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Effect of exciton diffusion on the triplet-triplet annihilation rate in organic
semiconductor host-guest systems
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We study the contribution of triplet exciton diffusion to the efficiency loss resulting from Förster-type
triplet-triplet annihilation (TTA) in organic phosphorescent semiconductor host-guest systems, using kinetic
Monte Carlo (KMC) simulations. Our study focusses on diffusion due to Förster-type guest-guest transfer,
but includes also a comparison with simulation results for the case of Dexter-type guest-guest transfer. The
simulations are carried out for a wide range of Förster radii, and for guest concentrations up to 100 mol%,
with the purpose to support analyses of time-resolved photoluminescence experiments probing TTA. We find
that the relative contribution of diffusion to the TTA-induced efficiency loss may be deduced quite accurately
from a quantitative experimental measure for the shape of the time-dependent photoluminescence intensity, the
so-called r ratio. For small guest concentrations and Förster radii that are most relevant to organic light-emitting
diodes (OLEDs), the diffusion contribution is in general quite small. Under these weak-diffusion conditions,
the absolute diffusion contribution to the TTA-induced efficiency loss can be understood quantitatively using a
capture radius formalism. The effective guest-guest diffusion coefficient that follows from the TTA simulations,
using the capture radius formalism, agrees well with the diffusion coefficient that follows from direct KMC
diffusion simulations. The simulations reveal that the diffusion coefficient is strongly affected by the randomness
of the distribution of guest molecule locations.
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I. INTRODUCTION

The internal quantum efficiency (IQE) of phosphorescent
organic light-emitting diodes (OLEDs) shows in general a de-
crease with increasing current density (“roll-off”), caused by
triplet-triplet annihilation (TTA) and triplet-polaron quench-
ing (TPQ) [1–3]. The local energy dissipation that results from
these two processes can also trigger molecular degradation,
reducing the operational OLED device lifetime [4–6]. The
development of in-depth understanding requires a multiscale
approach, including the molecular scale, at which the final
excitonic interaction processes take place, as well as the meso-
scopic scale, at which charge and exciton diffusion take place.
Whereas recently much progress has been made concerning
the detailed molecular-scale description of charge transport
processes [7–9], less is known about the triplet transfer, TTA
and TPQ processes in phosphorescent host-guest systems.
The distance (R) dependence of these processes is described
assuming a Förster-type algebraic (R−6) dependence, or a
Dexter-type exponential [exp(−2R/λ)] dependence, with λ

the triplet exciton wave-function decay length. The depen-
dence of the rate of these processes on the energy difference
between the two molecules involved, affecting the tempera-
ture dependence, has been described using Miller-Abrahams
[10] or Marcus-type [11] transfer rates. Within a proper de-
scription of TTA and TPQ, also the positional and energetic
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disorder of the phosphorescent guest molecules should be
included.

Deriving from experiment a quantitative mechanistic pic-
ture of the interplay of all excitonic processes is in practice
quite difficult. From most experimental studies carried out so
far, the loss rate of the triplet volume density (T ) resulting
from TTA is therefore expressed phenomenologically as

dT

dt
= −kTTf T 2, (1)

with t the time, kTT a rate coefficient, and f the fraction of
triplets lost in the process (f = 1/2 if one triplet is lost, and
f = 1 if both triplets are lost). Similarly, the loss due to TPQ
is expressed using the expression dT /dt = −kTPQnT , with n

