UO(g)e−NL(g). (19)

Here the action is (up to the factor N )

L(g) = m + 1

2

∫
d�d� ′g(�)C(�,� ′)g(� ′)

− ln
∫

d� F (m+1)
g (�), (20)

where we introduced m = p − 1 and

F (s)
g (�) = exp

[
i

2
E�†�̂� + i

2

(ω

2
+ iη

)
�†�

]

× γ̃

(
1

2
�†�̂�

)
gs (�). (21)

This representation is very similar to the one derived for
the SRM ensemble in Refs. [37,38], see, e.g., Eq. (30) of
Ref. [37]. The only difference is that the function g(�) enters
the right-hand side of Eq. (21) in the form of a factor gs (�),
while the corresponding factor in Refs. [37,38] was epg(�).
This reflects a difference between the two ensembles: the
coordination number is fixed for RRG and fluctuates for SRM.
In the replica formulation, an effective action analogous to
Eqs. (20) and (21) was recently derived in Refs. [52,59,60],
see, in particular, Eqs. (10)–(12) in Ref. [59] (where the
density of states in the “clean” RRG problem was studied)
and Eq. (27) in the Supporting Material to Ref. [60] which
addressed the level statistics in the RRG model at high fre-
quencies.

It is worth emphasizing that the representation given by
Eqs. (19)–(21) is exact for all values of N . From now on,
we will use the largeness of N , which justifies the saddle-
point treatment, thus allowing us to get explicit analytical
predictions.

2. Saddle-point treatment of the field theory

It is crucially important that the action in Eq. (19) is
proportional to N . In the limit of large N , the integral in

Eq. (19) can be thus evaluated in the saddle-point approxi-
mation. The saddle-point configuration g0(�) of the action is
determined by varying Eq. (20) with respect to g, which yields
the equation

g0(�) =
∫

d� h̃(�†�̂�)F (m)
g0

(�)∫
d� F

(m+1)
g0 (�)

. (22)

It is useful to notice again an analogy between this equation
and saddle-point equation obtained in Refs. [37,38,52,59,60];
see, in particular, Eq. (31) of Ref. [37], Eq. (16) in Ref. [59],
and Eq. (31) in Supporting Material to Ref. [60].

For symmetry reasons, the solution of Eq. (22) is a function
of two invariants:

g0(�) = g0(x, y); x = �†�, y = �†�̂�. (23)

Because of the supersymmetry, the denominator in Eq. (22) is
thus equal to unity, so that the saddle-point equation reduces
to

g0(�) =
∫

d� h̃(�†�̂�)F (m)
g0

(�). (24)

We remind the reader that the function h̃(z) becomes h(z) =
e−iz for the model with nonrandom hoppings, as defined in
Eq. (1).

Equation (24) is identical to the self-consistency equation
describing the model on an infinite Bethe lattice, as derived
within the supersymmetry formalism in Ref. [41]. Equation
(24) can be reduced, by using Eq. (23), to a nonlinear integral
equation for g0(x, y). It was further shown in Ref. [41] that,
for the case of a purely imaginary frequency (ω = 0), the
function g0(x, y) has an important physical interpretation.
Specifically, it is the Fourier-Laplace transform of the joint
probability distribution f (m)(u′, u′′) of real and imaginary
parts of local Green function,

g0(x, y) =
∫

du′
∫

du′′f (m)(u′, u′′)e
i
2 (u′y+iu′′x), (25)

where G
(m)
A (0, 0; E) = 〈0|(E − H − iη)−1|0〉 = u′ + iu′′

and a slightly modified lattice is considered, with the site
0 having only m neighbors. When rewritten in terms of
f (m)(u′, u′′), Eq. (24) becomes the self-consistency equation
of Abou-Chacra et al. [40].

A closely related object is the function g
(m+1)
0 (�), which is

expressed via g0(�) as

g
(m+1)
0 (�) =

∫
d� h̃(�†�̂�)F (m+1)

g0
(�). (26)

Again, for symmetry reason, it depends only on two invari-
ants, g

(m+1)
0 (�) = g

(m+1)
0 (x, y). The function g

(m+1)
0 (x, y) is

the Fourier-Laplace transform of the joint probability distribu-
tion f (m+1)(u′, u′′) of real and imaginary parts of local Green
function at any site of the undeformed Bethe lattice.

An equation similar to Eq. (24) arises in the study of
the wave-function moments on a finite Bethe lattice (Cayley
tree) [53,54]. A crucial difference is that Eq. (24) is a self-
consistency equation, while on a finite Cayley tree different
functions enter the left- and right-hand side of this equation,
rendering it a recursive one. (Note that for a finite Cayley
tree it is crucially important to preserve the appropriate order
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of limits by setting η → 0 at fixed system size determining
the number of recursion steps.) This difference leads to a
dramatic difference in the properties of delocalized wave
functions: multifractality on a finite Cayley tree and ergod-
icity on the RRG. As discussed below, the ergodicity results
from the spontaneous symmetry breaking in the delocalized
phase, which is manifest in the structure of the solution of
the self-consistency equation giving rise to a manifold of
saddle points. The distinction between the recursion and the
self-consistency equation (and thus between finite Cayley tree
and RRG) has not always been appreciated in the literature
[74–76], which led to an incorrect conclusion of existence of
a nonergodic delocalized phase on the RRG.

The applicability of the saddle-point method at N � 1,
which allows one to reduce the evaluation of correlation
functions to the solution of the self-consistency equation and
calculation of integrals involving the saddle-point function,
is a key to the analytical progress for the RRG model as
shown below. We will use analytical results concerning the
self-consistent solution already known from previous studies
of models on an infinite Bethe lattice and some of their gen-
eralizations. Furthermore, the self-consistency equation can
be efficiently solved numerically via the pool method (pop-
ulation dynamics), which complements the purely analytical
approach; we will employ this below for various observables
of interest.

Evaluating the integral by the saddle-point method, it is
crucially important to take into account that the Anderson
localization transition is a spontaneous symmetry breaking
phenomenon with g0(x, y) being the functional order param-
eter. The saddle-point equation is invariant, at ω = 0 and η →
+0, under transformations g(�) → g(T̂ �) with T̂ �̂T̂ = �̂,

where T̂ is the matrix that rotates the conjugate vector �†.
The proper choice of the manifold of matrices T̂ is a rather
nontrivial question that has been extensively discussed in the
literature in the context of derivation of the supersymmetric
σ model; see, in particular, Refs. [3,77,78]. In brief, the
manifold is defined by T̂ †L̂T̂ = L̂, where T̂ † is the Hermitian
conjugate of T̂ , and L̂ is the diagonal matrix equal to a unit
matrix in the fermionic subspace and to �̂ in the bosonic

subspace. The matrix T̂ introduced above is related to T̂ † via

T̂ = �̂L̂T̂ †�̂L̂.
In the localized phase, the symmetry of the saddle point

solution is that of the equation, g0(x, y) = g0(y). More ac-
curately, the dependence of the solution g0(x, y) of the self-
consistency equation on the variable x appears only on the
scale ∼η−1 due to the term with η in the action that explicitly
breaks the symmetry. Thus, in the localized phase, the integral
(19) is determined by a single saddle point g0. This remains
true at the critical point as well. On the other hand, in the
delocalized phase, the dependence on the variable x persists,
in the limit of ω, η → 0, signifying spontaneous symmetry
breaking. As a result, a manifold of saddle points emerges,
parametrized by matrices T̂ :

g0T (�) = g0(�†T̂ T̂ �, �†�̂�). (27)

The integral (19) in this situation becomes an integral over
the manifold of saddle points, or, equivalently, the manifold

of T̂ matrices. Specifically, it is important to integrate over
the whole manifold when the frequency ω (which breaks the
symmetry with respect to rotations by matrices T̂ generating
the manifold) is small. This is, in particular, the case for
auto-correlation of an eigenfunction (ω = 0), as well for
correlations of sufficiently close in energy eigenfunctions and
energy levels. On the other hand, at sufficiently high energies
integrals are dominated by the single saddle point g0.

In the delocalized phase, the dependence of the function
g0(x, y) on the variable x appears on a scale x ∼ Nξ which
diverges exponentially when the system approaches the tran-
sition point (critical disorder) Wc:

ln Nξ ∼ (Wc − W )−1/2. (28)

The notation Nξ emphasizes that this scale has a meaning
of the correlation volume associated with the correlation
length ξ :

Nξ ∼ mξ . (29)

3. σ model (n-orbital model with large n) on RRG

Let us now turn to the case of the n-orbital model with n � 1,
which is described by the supermatrix σ -model action (6).
In full analogy with the above discussion of the supervector
theory for n = 1, one can perform the structural averaging
over the RRG ensemble, which reduces theory (6) to an inte-
gral over functions F (Q). The corresponding self-consistency
equation has the form

g0(Q) =
∫

e
− Str[−2J (Q−Q′ )2+ πη

δ0
�Q′]

gm
0 (Q′)DQ′ (30)

and is identical to the self-consistency equation for the σ

model on an infinite Bethe lattice [42–47]. In the localized
phase (and at the critical point), the solution (in the limit η →
0) is g0(Q) = 1, which corresponds to preserved symmetry.
In the delocalized phase, the symmetry is broken, and the
solution is a nontrivial function of Q. As a result a manifold of
saddle points arises parametrized by matrices T̂ , in full anal-
ogy with the n = 1 model: gT (Q) = g0(T̂ −1QT̂ ). In analogy
with the supervector (n = 1) formulation, the function g0(Q)
depends, for symmetry reason, only on two scalar invariants
(eigenvalues of the boson-boson block of Q), λ1 and λ2. Of
central importance is dependence on λ1, which appears on the
scale ∼η−1 in the localized phase and on the emerging scale
Nξ in the delocalized phase—again, in perfect correspondence
to the n = 1 model. Furthermore, the correlation volume Nξ

shows the same exponential critical behavior (28).

4. Correlation volume

Equation (28) for the critical behavior of the correlation
volume Nξ was analytically derived in Refs. [43,45] for the
σ model and in Ref. [41] for the n = 1 model. Numerical
simulations by means of exact diagonalization and of the
pool method in several works [50,51,55,79] yielded results
consistent with Eq. (28).

Equation (28) was recently questioned in Ref. [76] where
analytical and numerical arguments in favor of a scaling
ln Nξ ∼ (Wc − W )−1 (i.e., with a critical index 1 instead of
1/2) were put forward. In our view, these arguments are
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incorrect. On the analytical side, the authors of Ref. [76] rely
on properties of the solution of the recursive relation, failing
to differentiate it from the self-consistency equation. (This
major deficiency of Ref. [76] has been already mentioned in
Sec. III B 2.) As a result, they reproduce the fractal power-law
distribution of local density of states (LDOS) characterizing a
finite Cayley tree (as found earlier Ref. [53]), which is differ-
ent from the one characterizing RRG or an infinite Cayley tree
at finite broadening (where the symmetry is spontaneously
broken) [80]. On the numerical side, the size of the pool in
Ref. [76] was 2 × 107, which is substantially smaller than
in Ref. [55] (5 × 108) and in the present work (1010). Note
that the size of the pool in Ref. [76] is much smaller than the
derived critical volume Nξ for those of values of W that play
crucial role for determination of the critical index in this work,
which resulted in the value of the index twice larger than that
found in other works [50,51,55,79].

To summarize, the critical behavior (28) of the correlation
volume has been derived analytically and confirmed numeri-
cally in a number of works. We note, however, that the fact
that the critical index in this formula is equal 1/2 will not be
particularly important for our analysis below.

5. n = 1 model versus σ model

It is known from previous works on models in finite-d and
on the Bethe lattice that various observables characterizing the
disordered system have very similar behavior in the cases of
the n = 1 model and the σ model (corresponding to n � 1).
We thus expect such a close similarity between these models
also for eigenfunction and energy level statistics on RRG [81].
Indeed, our results presented below support this expectation.
We have identified, however, a difference between two mod-
els in subleading (logarithmic) factors in ω-dependence of
βE (0, ω) at criticality, see Sec. III D below.

C. Single wave function

From now on we focus on a RRG model with all nonzero
hopping matrix elements fixed to t = 1. In this section, we
consider self-correlations of eigenfunctions, as encoded in the
correlation function between αE (i, j ) defined by Eq. (8). For
brevity, we will drop the subscript E and use the distance
between the sites i and j as the argument, thus denoting this
correlation function as α(r ). The correlation function α(r ) can
be expressed in terms of Green functions as follows:

α(r ) = 1

πνN
lim
η→0

η〈GR (i, i)GA(j, j )〉, (31)

where GR,A(j, j ) = 〈j |(E − H ± iη)−1|j 〉. The product of
Green functions entering Eq. (31) can, in turn, be written, for
a given realization of the Hamiltonian, as a superintegral,

GR (i, i)GA(j, j )

= 1

16

∫ ∏
k

[d�k](�+
1 K̂�1)(�+

2 K̂�2)e−LH (�), (32)

with action defined by Eq. (16).
We consider first the single-point correlation function α(0)

(i.e., i = j ); this is the same (up to a factor N ) that the
average IPR: P2 = Nα(0). The calculation of α(0) for the

SRM ensemble was carried out in Ref. [38] (for technical
details see Ref. [39]); we follow the same route for the RRG
model (which requires only minor modifications). Performing
the ensemble averaging as outlined in Sec. III B 1, we obtain
the averaged product of the Green functions at coinciding
points in the form of the functional integral (19),

〈GR (j, j )GA(j, j )〉 =
∫

Dg U (g)e−NL(g), (33)

with the action L(g) given by Eq. (20) and

U (g) =
∫

[d�]
1

16
(�†

1K̂�1)(�†
2K̂�2)F (m+1)

g (�). (34)

In the limit of large N , the integral in Eq. (33) is evaluated by
the saddle-point method as explained in Sec. III B 1.

In the localized regime, W > Wc, the integral (33) is
dominated by a single saddle point g0(x, y). Integration over
fluctuations around the saddle point (“massive modes”) gives
unity due to supersymmetry, so that Eq. (33) reduces to U (g0).
The calculation of U (g0) as given by the integral (34) yields
U (g0) = C/η, with C a constant of order unity. The factor
η−1 (divergent in the limit η → 0) arises from the integration
in Eq. (34): the convergence of this integration is provided
by the fast decay of the saddle-point configuration g0(x, y) at
x � η−1, as set by a symmetry-breaking term proportional to
η. According to Eq. (31), we thus find

α(0) = C/πνN ; C ∼ 1, (35)

which corresponds to the expected behavior of P2 in the
localized phase, cf. Eq. (7). This result is identical to the one
found on an infinite Bethe lattice [41], which is not surprising:
localized states are insensitive to the boundary conditions
[73]. The expression of the constant C in terms of the function
g0(x, y) can be found in Ref. [41]. It is important that C

has a nonzero limit at the critical point, W = Wc: from the
IPR point of view, critical states on RRG are very similar to
localized ones, as was already discussed in Sec. III A.

In the delocalized phase, W < Wc, the manifold of the
saddle points g0T (�), Eq. (27), contributes and the integral
in Eq. (33) takes the following form:∫

Dge−NL(g)U (g) =
∫

dμ(T̂ ) U (g0T ) e− π
2 NηνStr[T̂ T̂ ].

(36)

The supertrace in the exponent of Eq. (36) can be written

in the form Str T̂ T̂ = Str Q�̂, where Q = T̂ −1�̂T̂ is the
σ -model field (Q2 = 1) corresponding to the zero mode T̂ .
The factor U (g0T ) in Eq. (36) is given by the integral (34). A
convenient way to evaluate this integral is to use the analog of
Eq. (26) for g

(m+1)
0T and expand it up to terms of fourth order

in �. This yields, in full analogy with Ref. [39],

U (g0T ) = − 1

64

[
g

(m+1)
0,xx

(
Str QK̂

1 + �̂

2
Str QK̂

1 − �̂

2

+ 2 Str QK̂
1 + �̂

2
QK̂

1 − �̂

2

)
− g

(m+1)
0,yy

]
, (37)

where g
(m+1)
0,xx = ∂2

x g
(m+1)
0 |x,y=0 and g

(m+1)
0,yy = ∂2

y g
(m+1)
0 |x,y=0.

Performing the zero-mode integration (36), one finds that the
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term proportional to g
(m+1)
0,xx in Eq. (37) yields a contribution

that diverges as η−1 at η → 0. After substitution in Eq. (31),
this yields

α(0) = 12

N2

g
(m+1)
0,xx

π2ν2
. (38)

The coefficient g
(m+1)
0,xx in Eq. (38) has an important phys-

ical meaning. Since the function g
(m+1)
0 (x, y) is the Fourier-

Laplace transform of the distribution of local Green functions
on an infinite Bethe lattice (see Sec. III B 1), g

(m+1)
0,xx is pro-

portional to the average square of the local density of states
ν(j ) = −(1/π )Im G(j, j ):

g
(m+1)
0,xx = (π2/4)〈ν2〉BL . (39)

The subscript “BL” here indicates that the average should be
computed with the help of solution of the self-consistency
equation that describes the model on an infinite Bethe lattice.
Equation (38) can thus be written in the form

α(0) = 3

N2

〈ν2〉BL

ν2
. (40)

Behavior of the coefficient (39), which is determined
by properties of the self-consistent solution, is well under-
stood [38,39,41]. Deeply in the delocalized phase (W �
Wc), the fluctuations of the local density of states are weak,
〈ν2〉BL/ν2 � 1, so that Eq. (40) reduces (up to small correc-
tions) to the result of the Gaussian orthogonal ensemble. On
the other hand, when W approaches the critical value Wc,
these fluctuations become strong, 〈ν2〉BL/ν2 = Nξ , where Nξ

is the correlation volume that shows the critical behavior (28).
In principle, Nξ is defined up to a coefficient of order unity;
we can use the last formula to fix this coefficient. Thus, in the
delocalized phase,

α(0) = 3Nξ/N
2. (41)

Comparing this with the behavior in the critical point,
Eq. (35), we see that they match when the number of sites
is of the order of correlation volume, N ∼ Nξ , as expected.
For N � Nξ , the system is in the delocalized regime, and
Eq. (41) holds. On the other hand, for N � Nξ , the system
is effectively at criticality, and α(0) is given by Eq. (35). The
1/N scaling of the IPR P2 = Nα(0) in the delocalized phase
at N � Nξ as given by Eq. (41) is a manifestation of ergodic-
ity of delocalized states in the RRG model. This scaling was
numerically demonstrated in Ref. [50] for the RRG model
and in Ref. [51] for a model with fluctuating coordination
number that is intermediate between RRG and SRM. We
expect the crossover between the critical N � Nξ and ergodic
N � Nξ regimes to be described by P2 = F (N/Nξ ), where
the crossover function F (x) has the asymptotics F (x) � 1
at x � 1 and F (x) ∼ 1/x at x � 1, which is the “volumic
scaling” [82] proposed in Ref. [51] on the basis of numerical
simulations. An analytical study of this crossover remains an
interesting prospect for future research.

Note that in both cases 1 � N � Nξ (including the system
of a finite size at criticality) and N � Nξ the scaling of the
IPR on the RRG is governed by properties of the solution to
the self-consistency equation, Eq. (24). Indeed, this equation

determines the statistics of the local Green function and hence
the IPR, via Eq. (40) in the delocalized phase and via Eq. (50)
(see below) at the critical point. The transition between these
two regimes happens at N ∼ Nξ due to the spontaneous
symmetry breaking that sets in at N � Nξ � 1.

Let us now turn to the behavior of α(r ) as a function of
distance r . For this purpose, we should perform averaging in
Eq. (8) over all pairs of RRG nodes such that the shortest
path between them has the length r . When doing so, we
should fix r and consider sufficiently large N such that the
distance between a random pair of sites is almost surely larger
than r . The corresponding condition is r < κ lnm N , with
κ < 1. Under this condition, the requirement that the shortest
path between two (otherwise random) sites has length r is
equivalent to the requirement that there exists a path of length
r connecting these two sites. To impose the latter requirement,
we modify the probability distribution (15) defining the RRG
ensemble in the following way. We fix r + 1 sites (that we
label 0, 1, . . . , r) and, for each of the pairs (i, j ) from the
set {(0, 1), (1, 2), . . . , (r − 1, r )}, we replace the factor (1 −
p/N )δ(Aij ) + (p/N )δ(Aij − 1) in Eq. (15) by δ(Aij − 1).
This implies that there is a path of length r (which goes
through the sites 1, 2, . . . , r − 1) connecting the sites 0 and
r . After this, it remains to evaluate the correlation function
(31), choosing the site 0 as i and the site r as j .

The further calculation proceeds along the same way
as for α(0). The averaged product of Green functions
〈GR (0, 0)GA(r, r )〉 is obtained in the same form (33) of the
integral over functions g(�), where now

U (g) =
∫ r∏

i=0

[d�i]
1

16
(�†

0,1K̂�0,1)(�†
r,2K̂�r,2)

×F (m)
g (�0)

r−1∏
j=0

e−i�
†
j �j+1

r−1∏
k=1

F (m−1)
g (�k )

×F (m)
g (�r ). (42)

The integral is again evaluated by means of the saddle-point
method. Since the action to the order N is the same as
before, the saddle-point equation for the function g0 remains
unchanged.