the polaron volume density. From KMC simulations, we have
shown that these descriptions can indeed provide a proper
description of the local rate, but not under all conditions [12–
14]. For Förster-type TTA, kTT is not a constant but increases
at high triplet densities [12]. Similarly, for nearest-neighbor-
type TPQ, kTPQ is not a constant but increases at high polaron
densities and electric fields [13]. These complications must be
taken into account when analyzing steady-state experiments
probing TTA and TPQ. KMC simulations have revealed a fur-
ther breakdown of the validity of Eq. (1) when applied to time-
resolved photoluminescence studies probing TTA [12]. In
systems with only weak triplet exciton diffusion, the implicit
assumption that underlies Eq. (1), viz. that the triplet volume
density is spatially uniform, becomes in such experiments to
an increasing degree incorrect when time proceeds. The role
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of guest-guest exciton diffusion can be probed by studying
the guest concentration dependence of the time-dependent PL
intensity as a function of the initial triplet volume density
[15,16], but also by analyzing, for a specific guest concen-
tration, the precise shape of the time-dependent PL intensity
[12,17]. As the latter method can already be applied to a single
film composition, it is, in principle, quite powerful as a means
to disentangle the roles of the direct TTA loss-process and the
guest-guest diffusion process that enhances the overall TTA
loss. However, such an analysis has so far only be carried out
for a few specific material systems [16–18]. A wider view on
the applicability of this approach is still missing.

In this paper, we present the results of a KMC simulation
study of the effects of exciton diffusion on the efficiency
loss due to TTA as probed in time-resolved PL studies of
phosphorescent host-guest systems. Our aim is to provide a
systematic and complete analysis for model materials with
guest concentrations that are realistically used in OLEDs. We
focus on materials in which TTA and guest-guest diffusion are
both Förster-type processes. Advantageously, for a material
with a given emissive lifetime only one free parameter is
then needed to describe the distance-dependent rate of each
process, viz. the Förster radius (see below). When assuming
Dexter transfer, two parameters would be needed, viz. the rate
in the zero-distance limit and the exciton wave-function decay
length [20]. From experiment, a predominant role of the Dex-
ter mechanism for guest-guest transfer at guest concentrations
in the 5–15 mol% range cannot be ruled out [18]. However,
recent results from first-principles theory indicate that in that
range Förster transfer contributes similarly to triplet exciton
diffusion between the metal-organic emissive dye molecules
[21]. We include in this paper a brief comparison between
the contributions to the TTA loss resulting from diffusion
described by both mechanisms. The simulations include the
discreteness of the molecular positions, where we assume for
simplicity a simple cubic lattice. The effects of diffusion are
analyzed using the results of separate KMC simulations of
exciton diffusion in host-guest systems. These simulations
show that for host-guest systems used typically in OLEDs,
with guest concentrations up to 15 mol%, the randomness
of the locations of the guest molecules strongly affects the
effective diffusion coefficient. As a result, expressions of the
guest concentration dependence of the diffusion coefficient
proposed earlier in the literature are in this relevant concen-
tration range invalid.

The paper is organized as follows. In Sec. II, a brief
summary is given of the method for simulating and analyzing
time-resolved PL experiments probing TTA. In Sec. III, we
show how for Förster-type TTA in the absence of diffusion,
the time and initial triplet density dependence as probed
by a time-resolved PL experiment deviates from the shape
expected in the strong-diffusion limit. In Sec. IV, the effects
of Förster-type diffusion on the efficiency loss and the detailed
time-dependent PL intensity are discussed. We provide in
this section also a brief comparison with results obtained
assuming Dexter-type diffusion. Section V gives a summary
and conclusions. In the Appendix, we provide support for the
analysis of diffusion effects on the TTA process by giving
results of KMC simulations of exciton diffusion in host-guest
systems.