In the localized phase, we have a single saddle point g0,
which is the solution of the Bethe-lattice self-consistency
equation. The integral (42) is then nothing but the expression
for the correlation function 〈 1

16 (�†
0,1K̂�0,1)(�†

r,2K̂�r,2)〉BL

on an infinite Bethe lattice. We recall that, to the order that
we consider (averaged products of two Green functions), there
are two different nontrivial correlation functions on an infinite
Bethe lattice:

K1(r ) = 〈GR (i, i)GA(j, j )〉BL

= 〈
1

16 (�†
i,1K̂�i,1)(�†

j,2K̂�j,2)
〉
BL, (43)

K2(r ) = 〈GR (i, j )GA(j, i)〉BL

= 〈
1

16 (�†
j,1K̂�i,1)(�†

i,2K̂�j,2)
〉
BL. (44)

Here, r is the distance between the sites i and j . The
correlation functions of the type 〈GRGR〉 and 〈GAGA〉 are
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not sensitive to the Anderson transition and decouple into
products of averaged Green functions. For the σ model on an
infinite Bethe lattice, direct counterparts of these correlation
functions are

K1(r ) = 〈Q11
bb(i)Q22

bb(j )
〉
BL, (45)

K2(r ) = 〈Q12
bb(i)Q21

bb(j )
〉
BL. (46)

Here, the upper indices of (unitary-class) Q matrices refer to
retarded-advanced decomposition and the subscripts “bb” to
the boson-boson elements. The r dependence of the Bethe-
lattice correlation functions K1(r ) and K2(r ) has been studied
in detail, both for the σ model [43–47] (also in the “toy
version” [61]) and the n = 1 model [41]. Essentially, the
same behavior was found for the n = 1 model and for large-n
models (σ models) of all three Wigner-Dyson classes. Specif-
ically, the results (for ω = 0 and η → 0) are as follows. In the
localized phase, W > Wc, the correlation functions K1(r ) and
K2(r ) have 1/η singularity, are equal to each other, and decay
with r as

K1(r ) = K2(r ) ∼ 1

η
m−re−r/ζ r−3/2, (47)

where ζ is the localization length that diverges at the critical
point as ζ ∼ (W − Wc )−1. In the delocalized phase, W < Wc,
close to the transition point (where the correlation volume Nξ

is large), the result for the function K2(r ) reads

K2(r ) ∼ Nξm
−r r−3/2. (48)

The function K1(r ) in this regime shows the same behavior
as K2(r ) for not too large distances r < ξ , whereas for r > ξ

it saturates at the value given by its disconnected part K
(d )
1

equal to K
(d )
1 = |〈GR (j, j )〉|2 for Eq. (43) and K

(d )
1 = 1 for

Eq. (45). In other words [83],

K1(r ) � K2(r ) + K
(d )
1 . (49)

We use now these Bethe-lattice correlation function
for our analysis of eigenfunction correlations on RRG.
In the localized phase, W > Wc, U (g) is simply
〈 1

16 (�†
0,1K̂�0,1)(�†

r,2K̂�r,2)〉BL, which is nothing but the
correlation function K1(r ), so that

α(r ) = 1

πνN
lim
η→0

ηK1(r, η). (50)

Using Eq. (47), we immediately find

α(r ) ∼ 1

N
m−re−r/ζ r−3/2. (51)

This result is extended to the critical point by setting ζ = ∞,
which yields

α(r ) ∼ 1

N

m−r

r3/2
. (52)

In the delocalized phase, we have a manifold of saddle
points g0T and should evaluate the integral over the zero mode
T̂ , see Eq. (36). Evaluating the integral (42) on a saddle point
g = g0T we find the same Q-dependent structures as those
that emerged in Eq. (37), see two terms in the bracket mul-
tiplying g

(m+1)
0,xx . The first of them has now as a prefactor the

Bethe-lattice correlation function K1(r ) (plus disconnected
terms of the 〈GRGR〉 and 〈GAGA〉 type), while the second one
is multiplied by the correlation function K2(r ). Performing
the zero-mode integration (36) and substituting the result into
Eq. (31), we get

α(r ) = 1

2π2N2
[K1(r ) + 2K2(r )

− Re〈GR (0)〉2 − 2Re〈GR (r )〉2]. (53)

The last term in square brackets in Eq. (53) is always small
in comparison with the sum of other terms in the regime of
large Nξ that we are focusing on. Using Eqs. (49) and (48),
we find the behavior of the eigenfunction self-correlation in
the delocalized phase of the RRG model:

α(r ) ∼ Nξ

N2

m−r

r3/2
, r < ξ. (54)

For r > ξ , the correlation function α(r ) is governed by dis-
connected parts in Eq. (53), yielding α(r ) � 1 [84]. The
analysis can be extended to the σ model (i.e., large-n model)
on RRG. The results are fully analogous to those of the n = 1
model. Indeed, as shown above, the results are expressed in
terms of the infinite-Bethe-lattice correlation functions K1(r )
and K2(r ), which have qualitatively the same behavior in the
n = 1 model and the σ model.

We can now compare the results of exact analysis, Eqs. (52)
and (54), with the conjecture (13) obtained by means of an
extrapolation of finite-d results to the d → ∞ limit. We see
that Eq. (13) correctly captures the leading behavior of the
correlation function α(r ). On the other hand, the accurate
treatment produces also a subleading factor r−3/2 in Eqs. (52)
and (54).

Now we confront the analytical predictions for α(r ) with
results of the exact diagonalization of the RRG ensemble. We
study the model Eq. (1) in the middle of the band (1/16th
states), averaging over around 105 wave functions for each
W . For each instance of the graph, we evaluate distances
between all pairs of sites (defines as a length of the shortest
path) and average over all the nodes at a given distance r .
The random regular graphs are generated with the NETWORKX

library [85]. In Fig. 1 (left panel), we show the connected
part α(c)(r ) = α(r ) − 1/N2 evaluated numerically (by exact
diagonalization) for RRG with coordination number m + 1 =
3, matrix size N = 131 072, and several values of disorder,
W = 8, 10, 12 corresponding to the delocalized phase. The
position of the Anderson transition for this model is known
to be Wc � 18, so that these value of W are sufficiently
close to Wc in the sense that the correlation volume is large,
Nξ � 1. At the same time, they are not too close, so that
the condition Nξ � N is also met. According to Eq. (54),
the quantity N2α(r ) is independent on the system size in this
regime, which is manifestation of wave-function ergodicity.
This is fully confirmed by numerical data, as illustrated in
the right panel of Fig. 1, where we show the results for three
different system sizes in a larger range of distances r . This
panel also demonstrates importance of finite-size effects for r

approaching the linear size of the system ln N/ ln m.
The observed dependence of ln(N2αc(r )) on r is

nearly linear, in agreement with the analytically predicted
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FIG. 1. Eigenfunction self-correlations α(r ) in the delocalized phase. (Left) Connected part N2α(c)(r ) = N 2α(r ) − 1 for N = 131072 and
disorder values W = 8, 10, and 12. Dashed black lines: fit to ln N2α(c)(r ) = −r ln m − c

(α)
1 ln(r + 1) − c

(α)
2 , see Eq. (54). For values of c

(α)
1 ,

see text. Star symbols: values of α(0) as obtained by evaluating Eq. (40) by means of population dynamics. (Inset) Correlation length ξ (W ) as
estimated from the condition ln N 2α(c)(r ) = 0. (Right) Nmrα(c)(r ) in a larger range of distances r for W = 8 and 10, and for three different
system sizes: N = 32 768, 65 536, and 13 1072. Independence of this correlation function on N at N � Nξ is a manifestation of ergodicity
of the delocalized phase. Deviations at large r are due to finite-size effects which become important when r approaches the linear size of the
system ln N/ ln m. [In this regime, α(c)(r ) becomes negative.]

exponential decay, Eq. (54). To check the subleading power-
law factor r−3/2, we have fitted the data to ln N2αc(r ) =
−r ln m − c

(α)
1 ln(r + 1) − c

(α)
2 , with c

(α)
1 as a free parameter.

The fits are shown in the left panel of Fig. 1 by dashed
lines. The extracted values of c

(α)
1 are 0.54, 0.82, and 0.92

for W = 8, 10, and 12, respectively. We see that c
(α)
1 is smaller

than 3/2 but increases with increasing correlation length ξ ,
in consistency with the analytic prediction of the power-law
exponent 3/2 in the asymptotic limit of large ξ . The values
of the correlation length ξ as extracted from the condition
ln(N2α(c)(r )) = 0 are shown in the inset of Fig. 1. They nicely
match the results for ξ (W ) as estimated in Ref. [50] from
the analysis of the IPR scaling with N , where ξ was found
to increase from ξ � 9 to ξ � 16 in the range of disorder W

from 13 to 16.
To further verify the analytical prediction of the depen-

dence of α(r ) at criticality (W = Wc), we have performed
exact-diagonalization analysis also for W = 18. (This value
is so close to Wc that the system is critical at any system size
N for which the numerical analysis is feasible.) In Fig. 2, left
panel, we show the data for Nα(r ) for three different system
sizes. It is seen that Nα(r ) is nearly independent on N (apart
from the region of large r where finite-size effects becomes
strong since r approaches the linear size of the system), in
agreement with analytical prediction, Eq. (52). In the inset, we
show the N independence of the IPR P2 = Nα(0), for which
Eq. (35) predicts a limiting value of order unity at N → ∞. In
agreement with analytical prediction, the IPR is only weakly
dependent on the system size N . We fit the size dependence
by the formula

P2 = c
(P )
1 + c

(P )
2

ln1/2 N
(55)

to extrapolate to the limit N → ∞. This form of the N de-
pendence will be motivated in Sec. III D 1 below. This yields
the limiting N → ∞ value P2 � 0.20. In Sec. III D 1, we
will also present an alternative way (based on the population
dynamics) to calculate the limiting value of the critical IPR

and will demonstrate a good agreement between the two
approaches. In fact, the population dynamics approach allows
us to approach much closer to the thermodynamic limit N →
∞, so that the corresponding extrapolated value P2 � 0.24 is
a more accurate estimate. This value is indicated by a star in
the main panel of Fig. 2 (left).

The r dependence of α(r ) is also in a very good agreement
with the analytical prediction (52). To demonstrate this, we
show in the right panel of Fig. 2 the product Nmrα(r ) as a
function of r on the double-logarithmic scale. As we have
already seen in the left panel, the lines almost collapse,
in agreement with 1/N dependence of α(r ) at criticality,
Eq. (52). A small drift is related to finite-size corrections. With
increasing length N , the curves approach the straight line with
the slope 3/2, as predicted.

It should be emphasized that Eqs. (40) and (53) yield exact
relations (i.e., without any unknown factors of order unity)
between the eigenstate correlation functions on RRG (in the
delocalized phase with N � Nξ ) and correlation functions
of the infinite-Bethe lattice model. The latter correlation
functions can be obtained numerically. In this discussion,
we restrict ourselves to the case r = 0 when the correlation
function of interest [the one in the right-hand side of Eq. (40)]
is obtained directly from the solution of the self-consistency
equation for g0(x, y), Eq. (22). (For r > 0, one further needs
to evaluate an integral involving an r-th power of a cer-
tain integral operator.) An efficient approach to solution of
such self-consistency equations is known as pool method (or,
equivalently, population dynamics), see, e.g., Refs. [40,86].
This method amounts to solving the corresponding equation in
its distributional form, which is obtained under transformation
according to Eq. (25). In terms of the distribution function
f (m) defined in Eq. (25) the self-consistency equation reads

f (m)(u) =
∫

dε γ (ε)

(
m∏

r=1

dur f (m)(ur )

)

× δ

(
u − 1

E + iη − ε −∑m
r=1 ur

)
. (56)
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FIG. 2. Eigenfunction self-correlations α(r ) at the critical point W = 18 as found by exact diagonalization. (Left) Nα(r ) for different
system sizes, N = 32 768, 65 536, and 13 1072. A star marks the value of the IPR Nα(0) � 0.24 extrapolated to N → ∞ using the data of
population dynamics, see Sec. III D 1. (Inset) Inverse participation ratio as a function of the system size N for N = 16 384, 32 768, 65 536,
and 131 072. Dashed line: fit with P2 = c

(P )
1 + c

(P )
2 / ln1/2 N , where c

(P )
1 � 0.20. Right: Nmrα(r ) as a function of r on double-logarithmic

scale. Blue solid line: c/r3/2, see Eq. (54).

Further, the distribution function f (m+1) defined below
Eq. (26) is expressed through f (m) as

f (m+1)(u) =
∫

dε γ (ε)

(
m+1∏
r=1

dur f (m)(ur )

)

× δ

(
u − 1

E + iη − ε −∑m+1
r=1 ur

)
. (57)

Here, u is a complex variable representing the local retarded
Green function, G(j, j ; E + iη) = u = u′ − iu′′. Equiva-
lently, these equations can be presented in the form

G(m) d= 1

E + iη − ε −∑m
i=1 G

(m)
i

(58)

and

G ≡ G(m+1) d= 1

E + iη − ε −∑m+1
i=1 G

(m)
i

, (59)

where the symbol
d= denotes the equality in distribution for

random variables. On the right-hand side of Eqs. (58) and
(59), G

(m)
i are independent, identically distributed copies of

the random variable G(m) and ε is a random variable with
distribution γ (ε).

Within the pool method, one finds numerically the distribu-
tion of G(m) as a fixed point of an iterative procedure based on
the self-consistency equation, Eq. (58). Then the distribution
of G ≡ G(m+1) is obtained from Eq. (59). After this, moments
of the local density of states are easily evaluated:

〈ν〉BL ≡ ν = − 1

π
lim
η→0

〈Im G(E + iη)〉 (60)

and

〈ν2〉BL = 1

π2
lim
η→0

〈[Im G(E + iη)]2〉. (61)

We have performed this procedure for disorder values W = 8,
10, and 12, and thus evaluated α(0) as given by Eq. (40).
In this calculation, we employed the pool size M = 231 and
the broadening η = 10−5, which are sufficient to reach the
limiting behavior. Values of α(0) as obtained by the pool
method are shown by star symbols in the left panel of Fig. 1.

At W = 8 and W = 10, a perfect agreement with results of the
exact diagonalization is observed, which confirms the validity
of our analysis. At W = 12, the exact diagonalization results
give a somewhat smaller value of α(0) than that derived by
the pool method. This is related to finite-size corrections in
the exact diagonalization, which become more pronounced
when the disorder approaches its critical value and thus the
correlation volume Nξ increases. In other words, the system
with N = 131 072 nodes is not large enough to accurately
reach the asymptotic limit N → ∞ for W = 12. Indeed, as
Fig. 3 of Ref. [50] shows, at the system size N = 131 072, the
value of α(0)N2 for this disorder is already quite close to its
N = ∞ limiting value but is still slightly below it.

D. Different wave functions

We turn now to the analysis of the correlation function
β(r, ω) defined by Eq. (10). In analogy with Eq. (31), we use
an identity relating β(r, ω) to the averaged products of Green
functions on RRG,

αij (E)δ(ω/�) + βij (E,ω)R̄(ω) = �2Bij (E,ω), (62)

where

R̄(ω) = R(ω) − δ(ω/�) (63)

is the nonsingular part of the two-level correlation function
(11) and

Bij (E,ω) = 〈νi (E − ω/2)νj (E + ω/2)〉

= 1

2π2
Re
[〈

GR

(
i, i, E + ω

2

)
GA

(
j, j, E − ω

2

)
− GR

(
i, i, E + ω

2

)
GR

(
j, j, E − ω

2

)〉]
(64)

is the correlation function of local densities of states at differ-
ent energies and different spatial points.

We proceed with the evaluation of the correlation function
(64) for the n = 1 RRG model in the same way as it was
done in Sec. III C. In the delocalized phase and at N � Nξ ,
we obtain a zero-mode integral of the type (36) and (37),
with the difference that it should be now evaluated at a real
frequency ω and the real part should be taken. When this is
done, the first Q-dependent structure in Eq. (37) yields the
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random-matrix-theory (RMT) level correlation function, and
the second one drops out. As a result, we get

Bij (E,ω) = R̄WD(ω)
1

2π2
Re[K1(r, ω) − 〈GR (0)〉2], (65)

where R̄WD(ω) is the Wigner-Dyson level correlation function
and

K1(r, ω) =
〈
GR

(
i, i, E + ω

2

)
GA

(
j, j, E − ω

2

)〉
BL

. (66)

We further use that the level correlation function R̄(ω) on
RRG is given, in the delocalized phase and at N � Nξ , by
its RMT form R̄WD(ω), see Sec. IV. Thus Eqs. (62) and (65)
yield

β(r, ω) = 1

2π2N2
Re[K1(r, ω) − 〈GR (0)〉2]. (67)

For r = 0 and for the SRM ensemble, this result was obtained
in Ref. [89]. Similarly to Eq. (53), formula (67) expresses a
correlation function of eigenfunctions on RRG with large N

in terms of a correlation function defined on an infinite Bethe
lattice (or, equivalently, via a self-consistency equation).

In the localized phase (or at criticality), the function in-
tegral of the type (33) for the evaluation of the average in
Eq. (62) is given by a single saddle point g0(x, y), which is
now a solution of the self-consistency equation with finite ω.
The level correlation function R̄(ω) is now equal to unity. As
a result, we find again Eq. (67), which therefore has a very
general validity. The condition on N under which Eq. (67) is
valid at criticality is determined below, see Eq. (73) and text
around it.

1. The same point

Now we apply the general formula (67) to specific regimes.
We consider first the correlation function β(0, ω) at coincid-
ing points, r = 0. We begin this analysis by inspecting the
behavior of β(0, ω) at criticality (W = Wc, or, more generally,
Nξ � N ) and then turn to the delocalized phase (W < Wc and
N � Nξ ). Performing in Eq. (47) an analytical continuation
to real frequency, η → −iω/2, and setting r = 0, we get

K1(r = 0, ω) ∼ 1

−iω
. (68)

Such a 1/ω scaling of criticality would be in agreement with
an expectation based on the extrapolation of finite-d results
to d → ∞, see Eq. (14). However, according to Eq. (67), we
have to take the real part of K1(0, ω). The leading term (68)
therefore yields no contribution. We need thus to look for cor-
rections to the leading behavior of the correlation function K1

as obtained from the solution of the self-consistency equation,
which is a rather challenging task. While we did not manage
to evaluate analytically this correction, we can provide an
“educated guess” for its form that is then verified and made
more precise by a numerical solution of the self-consistency
equation. Specifically, we expect that corrections at criticality
are governed by inverse powers of ln 1/η:

K1(r = 0) � c
(K )
1

η
+ c

(K )
2

η lnμ 1/η
. (69)

The emergence of logarithmic subleading factors from the
solution of the self-consistency equation is very natural, since
its kernel is nearly translational-invariant with respect to the
variable ln x [41] or the analogous variable in the σ model
formalism [42–47]. In particular, the diffusion constant scales
in the delocalized phase close to the transition point as D ∼
N−1

ξ (ln Nξ )3. The correlation volume Nξ sets a scale for the
symmetry breaking in the delocalized phase; at criticality,
this role is played by 1/η, which suggests the emergence
of powers of ln 1/η. We also note that a subleading factor
in the form of a power of the logarithm of frequency is
a natural counterpart of the subleading r−3/2 factor in the
r-dependence, see Eq. (52).

We have verified Eq. (69) by numerical solution of the self-
consistency equation, both for the n = 1 Anderson model and
for the σ model at the imaginary frequency η. The results for
ηK1(η) at criticality in the n = 1 model are shown in the left
panel of Fig. 3; they fully confirm Eq. (69). The value of the
exponent μ, as determined numerically, is μ � 1/2. It seems
likely that 1/2 represents an exact value of μ for this model;
it would be interesting to get this from the analytical solution
of the self-consistency equation.

The right panel of Fig. 3 presents the analogous results for
the σ model. Since the dependence on the compact variable
λ2 of the σ model becomes irrelevant near criticality W �
Wc, one can reduce a self-consistency equation to that for a

2 3 4 5 6 7
log10 1/η

0.056

0.060

0.064

0.068

0.072

η
K

1
(η

)

FIG. 3. Same-point correlation function at imaginary frequency K1(η) at criticality. (Left) ηK1(η) as obtained by numerical solution of
the self-consistency equations for the n = 1 Anderson model via population dynamics (dots) and a fit to ηK1(η) = c

(K )
1 + c

(K )
2 ln−μ(1/η)

according to Eq. (69), with μ = 1/2 (dashed line), where c
(K )
1 ≈ 0.041. (Right) Analogous plot for the toy σ model of Refs. [61,87,88], with

a fit to Eq. (69) with μ = 3/2.
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function of a single variable λ1, which greatly improves the
efficiency of the numerical analysis [43]. Further, we have
replaced the corresponding kernel of the integral equation by
that found for the hyperbolic superplane [61,87,88]—a “toy
version” of the σ model. All the essential properties of the
kernel in this model are the same as for the reduced self-
consistency equation of the proper σ model but its functional
form is much simpler. The obtained results fully confirm
the expected behavior, Eq. (69), which thus holds both for
n = 1 model as the σ model. Interestingly, the numerical fit
yields for the exponent of the logarithm μ � 3/2, i.e., a value
different from that for the n = 1 model. Again, it seems that
3/2 is an exact value of μ for the σ model, and it would
be interesting to obtain it analytically and to understand the
source of the difference between both models in this aspect.

It is instructive to compare the value of the IPR at criticality
as obtained by exact diagonalization (see Sec. III C and Fig. 2)
with its value found from the solution of the self-consistency
equation, see left panel of Fig. 3. According to Eq. (50),

lim
N→∞

P2(N ) = 1

πν
lim
η→0

ηK1(0, η). (70)

It is natural to assume that finite-size corrections to the IPR
at criticality have the same logarithmic form as corrections
in Eq. (69), with η → 1/N , which is the rational behind our
fitting function (55). The extrapolation of the exact diago-
nalization data shown in Fig. 2 yielded limN→∞ P2(N ) �
0.20, see Sec. III C. On the other hand, the extrapolation of
the population-dynamics results shown in the left panel of
Fig. 3 yields limη→0 ηK1(0, η) � 0.041 and thus P2 � 0.24
according to Eq. (70). This is in a reasonable agreement
with the value obtained by exact diagonalization. Note that
the solution of the self-consistency equation provides a more
accurate extrapolation since it allows one to proceed closer to
the asymptotic limit.