II. SIMULATION AND ANALYSIS METHODS

We adopt in this paper the method for simulating
the emission intensity decay as observed from time-
resolved PL experiments using the methodology described in
Refs. [12,16–18]. A technical explanation of the sequence of
substeps performed upon each Monte Carlo step (calculation
of the rate for each possible event, event selection, event exe-
cution and simulation time update) is given in the Appendix of
Ref. [12]. In short, we use the BUMBLEBEE KMC simulation
tool [22] to calculate the time-dependent radiative decay I (t )
occurring after photon absorption at t = 0 in a dilute host-
guest system. The guest molecules are randomly positioned
on the sites of a simple cubic lattice with a lattice parameter
(intersite distance) equal to a0 = 1 nm. The size of each sys-
tem (“simulation box”) considered is 100 × 100 × 100 sites,
with periodic boundary conditions. In the dilute host-guest
systems studied experimentally, almost all absorption occurs
at the host material. Fast singlet exciton transfer between the
host molecules, which act as a donor, followed by fast transfer
to the guest molecules, which act as an acceptor, leads almost
instantaneously (within a few nanoseconds) to essentially
100% transfer to the guest molecules. Subsequently, inter-
system crossing at the metal-organic phosphorescent guest
molecules leads to fast singlet-to-triplet conversion. Due to
the large energy difference between singlet and triplet exciton
states, reverse intersystem crossing is very slow and has been
neglected. In the simulations, we therefore make the simpli-
fying assumption that the absorption process leads to the im-
mediate generation of triplet excitons on the guest molecules.
All simulations have been performed for an initial triplet
volume density equal to T0 = 1 × 1024 m−3, corresponding
to 1000 triplet excitons in the simulation box. Even for a
guest concentration as small as 2 mol% (20 000 molecules
in the simulation box containing 106 molecules), only 5%
of the guest molecules are thus excited at t = 0. We find
that the dependence of the TTA rate coefficients on T0 is for
values around or below the value chosen in this work very
weak [17]. The triplet exciton energy of the host molecules is
assumed to be much larger than that of the guest molecules,
so that no triplet exciton transfer to the host molecules occurs.
From experiment, we have recently found that this requires
that the difference between the host and guest triplet energies
is at least 0.2 eV [18]. The output from each simulation is
the set of times at which radiative decay takes place from
those excitons (at most 1000) that were not lost due to TTA.
From the cumulative emission curve that can be deduced from
this dataset, detailed information about the nature of the TTA
process is deduced in a manner discussed below. In order
to improve the numerical accuracy, the number of emission
events on which the analysis is based is enhanced by carrying
out these simulations (in parallel or sequentially) for a large
number of simulation boxes with different random positions
of the guest molecules.

Triplet exciton diffusion and TTA are described as the
result of a dipole-dipole (Förster-type) interaction. For the
emitter molecules used in OLEDs, this is made possible by
the admixture of a small amount of singlet character due to
the spin-orbit coupling induced by a heavy-metal atom such
as iridium (see Ref. [12] for a more extended description
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of the process). The rates are equal to (1/τ )(RF,diff/R)6 and
(1/τ )(RF,TT/R)6, with RF,diff and RF,TT the Förster radii for the
triplet exciton transfer and triplet-triplet interaction processes,
respectively, and R the intermolecular distance. We note that
in actual materials the disordered (amorphous) structure leads
to a distribution of triplet energies (“energetic disorder”). In
order to limit the number of simulation parameters, this effect
is neglected.

TTA is described as a process upon which a triplet on
a first molecule gives rise to a higher-energy excitation of
a second molecule on which already a triplet resides, after
which the first molecule is left in the ground state. Upon
each triplet-triplet interaction process, one of the two triplets
is thus annihilated. The remaining exciton can, in principle,
be a singlet, a triplet or a quintet. As we consider triplets on
phosphorescent metal-organic emitters based on, e.g., iridium
or platinum, such as used in OLEDs, the second molecule
is then left (after partial de-excitation and fast intersys-
tem crossing) in the lowest-energy triplet-excited state. The
radiative decay time used in the simulations is τ = 1 μs, a
typical value for metal-organic phosphorescent emitters used
in OLEDs. As the triplet-triplet interaction and triplet transfer
rates depend in the same manner on τ , the value of τ used does
not affect the relative contribution of diffusion to the TTA-
induced efficiency loss. Nonradiative decay is not included.
Unless stated otherwise, only interactions of a given exciton
with other excitons residing in a cube of size 2Rmax centered
around that exciton are included, with Rmax equal to the larger
of 2RF,TT or 2RF,diff. For RF,TT = 6 nm, e.g., the interaction
rates with excitons, if present, on 253 − 1 = 15 624 neighbor
sites are evaluated. In Sec. III, a comparison is made with
results obtained for a doubled interaction range.