Performing in Eq. (69) an analytical continuation to
real frequency, η → −iω/2, and substituting the result into
Eq. (67), we find the first term in Eq. (69) to drop and derive
the following scaling of β(0, ω) at criticality:

β(0, ω) ∼ 1

N2ω lnμ+1 1/ω
. (71)

The applicability of the critical scaling (71) is limited, on the
side of small ω, by the finite size N of the system. In the limit
ω → 0, we have

β(0, ω → 0) ∼ 1/N. (72)

To show this, we use the fact that β(0, ω → 0)/α(0) = 1/3 in
the delocalized phase at N � Nξ , see below. By continuity,
this implies that β(0, ω → 0)/α(0) ∼ 1 at criticality, N �
Nξ . Using Eq. (52), we get Eq. (72). The matching between
the low-frequency limiting value (72) and the critical scaling
(71) happens at a frequency

ωN ∼ 1

N lnμ+1 N
, (73)

which is parametrically suppressed (by a logarithmic factor)
compared to the mean level spacing � ∼ 1/N . To shed light
on the physical significance of this logarithmic factor, we

recall that, in a d-dimensional system, the crossover be-
tween the corresponding two regimes happens at ωN ∼ g∗�,
where g∗ is the critical value of conductance. The Anderson
transition moves, with increasing d, further and further into
the strong coupling regime, which means that g∗ decreases
with increasing d, tending to zero in the d → ∞ limit. (See
Refs. [90,91] for a systematic analysis of the evolution of
properties of the Anderson transition with increasing d.) Since
RRG can be viewed as corresponding to the d = ∞ limit, it
is expected that the constant g∗ is replaced by a function of
N that vanishes in the thermodynamic limit. This reduction of
wave function correlations reflects itself also in reduction of
level repulsion, as we discuss in Sec. IV below.

We consider now the behavior of β(0, ω) in the delocalized
phase, W < Wc and N � Nξ . In the small-frequency limit,
we find, by comparing Eqs. (67) and (53),

β(0, ω → 0) = 1

3
α(0) = Nξ

N2
. (74)

The factor 1/3 in Eq. (74) is the same as in the Gaussian
ensemble of RMT. Its emergence here is one more manifes-
tation of the ergodicity of the delocalized phase on RRG.
The correlation function K1(0, ω) and hence β(0, ω) remain
nearly constant (i.e., frequency independent) for not too high
frequencies. At larger frequencies, the system enters the criti-
cal regime, so that Eq. (71) holds. The crossover frequency ωξ

can be estimated by matching of Eqs. (71) and (74); it is given
by ωξ ∼ N−1

ξ , up to a logarithmic factor. To summarize, we
get in the delocalized phase

β(0, ω) ∼
{

Nξ

N2 , ω < ωξ ,

1
N2ω lnμ+1 1/ω

, ω > ωξ .
(75)

This result largely confirms the expectation, Eq. (14), based
on the d → ∞ extrapolation, improving it by an additional
factor, weakly (logarithmically) dependent on frequency.

These predictions are fully supported by numerical results
for the correlation function β(0, ω) of different eigenfunctions
at coinciding spatial points shown in Fig. 4. In the left panel,
the results for the delocalized phase are presented. Solid lines
(disorder W = 8, 10, 12) are obtained by exact diagonaliza-
tion of RRG model with the system size N = 131072. We
also show by dashed line in this plot results for W = 13 as
obtained from Eqs. (67) and (66), with finite-ω correlations
on an infinite Bethe lattice derived from the self-consistency
equations (86) and (85), see Sec. III D 2 below for technical
details of this procedure. A very good agreement between
both types of numerical results and the analytical prediction
(75) is clearly observed. Both the critical behavior (1/ω, up
to corrections that is difficult to observe in this plot) and the
low-frequency saturation are evident. As an additional check,
we show in this figure by dots the numerically obtained values
of α(0)/3; it is seen that β(0, ω)/α(0) = 1/3, see Eq. (74),
is perfectly fulfilled. Numerical data for β(0, ω) shown in
Fig. 4 provide two ways to extract the correlation length ξ :
from the value at ω → 0 and from the crossover scale in the ω

dependence. Both of them yield values of ξ (W ) close to those
shown in the inset of Fig. 1.

In the right panel of Fig. 4, results of exact diagonalization
of the RRG model at the critical point are shown. To verify

024202-14



STATISTICS OF EIGENSTATES NEAR THE … PHYSICAL REVIEW B 99, 024202 (2019)

10−7 10−6 10−5 10−4 10−3 10−2

ω

101

102

103

104

105

N
2
β

(0
,ω

)

8 10 12 13

5 6 7 8 9 10
Lω

0.16

0.08

0.04

0.02

N
2
ω

β
(0

,ω
)

32768 65536 131072

FIG. 4. Correlation function β(0, ω) of different eigenfunctions at the same spatial point. Left: N2β(0, ω) as a function of frequency ω in
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Right: N 2ωβ(0, ω) as a function of ln(1/ω) at the critical point for several system sizes (indicated in the legend). Solid blue line: 1/ ln3/2(1/ω)
scaling.

the subleading logarithmic factor in the critical behavior,
Eq. (75), we plot here N2β(0, ω) multiplied by ω as a function
of ln(1/ω). The results fully confirm the power-law scaling
with respect to ln(1/ω), and the corresponding exponent is
perfectly consistent with the value μ = 1/2 as derived from
our result (67) with the help of numerical solution of the self-
consistency equation at an imaginary frequency ω → 2iη.

2. Return probability

The correlation function β(0, ω) has the meaning of the
return probability in the Fourier domain. Indeed, consider the
spreading of a state, localized at t = 0 at a given site j and
evaluate the probability p(t ) to find it at the same site at a
later time t > 0. Formally, it is defined as follows (averaging
over the initial site j is performed):

p(t ) =
〈

1

N

∑
j

|〈j |e−iĤ t |j 〉|2
〉
. (76)

Performing the Fourier transformation, p(ω) = ∫ eiωtp(t )dt ,
and expanding in eigenfunctions |α〉, one gets

p(ω) =
〈

1

N

∑
αβ

∑
j

|〈α|j 〉|2|〈β|j 〉|2δ(ω + Eα − Eβ )

〉
.

(77)

Using the spectral representation (77), we can straightfor-
wardly express the function p(ω) in terms of eigenfunction
correlators defined in Eqs. (8) and (10):

p(ω) = Nδ(ω)
∫

dE ν(E)αE (0)

+N2
∫

dE ν2(E)RE (ω)βE (0, ω). (78)

Thus, while the t → ∞ limit of the return probability is
related to αE (0), its time dependence is encoded in βE (0, ω).

As defined by Eqs. (76) and (77), the return probability
is a quantity integrated over the whole band of energies E.
States with very different energies will also have very different
localization (delocalization) properties. One thus has to define

a return probability for a given energy E (or for its relatively
narrow vicinity). This can be done by projecting the state
|j 〉 in Eq. (76) on a subspace of eigenstates with energy
around E,

pE (t ) = p̃E (t )/p̃E (0); (79)

p̃E (t ) =
〈

1

N

∑
j

|〈j |P̂E e−iĤ t P̂E |j 〉|2
〉
, (80)

where P̂E is the corresponding projector. Equation (79) simply
ensures the normalization pE (0) = 1. Equation (80) yields
a spectral representation for p̃E (ω) of the same form (77),
but now with summation restricted to the states |α〉, |β〉 with
energies close to E. The long-time behavior of pE (t ) defined
in this way will be determined by the functions αE (0) and
βE (0, ω) at the chosen energy E. Below we assume that such
a projection is performed and omit the subscript E in the
notation for the return probability; i.e., p(t ) below means
pE (t ).

We now proceed by analyzing the behavior of the return
probability p(t ) first at criticality and then in the delocalized
phase. In the critical regime, both contributions in Eq. (78)
scale with N in the same way, reaching a finite value in the
limit of N → ∞. The first term yields, upon Fourier trans-
formation, a constant p∞ ∼ Nα(0) ∼ 1. Fourier transforming
the second term, we get, by using Eq. (71), an integral of the
form∫ ∞

−∞

dω e−iωt

ω lnμ+1 (1/|ω|) � 2
∫ 1/t

0

d ln(1/ω)

lnμ+1(1/ω)
= 2

μ lnμ t
.

Thus we find

p(t ) � p∞ + c(p)

lnμ t
, t → ∞, (81)

with a numerical constant c(p).
In the metallic regime (W < Wc and N � Nξ ), one ex-

pects the return probability p(t ) to be described by a classical
random walk over the tree, characterized by a diffusion co-
efficient D. For such a random walk, the probability that a
particle will be found at the starting point after time t is given
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diffusion over the infinite Bethe lattice, p(t ) = ap0(Dt ). (Right) Critical point for several system sizes, illustrating a slow approach to p∞, see
Eq. (81).

by [92,93]

p(t ) = p0(Dt ) ∼ 1

(Dt )3/2
e−Dt . (82)

The diffusion coefficient in the n = 1 model and in the σ

model on the Bethe lattice can be expressed in terms of a
certain integral involving the solution of the self-consistency
equation [41,45]; the corresponding asymptotics at Nξ � 1
reads

D ∼ N−1
ξ ln3 Nξ , (83)

where Nξ scales according to Eq. (28). The diffusive decay of
p(t ) corresponds to the second contribution in Eq. (78). Once
the particle spreads roughly uniformly over the graph, the
decay saturates at a value given by the first term in Eq. (78),

p∞ ∼ Nα(0) ∼ Nξ

N
. (84)

In Fig. 5, we show results for return probability p(t ) as
obtained by exact diagonalization of the RRG model. We
used the definition (79), (80), with P̂E projecting on 1/16th
of all eigenstates around the energy E = 0. The left panel of
Fig. 5 shows the results for the delocalized regime and the
right panel for the critical point. We discuss the latter data
first. The exact-diagonalization results for the critical point
confirm our prediction (81) based on the analytical treatment
supplemented by a numerical solution of the self-consistency
equation. The return probability approaches logarithmically
slowly its limiting value p∞.

In the left panel of Fig. 5 the data for disorder W = 8,
10, and 12 are shown, in each case for three different system
sizes. For W = 8, we observe a fast drop of p(t ), with a
strongly pronounced curvature in the log-log plot, which
indicates an exponential character of decay, in line with the
expectation (82). At long times, this decay is limited by the
system size N , and p(t ) saturates at the value p∞, in full
consistency with the prediction (84). A similar behavior is
observed for W = 10. For still stronger disorder, W = 12, the
return probability exhibits a nearly flat part up to the time
t ∼ 10−3. This is related to the fact that W = 12 is already
sufficiently close to the critical point, so that a nearly-critical

behavior is observed in the intermediate range of times. For
longer times, a clear downward curvature appears, indicating
a crossover to an exponentially fast decay characteristic for the
delocalized regime. However, it does not have much time to
develop, in view of the saturation dictated by the system size.
In the inset to Fig. 5, left, we compare the return probability
to the solution of a classical diffusion problem on the Bethe
lattice [92,93]. Specifically, we plot there by a dashed line the
function − ln ap0(Dt ), where a ∼ 1 (describing a nonuniver-
sal evolution at short, ballistic time scales) and D (diffusion
constant) are fitting parameters and p0(n) is an exact solution
for the probability for the particle to be found at the origin af-
ter n time steps. [We numerically solve the recursion equation
for p(r, n) [92,93] to find p0(n); its asymptotics is given by
Eq. (82).] The correspondence is very good, until finite-size
effects become important at t � 200. Note that the function
p0(Dt ) is essentially different from exponent on the relevant
time scales, as inset in Fig. 5 demonstrates: the dashed line
has a substantial curvature.