For systems with strong exciton diffusion (sd), the triplet
volume density T remains spatially uniform during the entire
time-resolved PL experiment. The conventional phenomeno-
logical expression [Eq. (1)] for describing the triplet loss rate
is then applicable, and the normalized decay of the emission
intensity is given by

I (t )

I (0)

⌋
sd

= 2

(2 + T0kTT,sdτ ) exp(t/τ ) − T0kTT,sdτ
, (2)

with kTT,sd the rate coefficient that effectively describes the
triplet loss-rate under strong-diffusion conditions. From a
summation over all lattice sites, it follows that kTT,sd

∼=
(16.804/τ )RF,TT

6/a0
3. We note that the prefactor includes

a factor of 2, as within the description of the process
defined above the interaction rate for each triplet pair is
(2/τ )(RF,TT/R)6.

However, in the case of weak exciton diffusion, the exciton
loss rate due to TTA decreases more strongly with time than
as expected from Eq. (1), because excitons in a nearby pair
annihilate first so that the initial spatially random distribution
gradually develops into a spatially correlated distribution with
rather large nearest-neighbour distances. In that case, Eq. (2)
is no longer applicable and the value of kTT obtained (in-
correctly) from the experimental data assuming that Eq. (2)
would be valid will depend on the extraction method used.
In Ref. [12], we have proposed to probe the role of triplet
diffusion by comparing the value kTT,1 that would follow using

Eq. (2) from the measured time at which half of the emission
has taken place with the value kTT,2 that would follow using
Eq. (2) from the decrease of the total PL efficiency at the
value of T0 employed with respect to the PL efficiency in the
zero-fluence limit. The ratio r between both quantities,

r ≡ kTT,2

kTT,1
, (3)

is equal to unity in the strong-diffusion limit, but can exceed 2
in the absence of triplet diffusion [12]. Experiments for the
systems CBP:Ir(ppy)2(acac) [16] and TCTA:Ir(ppy)2(acac)
[18], indeed, show such a variation of the r ratio with vary-
ing guest concentration, reflecting a varying role of exciton
diffusion. Section SI in Ref. [19] gives an explanation of the
method for determining kTT,1 and kTT,2 from the simulations
and, for comparison, from experiments.

Various authors have suggested that, within an analytical
continuum theory for the no-diffusion (nd) limit, the effect
of the gradual development of a spatially correlated triplet
distribution on the TTA-induced triplet loss rate may be
expressed as [23–26]

dT

dt
= −2π3/2

3

RF,TT
3

√
τ t

T 2. (4)

This expression was obtained by extending an analytical so-
lution given by Förster for the time dependence of the density
of excited donor molecules in a system containing quenching
acceptor molecules [27]. However, Zhang and Forrest have
pointed out that in the derivation the time-dependence of
the triplet density was not consistently included [15]. We
furthermore note that (i) implicitly both interacting triplets are
assumed to be lost in the process, whereas it is commonly
assumed that only one triplet is lost (as in our simulations),
and that (ii) for actual molecular materials a theory taking the
discreteness of the molecular positions into account would
be more appropriate, instead of a continuum theory. In the
next section, we, nevertheless, find that for the values of RF,TT

included in our study (up to 6 nm), a fair description of the
KMC simulation results in the no-diffusion limit is obtained
from Eq. (4) after empirically modifying the TTA-induced
loss rate by a factor b ∼= 0.7. The normalized decay of the
emission intensity is then given by

I (t )

I (0)

⌋
nd

∼= exp(−t/τ )

1 + (2/3)bπ2RF,TT
3T0erf

√
t/τ

, (5)

with erf the error function.