In order to verify the manifestation of the prediction (67)
in the time domain and to find p(t ) for longer times, we
have evaluated β(0, ω) by population dynamics (such data for
disorder W = 13 have been already shown in the left panel of
Fig. 4) and then Fourier transformed it to get p(t ) in the limit
N → ∞. To calculate β(0, ω), as given in terms of infinite-
Bethe lattice correlation function by Eqs. (67) and (66),
we used self-consistency equations for the joint distribution
function of two Green functions on different energies, u =
GR (i, i, E + ω/2) and v = GA(i, i, E − ω/2), which provide
a natural generalization of Eqs. (56) and (57):

f (m)(u, v) =
∫

dε γ (ε)
∫ ( m∏

r=1

dur dvr f (m)(ur, vr )

)

× δ

[
u − 1

E + ω
2 + iη − ε −∑m

r=1 ur

]

× δ

[
v − 1

E − ω
2 − iη − ε −∑m

r=1 vr

]
, (85)
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f (m+1)(u, v) =
∫

dε γ (ε)
∫ (m+1∏

r=1

dur dvr f (m)(ur, vr )

)

× δ

[
u − 1

E + ω
2 + iη − ε −∑m+1

r=1 ur

]

× δ

[
v − 1

E − ω
2 − iη − ε −∑m+1

r=1 vr

]
.

(86)

In a recent work [52,60], these equations emerged within a
saddle-point approach for the replica action in course of the
analysis of the level number variance on RRG.

We have solved the self-consistency equations (85) and
(86) by using the pool size M = 1010 and the broadening
η = 10−7 and determined β(0, ω) according to Eqs. (67)
and (66). Next, we have Fourier-transformed this quantity to
evaluate p(t ). In order to stay in full correspondence with
the exact-diagonalization study, we have limited the frequency
integration to the 1/16th of the energy band, with a Gaussian
smoothing. [This modified the short-time behavior but had
essentially no influence on the long-time behavior of the re-
sulting p(t ), up to a constant prefactor.] The return probability
p(t ) obtained in this way from the numerical solution of
the self-consistency equation is shown in Fig. 6 for disorder
strength W = 5, 8, and 13. For comparison, we also show in
this figure the exact-diagonalization results for W = 8 from
Fig. 5. A very good agreement is observed, which confirms
once more the validity of our saddle-point analysis, yielding
RRG observables at N � 1 in terms of infinite-Bethe-lattice
correlation functions expressed in terms of the solution of
the self-consistency equation. Contrary to the RRG results,
the population-dynamics data do not show saturation at long
t . This is because in the population-dynamics analysis we

have not included the term proportional to α(0) in Eq. (78),
thus effectively calculating p(t ) in the N → ∞ limit. Of
course, a numerical approach does not allow us to proceed
to arbitrarily long times. An obvious limitation is that we can
reliably calculate p(t ) only as long as it is much larger than
the inverse pool size M−1. In fact, there exists a considerably
more stringent restriction related to the fact that p(t ) becomes
exponentially small at long times and is represented by a
sum of many terms that are not particularly small. Thus
the numerical evaluation of p(t ) involves huge cancellations,
requiring a high precision of intermediate computations. This
limits (via statistical fluctuations due to finitenes of the pool
size) the smallest p(t ) until which we were able to proceed
reliably with the population-dynamics calculation shown in
Fig. 6.

In the inset of Fig. 6, we compare the results of population
dynamics for W = 8 to the classical diffusion over a Bethe
lattice, p(t ) = ap0(Dt ), with the same a and D as in the inset
to Fig. 5. The agreement is very good.

It should be mentioned that the return probability on RRG
was studied numerically in two recent works, Refs. [94,95],
with the conclusions that p(t ) behaves as a power law of time
[94] and as a stretched exponential [95] in the delocalized
phase. We believe that these conclusions resulting from fits
in a limited interval of time do not have a fundamental
meaning but rather reflect crossover regions between the log-
arithmically slow critical behavior and the exponentially fast
asymptotic decay. We have emphasized above that reaching
numerically the actual long-t asymptotics of p(t ) is a very
difficult task.

3. Different points

Finally, let us discuss the correlation function β(r, ω)
at different spatial points (r � 1) for W < Wc. It is given
in terms of the infinite-Bethe-lattice correlation function by
Eq. (67). For sufficiently low frequencies, ω < ωξ , the corre-
lation function K1(r, ω) is essentially frequency-independent
and is given by Eq. (49). As a result, we find that in this regime
β(r, ω) is essentially equal to α(r ) and scales with r according
to Eq. (54).

At criticality (high-frequency range), a fully analytical cal-
culation on the basis of Eq. (67) encounters the same difficulty
as for β(0, ω): one has to find a subleading correction to
K1(r, ω) that survives when one takes the real part. We thus
resort to an “educated guess” based on the results obtained
above, which we then verify by exact diagonalization. We
expect that at criticality, where β(r, ω) should have a strong
dependence on both ω and r , these dependencies decouple,
in analogy with the d-dimensional case, Eq. (14). Then the
ω dependence is given by the second line of Eq. (75). As
to the r dependence, it is expected to be the same as at low
frequencies, ω < ωξ , as otherwise there would be a mismatch
between the two regimes. Indeed, the critical regime should
cross over to the metallic one at the frequency ωξ , as for
r = 0, see Eq. (75). The condition ω ∼ ωξ can be equivalently
written (up to logarithmic correction) as Lω � ξ , where

Lω = ln(1/ω)

ln m
(87)
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ω , see Eq. (88).

is the length corresponding to frequency ω at criticality.
Finally, at sufficiently large r , the correlation function β(r, ω)
is given by the disconnected part of Eq. (67) that yields 1/N2.
Combining everything, we obtain

β(r, ω) ∼
{

mξ−r

N2r3/2 , ω < ωξ and r < ξ ;
m−r

N2ωL
3/2
ω r3/2

, ωξ < ω < m−r .
(88)

The first line of Eq. (88) corresponds to the “metallic” regime
with the hierarchy of the length scales r < ξ < Lω, while the
second line to the critical regime with r < Lω < ξ , in analogy
with Eq. (14). If r > min(Lω, ξ ), the correlation function
decouples, N2β(r, ω) � 1. Note that, when writing these
conditions, we discard logarithmic corrections, cf. Ref. [84].
Indeed, matching conditions between different regimes in
Eq. (88) would produce such corrections to the boundaries
between regions of different behavior of β(r, ω). We cannot
also exclude emergence of logarithmically narrow crossover
regions.

These analytical results and expectations are summarized
in the left panel of Fig. 7 where the predicted behavior of
β(r, ω) is shown in the form of a diagram in the (r, ω) plane.
In this diagram, the thick line r = min(ξ, Lω ) bounds the
region in the (r, ω) plane, where correlation function β(r, ω)
is dominated by its connected part. This domain is further split
into two parts by a thin line Lω = ξ , in correspondence with
Eq. (88).

These predictions are fully supported by results of exact
diagonalization of an RRG system at criticality shown in
the right panel of Fig. 7. It is clearly seen in this figure
that dependencies β(r, ω) form, on the logarithmic scale, a
set of parallel curves at different values of r . This means a
factorization of r and ω dependencies in the critical regime,
which was the assumption that we used to obtain the second
line of Eq. (88).

Equation (88) shows that our expectations based on an
extrapolation of finite-d results, Eq. (14), were correct from
the point of view of leading terms (exponential in r and
power-law in ω). On the other hand, Eq. (88) makes these
results more precise, as it contains also subleading factors
(power-law in r and logarithmic in ω). These factors, although

subleading, are quite important. In particular, they provide a
convergence of r summation (ω integration) in the sum rules:

α(0) +
rmax∑
r=1

(m + 1)mr−1α(r ) = 1/N, (89)

β(0, ω) +
rmax∑
r=1

(m + 1)mr−1β(r, ω) = 1/N, (90)

νN

∫
dω β(0, ω) = 1/N, (91)

when applied to the critical regime. (Here, rmax � ln N/ ln m

is the linear size of the graph.) Equations (89) and (90) follow
from the normalization of eigenstates,

∑
j |ψ2

k (i)ψ2
l (j )| =

|ψ2
k (i)| = 1/N , while Eq. (90) is an expression of com-

pleteness,
∑

l |ψ2
k (i)ψ2

l (i)| = |ψ2
k (i)| = 1/N . This conver-

gence is a necessary consequence of the scaling α(0) ∼
β(0, ω → 0) ∼ 1/N at criticality. Indeed, consider the sum
rule (89) at criticality. Its left-hand side can be estimated as
∼α(0)

∑
r r−3/2 ∼ α(0), so that the sum rule is consistent

with α(0) ∼ 1/N because the sum is convergent, giving sim-
ply a number of order unity. A similar analysis of the sum
rule (90) at ω → 0 demonstrates the importance of the factor
r−3/2 in Eq. (88) for β(0, ω → 0) ∼ 1/N . This should be
contrasted to a critical system at any finite dimensionality d,
for which the r summation is controlled by large r and α(0) ∼
β(0, ω → 0) is additionally suppressed by a fractional power
of the system size.

Finally, substituting the second line of Eq. (88) in the sum
rule (91), we see that it is crucial for its fulfillment that the
ω integral

∫
dω/ωL

3/2
ω is of order unity, which is the case

due to the factor L
−3/2
ω . Also, we note that the subleading,

logarithmic-in-ω factor controls the logarithmically slow time
dependence of p(t ) at criticality, see Sec. III D 2.

IV. SPECTRAL CORRELATIONS

A. From finite-d models to RRG

Eigenenergies Ek of disordered tight-binding models on
d-dimensional lattices are correlated random variables whose
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statistics has been investigated intensively for several decades.
Two most popular means to characterize the multivariate
distribution function of energy levels P ({Ei}) are the statistics
of P (ω) of spacings between adjacent levels and the two-level
correlation function R(ω), Eq. (11). An important role in the
studies of the level statistics is played by the universal Wigner-
Dyson distribution characterizing a Gaussian ensemble of the
random matrix theory. This statistics is characterized by repul-
sion between adjacent levels that has, in the case of orthogonal
symmetry [Gaussian orthogonal ensemble (GOE)], the form

P (ω � �) � πω

2�
.

The nonsingular part (63) of the GOE level correlation func-
tion reads [96,97]

R̄WD(ω) = 1 − sin2 πs

(πs)2 −
[π

2
sgn(s) − Si(πs)

]

×
[

cos πs

πs
− sin πs

(πs)2

]
, s = ω

�
. (92)

There is a close correspondence between the two-level
correlation function R(ω) and the variance �2(ω) of the
number of levels I (ω) within a band of the width ω,

�2(ω) = 〈I 2(ω)〉 − 〈I (ω)〉2. (93)

Specifically, �2(ω) can be expressed in terms of R(ω) as
follows:

�2(ω) = 2

�2

∫ ω

0
(ω − ω′)[R(ω′) − 1]dω′. (94)

The level number variance is a convenient characteristics of
the rigidity of the spectrum at relatively large energy scales,
ω � �. In particular, for the Poisson and GOE statistics the
level number variance reads

�2(ω) = ω/�, Poisson, (95)

�2(ω) � 2

π2
ln

2πω

�
, GOE; ω � �. (96)

Another closely related measure of the level fluctuations is the
spectral compressibility

κ (ω) = �
d�2(ω)

dω
= 2

�

∫ ω

0
[R(ω′) − 1]dω′, (97)

with the following behavior in the two limits:

κ (ω) = 1, Poisson, (98)

κ (ω) � 2

π2

�

ω
, GOE; ω � �. (99)

Numerically, it is advantageous to evaluate a slightly different
quantity,

χ (ω) = �2(ω)/〈I (ω)〉. (100)

For the Poisson statistics it is identical to κ (i.e., equal to
unity), Eq. (98); in the Wigner-Dyson case, it differs from κ ,
Eq. (99), by a logarithmic factor only,

χ (ω) � 2

π2

�

ω
ln

2πω

�
, GOE; ω � �. (101)

A review of the behavior of R(ω) and �2(ω) in a metal-
lic sample of spatial dimensionality d < 4 can be found in
Refs. [3,98]; we briefly outline the key results that will be
important for the analysis below.

For frequencies below the Thouless energy ETh ∼ D/L2

(which is much larger that the level spacing � for a metallic
sample) the Wigner-Dyson statistics applies, implying, in
particular, Eq. (92) for R(ω) and Eq. (101) for χ (ω). The
Thouless energy has a physical meaning of the inverse time
of diffusion through the sample.

Above the Thouless energy, the connected level correla-
tion function R(c)(ω) = R(ω) − 1 is dominated by the term
R

(c)
diff (ω) originating from diffusive modes [99]:

R
(c)
diff (ω) = �2

π2
Re
∑
q �=0

1

(Dq2 − iω)2
. (102)

For d < 4, the sum is controlled by the infrared limit, q ∼
π/L, yielding

R(c)(ω) ∼ g−d/2
(ω

�

)d/2−2
, (103)

where g ∼ ETh/� is the dimensionless conductance. The
relative level number variance χ (ω) is then given by

χ (ω) ∼ g−d/2
(ω

�

)d/2−1
. (104)

We are particularly interested in the situation, when the system
is close to the Anderson transition, on its metallic side, so
that the correlation length ξ is large but the system size is
still larger, L � ξ . In this case, the diffusive regime, see
Eqs. (103) and (104), extends up to the frequency given by
the Thouless energy ETh(ξ ) ∼ D/ξ 2 of a sample of the size ξ ,
which is of the order of the level spacing �ξ of such a sample.

For higher frequencies, the system enters the critical
regime. The level correlation function in this regime was
studied in Ref. [100], with the result

R(c)(ω) ∼ (�ξ /�)1−γ (ω/�)−2+γ , (105)

where γ = 1 − 1/νd and ν is the correlation length expo-
nent (see also numerical study Ref. [101]). The spectral
compressibility κ as well as the relative level number vari-
ance χ are given by a nontrivial constant in the critical
regime: κ (ω), χ (ω) � χ∗ with 0 < χ∗ < 1 [98]. (This behav-
ior was first proposed on a basis of numerical simulations
in Ref. [102].) The critical “spectral compressibility” χ∗ is
a universal characteristics of the Anderson transition, i.e., it
depends only on dimensionality and on symmetry class but
not on the sample geometry and on microscopic details of the
model. Corrections to χ∗ are parametrically small and follow
from Eq. (105):

χ (ω) = χ∗ + δχ (ω); δχ (ω) ∼ (�ξ /ω)1−γ . (106)

Finally, the behavior of R(ω) and χ (ω) at the highest
frequencies depends on short-scale details of the microscopic
model. In Ref. [98], it was determined for an n-orbital model
in d dimensions. We will not need it for our discussion below.

After this reminder of previous results for d-dimensional
systems with d < 4, we turn to the levels statistics on RRG.
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Proceeding in the same way as for the eigenfunction corre-
lations in Sec. III, we will first formulate conjectures based
on the extrapolation of finite-d results to d → ∞. After this,
we will substantiate this conjectures by analytical calculations
using the field-theoretical approach presented in Sec. III B 1.
Finally, we will complement the analytical results by a numer-
ical exact-diagonalization study.

Thus we first extend the results for the above three regimes
of the level statistics (RMT, diffusive, and critical) to d → ∞,
with an expectation that this will correctly describe RRG.
The RMT regime is fully universal once the frequency is
normalized to the level spacing. Turning to the diffusive
regime, we observe that the sum in Eq. (102) diverges in the
ultraviolet for d > 4. This means that the sum should be cut
off at the largest q and that the frequency ω in the denominator
can be discarded. The result is

R
(c)
diff (ω) � a�, (107)

and thus

χ (ω) � aω. (108)

If the sum over q in Eq. (102) is cut off at the inverse mean
free path l−1 (which is the largest momentum for which
the diffusive approximation is still meaningful), one gets the
following result for the coefficient c in these formulas:

a ∼ l4−d

νD2
. (109)

In fact, the value of this coefficient is expected to be dependent
on ultraviolet details of the model, since momenta q � l−1

will in general also contribute. This does not affect, however,
the scaling of the level statistics (107) and (108) with � and ω.
We thus conclude that Eqs. (107) and (108), with a coefficient
a that is independent on the system size and on frequency (i.e.,
depends only on the short-scale details of the model and on
the degree of disorder), should be generically valid in d > 4
dimensions. We will continue calling this regime “diffusive”
although the sum in Eq. (102) is of ultraviolet character. It is
a natural conjecture that Eqs. (107) and (108) are also valid
on RRG.

Finally, we discuss the critical regime. The critical spectral
compressibility κ∗ is expected to tend to its Poisson value
unity in the limit d → ∞. Further, the exponent 1 − γ =
1/νd governing the frequency-depending correction δχ (ω) in
Eq. (106) tends to zero in the limit d → ∞. Our previous ex-
perience (Sec. III) tells us that this likely implies a logarithmic
dependence of δχ on ω. Having summarized our expectations
based on finite-d results, we can proceed with direct analytical
and numerical studies of the level statistics on RRG.

B. Level number fluctuations on RRG: Field-theoretical
results and numerical simulations

By definition, the RRG two-level correlation function can
be written as

R(ω) = �2
∑
ij

Bij (E,ω), (110)

where Bij (E,ω) is the correlation function of local densi-
ties of states defined by Eq. (64). The correlation function

Bij (E,ω) was calculated within the supersymmetry approach
in Sec. III D. Using the result (65), we get for the connected
part R(c)(ω) of the level correlation function,

R(c)(ω) = R
(c)
WD(ω) + R

(c)
diff(ω), (111)

where

R
(c)
diff(ω) = �

2π2ν

∑
r

(m + 1)mr−1 Re K
(c)
1 (r, ω) (112)

and K
(c)
1 (r, ω) = K1(r, ω) − |〈GR (0)〉|2 is the connected part

of the Bethe-lattice correlation function (66). For ω � N−1
ξ ,

the correlation function K
(c)
1 (r, ω) is essentially independent

of ω and thus can be replaced by K
(c)
1 (r, 0) ≡ K

(c)
1 (r ) �

K2(r ). Using Eq. (48), we see that the sum over r in Eq. (112)
converges at r ∼ 1, yielding

R
(c)
diff(ω) ∼ Nξ

N
, ω < N−1

ξ . (113)

The corresponding behavior of the relative number variance
χ (ω) is

χ (ω) ∼ Nξ ω. (114)

Let us analyze the obtained result (111). Since the second
term, Eq. (113), is proportional to 1/N , the Wigner-Dyson
statistics is valid up to a relatively large (in comparison to level
spacing �) scale. This is another manifestation of ergodicity
of the RRG ensemble in the whole delocalized phase W <

Wc. Similar to other manifestations of ergodicity, such as
the 1/N scaling of the IPR, the RMT level statistics sets in
when the system is sufficiently large, N � Nξ . The second
term in Eq. (111) as given by Eqs. (112) and (113) is fully
analogous to the diffusive contribution (102) and (107) in
d > 4 dimensions: it is independent of ω, proportional to �,
and controlled by short spatial scales.

In order to determine the frequency scale at which the level
correlation function loses its universal (RMT) character, we
compare the two contributions in Eq. (111). Using R

(c)
WD(ω) ∼

(�/ω)2 and Eq. (113), we find the crossover scale

ωc ∼ 1

(NNξ )1/2
. (115)

In d < 4 dimensions, the characteristic scale for departure
from universal (RMT) behavior is the Thouless energy ETh.
We observe, however, that the scale ωc is much smaller than
the Thouless energy ETh ∼ t−1

Th defined as inverse of the
Thouless time tTh required for a diffusing particle on RRG
to reach the most remote points of the system. Indeed, the
Thouless time on RRG scales only logarithmically with the
volume N :

tTh ∼ D

ln N/ ln m
. (116)

Here, D is the diffusion coefficient which scales near the
transition as N−1

ξ with subleading logarithmic factors, see
Eq. (83).

To detect the Thouless time most directly in spectral prop-
erties, one can study the spectral form-factor K (t ), which is
the Fourier transform of the two-level correlation function
R(ω). The Thouless time marks the departure of K (t ) from its
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universal (RMT) behavior. In d < 4 dimensions, the inverse of
this scale, i.e., the Thouless energy, marks the departure from
RMT in the frequency representation, as discussed above. On
the other hand, in RRG (and in d-dimensional systems with
d > 4), the leading correction to the RMT contribution to
R(ω) originates from short (ballistic) times. This is why the
crossover scale ωc, Eq. (115), is parametrically smaller than
ETh ∼ t−1

Th with tTh given by Eq. (116). On the other hand,
if one performs a Fourier transformation to the time domain
[i.e., considers K (t )], one finds the Thouless time (116) as the
crossover scale between the RMT and the diffusive behavior
[103]. The same time determines the saturation of the return
probability p(t ) in a finite system, see Sec. III D 2. In fact, in
a “metallic” system, K (t ) and p(t ) are closely related since
the spectral correlations can be traced back to the diffusing
trajectories, see Eq. (102). This leads to the relation K (t ) ∝
|t |p(t ) in a diffusive system [104,105]. We relegate a more
detailed discussion of K (t ) and of the Thouless time tTh on
RRG to a separate publication.