III. FÖRSTER-TYPE TTA IN THE ABSENCE
OF DIFFUSION

Figure 1(a) shows the dependence of the total PL effi-
ciency, ηPL, on RF,TT, as obtained from KMC simulations for
T0 = 1 × 1024 m−3 in the absence of diffusion. In addition
to the result obtained from our default simulation approach
(Rmax = 2RF,TT, see the previous section), also results for a
doubled largest interaction distance are displayed. In terms of
the fraction (1 − ηPL) of quenched excitons, the two results
differ by about 8% for RF,TT = 3.5 nm (a typical experimental
value) to about 2.5% for RF,TT = 6 nm. As these differences
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FIG. 1. KMC simulation results of Förster-type TTA in the ab-
sence of diffusion. (a) Dependence of the total PL efficiency, ηPL,
on RF,TT, for two values of Rmax (symbols), for T0 = 1 × 1024 m−3.
The curves give the results for b = 0.65 (blue) and 0.72 (red). (b)
T0 dependence of kTT,1 and kTT,2 (dashed and full curves) as obtained
for various values of RF,TT from Eq. (5) with b = 0.65, and KMC
simulation data for T0 = 1 × 1024 m−3. (c). Dependence of the r ratio
on RF,TT for T0 = 1 × 1024 m−3, as obtained from KMC simulations
(see also Table S1 in Ref. [19]) and from Eq. (5) with b = 0.65.

are small in comparison to typical experimental uncertainties,
we regard our default approach as a fair compromise between
accuracy and computational efficiency.

For the default approach, Rmax = 2RF,TT, a good fit to the
data is obtained using b = 0.65 (blue curve in Fig. 1). For
Rmax = 4RF,TT, a good fit is obtained using b = 0.72 (red
curve). The rate coefficient kTT,2 follows from ηPL via

ηPL(T0) = −
2 ln

(
2

2+T0kTT,2τ

)
T0kTT,2τ

. (6)

We find that in the no-diffusion limit, the dependence of kTT,2

on RF,TT is for the range of values of RF,TT included in this
study (up to 6 nm) accurately described by

kTT,2,nd = p1
RF,TT

τ

3

+ p2
RF,TT

6

τ
T0. (7)

This expression is analogous to the first two terms of a series
expansion in RF,TT

3T0 of the rate coefficient kTT,ss for TTA
under steady-state (ss) conditions and in the absence of diffu-
sion (Eq. (7) in Ref. [12]), for which p1,ss = 4π2/3 = 13.2
and p2,ss = 4π2(π/2 − 1)/3 = 7.5. A fit to the simulation
data for Rmax = 2RF,TT (4RF,TT) leads to p1 = 12.2 (13.2)
and p2 = 14.6 (11.3). This comparison shows that kTT,2

as obtained from transient PL experiments is very close to
the effective TTA-rate coefficient kTT,ss that determines the
efficiency loss in, e.g., OLEDs under steady-state conditions,
i.e., at a constant triplet density T = T0, provided that the
average density of excitons within a sphere with radius equal
to RF,TT is much less than 1. For RF,TT = 3.5 nm, a typical
experimental value, this condition is quite well obeyed for
T0 = 1024 m−3. For RF,TT = 5 nm, kTT,ss is then about a factor
1.35 larger than kTT,2 (see Fig. S4 in Ref. [17]).

Figure 1(b) shows the T0-dependence of kTT,1 and kTT,2

(dashed and full curves) as obtained using Eq. (5) with b =
0.65, and the values obtained from the KMC simulations
with Rmax equal to 2RF,TT and 4RF,TT. From Eq. (5), kTT,2

is expected to be significantly larger than kTT,1, in agreement
with the simulation results. An increase and decrease, respec-
tively, of kTT,2 and kTT,1 is found beyond a certain value of
T0, as expected for kTT,2 from Eq. (7). Such an effect was
already found for TTA under static conditions. The simulation
data for RF,TT = 4.5 nm show that it is also found under
transient conditions. The effect occurs when at t = 0 within
a sphere with radius RF,TT on average more than one exciton
is present [12].