We turn now to the discussion of the critical regime.
We have seen in Sec. III D 1 that the correlations between
critical eigenstates are fully developed only up to the scale
ωN , Eq. (73), which is suppressed in comparison to the level
spacing � by a logarithmic factor ln3/2 N � 1. This means
that the region of strong level repulsion experiences analogous
suppression: the level repulsion is strong only for ω � ωN .
Therefore, with increasing N , the level statistics of the RRG
model at criticality approaches the Poisson statistics, as also
confirmed by exact diagonalization. One of the manifestations
of this behavior is the Poisson value of the critical level
compressibility,

χ∗ = 1. (117)

This should be contrasted to a finite-d system at Anderson
transition, for which the critical statistics is intermediate
between Wigner-Dyson and Poisson forms [106] and, con-
sequently, 0 < χ∗ < 1. In view of the logarithmic depen-
dence of ωN/� on N , the approach to the critical value
(117) is expected to be logarithmically slow in frequency, in
agreement with the argument (based on the d → ∞ limit)
presented in the end of Sec. IV A. Our analytical results for
the relative level number variance χ (ω) for a delocalized RRG
system close to the metal-insulator transition, N � Nξ � 1,
are summarized in Fig. 8.

We now turn to the discussion of the exact-diagonalization
numerical results for the spectral correlations, which are
shown in Figs. 9 and 10. In Fig. 9, the relative level number
variance χ (ω) is presented on the log-log scale. The RMT and
diffusive regimes are clearly seen, cf. Fig. 8. The numerical
curve agrees very well with the analytical prediction (111),
which is a sum of the Wigner-Dyson and diffusive contribu-
tions given by Eqs. (101) and (114), respectively.

In Fig. 10, we show (on the log-linear scale) the evolution
of χ (ω) curve with disorder increasing towards Wc. In the
metallic domain (W < Wc), both RMT and diffusive regions
are observed, with the border between them (the point of the
minimum of χ ) moving towards smaller ω with increasing
disorder (i.e., increasing Nξ ), in agreement with Eq. (115).
Furthermore, the maximum value of χ (ω) on the right border
of the diffusive regime moves towards the Poisson value,

)ω(χ

ω
1−N

2/1−)N( 1− 1

1

RMT diffusive critical

ξN ξN

FIG. 8. Schematic representation of analytical predictions for the
spectral statistics: relative level number variance χ (ω) in the metallic
phase, W < Wc close to the transition point, N � Nξ � 1. The
behavior of χ (ω) in the RMT regime is given by Eq. (101), in the
diffusive regime by Eq. (114), and in the critical regime by Eq. (117)
with a logarithmic correction.

Eq. (117), as predicted. In other words, the critical regime
starts to develop. On the other hand, it proves to be numer-
ically very difficult to have all three regimes (RMT, diffusive,
and critical) fully developed on one curve, since this requires
very large system sizes. In order to numerically observe the
critical regime, we have performed simulations directly at
the critical disorder W = 18 (black curve). We see that at
criticality χ (ω) indeed gradually approaches its predicted
limiting value, Eq. (117), as the frequency is lowered. Further-
more, this approach is logarithmically slow, in agreement with
expectations presented above. Specifically, it can be described
by

χ (ω) = 1 − c(χ )

lnμ′
(1/ω)

, (118)

with μ′ � 1, as shown in the inset. A further analytical work
is needed to verify whether μ′ = 1 is indeed an exact value of
this index.

Finally, let us note that the relative level number variance
on RRG was recently studied [52] by means of the saddle-
point method that yields the self-consistency equations (85)

FIG. 9. Relative level number variance χ (ω) as obtained by
exact diagonalization. System with N = 131 072 sites, disorder W =
8. Blue full line: exact diagonalization; black full line: analytical
prediction (111), which is a sum of the RMT contribution, Eq. (101),
shown by a dash-dotted line and the diffusive contribution (114)
shown by a dashed line.
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FIG. 10. Relative level number variance χ (ω) as obtained by
exact diagonalization. System with N = 65 536 sites and several
disorder values corresponding to the delocalized phase (W = 8, 10,
and 12) and the critical point (W = 18). Also shown are results of
Ref. [52] obtained by solution of the self-consistency equation (green
dots: W = 10, cyan dots: W = 12.5) in the limit of N → ∞ at fixed
ω; such limiting procedure discards the RMT contribution. (Upper
inset) ln(1 − χ (ω))−1 vs ln ln(1/ω) at the critical disorder W = 18.
The straight line corresponds to Eq. (118) with μ′ = 1.

and (86). The analysis of Ref. [52] was performed in the
limit N → ∞ at fixed ω, i.e., it did not include the RMT
part. The results of Ref. [52] based on a numerical solution
of the self-consistency equations are shown in Fig. 10 by
green and cyan dots for W = 10 and W = 12.5, correspond-
ingly. A good agreement between these data and results
of our exact-diagonalization simulations is observed for not
too low frequency, ω > ωc, as expected. For lower frequen-
cies, our results cross over to the RMT behavior, while the
data of Ref. [52] continue to follow the diffusive behavior,
Eq. (114).

V. SUMMARY

In this paper, we have studied dynamical and spatial cor-
relations of eigenfunctions as well as energy level correla-
tions in the Anderson model on RRG. Our focus was on
the delocalized side of the Anderson transition and on the
critical point. We have employed a supersymmetric functional
integral representation to perform averaging over the random
potential and over configurations of the graph. This approach
has allowed us to evaluate the RRG correlators in terms of
the saddle-point of the aforementioned supersymmetric ac-
tion. The corresponding saddle-point equation is equivalent to
the self-consistency equation characterizing an infinite Bethe
lattice, and we have used analytical properties of its solu-
tion. In addition, to obtain accurate quantitative descriptions
of RRG correlation functions, we have solved the saddle-
point equation numerically. Furthermore, we have studied
the correlation functions by direct numerical diagonalization
of the RRG problem. We have found an outstanding agree-
ment between the exact diagonalization and the saddle-point
approach, which serves as an additional demonstration of

validity of the latter one (and thus of the ergodicity of the
delocalized phase whose analytical derivation is based on the
saddle-point analysis).

Our key findings for specific correlation functions on RRG
are as follows. (1) We have calculated the autocorrelations of
a wave function, α(r ) = 〈ψ2(r )ψ2(0)〉. The analytical results
are given by Eq. (54) for the delocalized phase with N �
Nξ and by Eq. (52) for the critical regime. The scaling of
IPR P2 = Nα(0) ∼ Nξ/N (which is a direct extension of
the analogous result for the SRM ensemble [38]) proves the
ergodicity of the delocalized phase, in agreement with the
earlier numerical findings [50,51]. Exact diagonalization fully
confirms these results and allows us to directly visualize the
correlation length ξ , see Fig. 1. There is a perfect quantitative
agreement between the value of the IPR in the delocalized
phase as obtained by exact diagonalization with that found
from the analytical approach complemented by a numerical
solution of the self-consistency equation.

(2) Next, we have studied the correlation function of dif-
ferent wave functions at the same point β(0, ω). We have
found that, in the delocalized phase, it is characterized by a
frequency scale ω ∼ 1/Nξ , below which it is ω-independent
and is equal to 1/3 of the autocorrelation function of a
single wave function, β(0, 0) = 1

3α(0). At a larger frequency,
β(0, ω) crosses over to the critical behavior, see Eq. (75) and
Fig. 4. Again, we have found a perfect consistency between
the analytical approach (also in combination with numerical
analysis of the self-consistency equation) and the exact diag-
onalization.

(3) We have further extended the analysis of the correla-
tion function β(r, ω) of different eigenfunctions to different
points, r �= 0, see Eq. (88) and Fig. 7.

Interestingly, the behavior of the correlation functions α(r )
and β(r, ω) can be largely understood if RRG is considered
as the d → ∞ limit of a d-dimensional lattice. This limit
has, however, a very singular character in the following sense.
First, one has to replace rd → mr , with r staying either for
distance between the points or the frequency-related scale at
criticality, Lω ∼ ln(1/ω), or the correlation length ξ . Second,
such a replacement misses additional subleading factors, of
power-law character in r or logarithmic in ω. These factors
are intimately related to finiteness of IPR at criticality and
underlie the logarithmically slow critical dynamics.

(4) As a quantity closely related to β(0, ω), we have
studied the return probability p(t ) of a particle propagating
from a given point on an RRG. In the delocalized phase,
the return probability decays exponentially fast to its limiting
value Nξ/N . On the other hand, at criticality, p(t ) decays
logarithmically slowly to a value of order unity determined
by the IPR. These properties of the delocalized phase and the
critical point lead to a very peculiar crossover of p(t ) as a
function of time near the criticality: from logarithmically slow
to exponentially fast variation.

(5) Finally, we have studied the level statistics on RRG,
with a particular focus on the level number variance. In the
delocalized phase and N � Nξ , the statistics at relatively low
frequencies ω has the RMT form, reflecting the ergodicity of
the system. With increasing ω, a crossover to a “diffusive”
regime takes place, for which the relative number variance
χ (ω) and spectral compressibility κ (ω) increase linearly with
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frequency, Eq. (114). As a result, a new energy scale ωc

emerges, Eq. (115), at which the “ergodization” of the level
statistics takes place. At criticality, the function χ (ω) loga-
rithmically slowly approaches its Poisson value (unity), see
Eq. (118).

Let us now speculate on possible implications of our
findings for many-body problems. As has been mentioned
in Introduction, the RRG model has important connections
to many-body models studied in context of MBL. Indeed,
many-body Hamiltonians have typically a sparse hierarchical
structure in the Fock space, which establishes a link between
them and RRG. We expect that the following features of the
RRG problem are likely to be relevant for the description
of many-body eigenstates around the MBL transition: (i)
quasilocalized character (Poisson level statistics) of the criti-
cal point, (ii) logarithmically slow relaxation at criticality, (iii)
ergodicity of wave functions at the delocalized side, and (iv)
ergodicity of the eigenenergy distribution in the delocalized
phase characterized by the RMT level statistics at relatively
low frequencies, with a crossover to �2(ω) ∝ ω2 at higher
frequency.

Indeed, all features listed above are observed in numerical
studies of the MBL transition in various systems, and some
of them are observed experimentally. The critical statistics,
as judged by the mean adjacent gap ratio r , tends to the
Poissonian one [10,107] upon increase of the system size,
suggesting that (i) is valid. The fact that equilibration from
out-of-equilibrium state is slow with power-law exponents
approaching zero at the transition appears both, in numeri-
cal simulations [10,108–112] and experiments [16,113,114],

confirming (ii). Many-body wave functions scale ergodically
with the size of the Fock space in the delocalized regime
[10,32], confirming (iii). (We note that the behavior in the
localized phase is more tricky, since P2 shows fractal scaling
in the many-body problem [10,32] contrary to P2 ∼ 1 in
the localized phase on the RRG.) Very recently, the level
number variance in a many-body problem has been stud-
ied numerically [115] and analytically [116] for the SYK
model, suggesting that (iv) is also valid. Finally, it would
be interesting to understand what does the connection to the
RRG problem imply for off-diagonal matrix elements of local
operators studied in Ref. [117].

While we were preparing this manuscript for publication,
a preprint appeared [55] that discusses statistical properties
of the RRG model. The central conclusion of the authors of
Ref. [55]—the ergodicity of the RRG model in the delocalized
phase at N � Nc, with the crossover scale Nc (which is the
same as Nξ of the present work) diverging exponentially at the
Anderson transition point—is in agreement with the present
work and with the earlier works [38,50–52] on RRG and SRM
models.
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