Figure 1(c) shows that from Eq. (5) and from the KMC
simulations, the r ratio increases with increasing RF,TT. This
dependence is caused by the increase and decrease of kTT,2

and kTT,1, respectively, with increasing T0, which for a given
value of T0 is largest for large RF,TT [see Fig. 1(b)]. In the limit
of small T0, the dependence of the r ratio on RF,TT vanishes.
Eq. (5) yields then r = 1.87, almost independent of the precise
value of b in the range 0.65–0.75. With increasing Rmax, the
simulation curves approach the theoretical curve, obtained
from Eq. (5) with b = 0.65. The difference is largest for
RF,TT = 2.5 nm, for which the two data series shown are based
on values of Rmax equal to 5 and 10 nm. For Rmax = 24 nm
(squared symbol, 117 648 neighbours included), the r ratio
as obtained from the simulations is essentially equal to the
value of 1.91 obtained from Eq. (5). The dependence of the
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simulation results on Rmax is mainly due to an increase of kTT,2

with increasing Rmax, because it increases with decreasing
PL efficiency [see Fig. 1(a)]. Within the numerical accuracy,
kTT,1 was found to be quite insensitive to Rmax. We note that
the numerical accuracy of kTT,2 is much better than that of
kTT,1. Obtaining kTT,1 with good accuracy requires averaging
over a larger number of simulations, as it is determined by
the difference between the actual halftime of the cumulative
emission and the halftime τ × ln 2 that would be obtained in
the absence of TTA. The simulation data shown were typically
based on the results of 1000 to 2000 simulations, leading
to a numerical accuracy of kTT,2 better than ±0.5% and of
kTT,1 of about ±10% for RF,TT = 2.5 nm to about ±5% for
RF,TT = 6 nm.

IV. EFFECTS OF DIFFUSION ON THE TTA RATE

We have studied the effects of Förster-type diffusion using
KMC simulations for values of RF,TT in the range 2.5–6 nm,
combined with values of RF,diff in the range 2–3.5 nm, for
guest concentrations cg = 1 to 100 mol%, with T0 = 1024 m−3

and Rmax = 2RF,TT. At the end of subsection A, a brief
comparison is given with KMC simulation results obtained
assuming Dexter transfer. Sections SII and SIII in Ref. [19]
contain tabulated overviews of the simulation results, in total
for 156 systems.

A. Effect of diffusion on kTT,2

Figures 2(a) and 2(b) show the guest concentration de-
pendence of kTT,2, obtained for various values of RF,diff, for
RF,TT = 3.5 and 5 nm, respectively. As expected, the effect
of diffusion increases with increasing cg and RF,diff. However,
this sensitivity is for cg close to 100 mol% smaller when
RF,TT = 3.5 nm than when RF,TT = 5 nm. This may be
explained by considering the effect of diffusion on TTA. The
effect on kTT,2 of a change of the triplet diffusion coefficient
D is large in the intermediate-diffusion regime, when exciton
diffusion significantly but not yet completely eliminates the
spatially correlated disorder of exciton positions. However,
a change of D does not affect kTT,2 anymore in the strong-
diffusion regime. For systems with a small value of RF,TT, the
strong-diffusion regime is more easily reached, as diffusion
over only a small distance will already adequately eliminate
the correlated disorder of exciton positions. That may be seen
more clearly from Fig. 2(c), which shows how for a given
value of RF,TT the rate coefficient increases with the guest
concentration, until saturation takes place when the strong-
diffusion limit is reached. From experiment, we regard values
of RF,TT

∼= 3.5 nm and RF,diff
∼= 2 nm as realistic for host-guest

systems used in OLEDs. Figure 2(a) shows that for guest
concentrations that are relevant to OLED applications, around
or below 10 mol%, the effect of diffusion on the TTA loss
is weak or intermediate; the strong-diffusion regime is not
reached.

In Fig. 3, we focus on kTT,2 in the application-relevant
low-concentration range. The figure shows that for all values
of RF,TT and RF,diff included in the simulations, kTT,2 varies
to an excellent approximation linearly with cg. The slope of
these curves, which gives the sensitivity of kTT,2 to a con-

FIG. 2. KMC simulation results of the rate coefficient kTT,2 de-
scribing the PL efficiency loss due to Förster-type TTA combined
with Förster-type diffusion. [(a) and (b)] Dependence on the guest
concentration and RF,diff, for RF,TT = 3.5 nm and RF,TT = 5 nm,
respectively. (c) Dependence on RF,TT for RF,diff = 3.5 nm, for (from
bottom to top) the following conditions: no diffusion, cg = 1, 2, 4,
8, 16, 32, 64, and (only for RF,TT = 3.5, 4, and 4.5 nm) 100 mol%.
The dashed strong-diffusion line gives kTT,sd (see Sec. II) and the
dashed no-diffusion line gives kTT,2,nd as obtained from Eq. (7) with
(for simplicity) p1 = 4π 2/3 and p2 = 0.

centration change, increases with increasing RF,TT and RF,diff.
Figure 4 shows that this sensitivity varies for a given value
of RF,diff linearly with RF,TT, and approaches zero when RF,diff

approaches a cutoff value R0 = 1.8 nm. For the concentration
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FIG. 3. Dependence of the rate coefficient kTT,2 on the guest
concentration for various values of RF,TT and for RF,diff = 2 (a),
2.5 (b), 3 (c) and 3.5 nm (d), from KMC simulations for T0 =
1024 m−3 and τ = 1 μs. The lines give a linear interpolation between
successive data points.

range shown (cg � 8 mol%), the effect of diffusion is to a very
good approximation additive, so that kTT,2 can be described as
a sum of kTT,2,nd plus a diffusion contribution kTT,2,diff:

kTT,2 = kTT,2,nd + kTT,2,diff

= kTT,2,nd + p3
(RF,TT − R0)

a0

(
RF,diff

a0

)4.1

cg, (8)

with p3 = 1.8 × 10−21 m3s−1(mol%)−1 if cg is expressed in
units mol%. R0 is independent of all other parameters and

FIG. 4. Sensitivity of kTT,2 to the guest concentration as a func-
tion of RF,TT, obtained from KMC simulations for various values
of RF,diff (symbols). The dashed lines give a fit using Eq. (8). The
sensitivity vanishes for RF,TT = R0 = 1.8 nm.

equal to the 1.8-nm cutoff distance mentioned above. Figure 4
shows that the quality of the fit is excellent.

The surprisingly simple form of kTT,2,diff, given in Eq. (8),
may be rationalized as follows. Within a capture radius for-
malism [15], one expects that the diffusion contribution may
be expressed as

kTT,2,diff
∼= 8πRc,effD, (9)

with Rc,eff an effective capture radius and D the triplet exciton
diffusion coefficient. The simulation results suggest that the
effective capture radius is equal to

Rc,eff = RF,TT − R0. (10)

Explicit KMC simulations of the diffusion coefficient, pre-
sented in Appendix, show that for small guest concentrations
the diffusion coefficient is due to the randomness of the
guest molecule positions enhanced over the value that would
be expected when assuming that the guest molecules reside
on an ordered lattice of sites. Consistent with Eq. (8), the
diffusion coefficient depends for cg in the 2–5 mol% range
approximately linearly on cg [Fig. 8(a)]. Furthermore, D is
approximately proportional to RF,diff

α , with α in the range
4–5 ([Fig. 8(b)]. This finding provides a rationalization for
the empirical exponent of 4.1 given in Eq. (8). As a repre-
sentative example, we consider a system with cg = 5 mol%,
RF,TT = 3.5 nm and RF,diff = 2 nm. Neglecting the diffusion
contribution, kTT,2,diff would [from Eq. (7)] then be equal to
0.56 × 10−18 m3 s−1. From Eq. (8), the value of kTT,2,diff ob-
tained from the simulations is 0.79 × 10−18 m3 s−1, whereas
using Eqs. (9) and (10) the value of kTT,2,diff estimated from
the capture radius formalism is 0.48 × 10−18 m3 s−1. In view
of the simplifications made, we consider the agreement as
satisfactory.

As discussed in Introduction, we cannot exclude that
in phosphorescent metal-organic host-guest systems used in
OLEDs Dexter-type exciton transfer contributes at high con-
centrations more strongly to the diffusion coefficient than
Förster-type transfer. For large values of the Dexter rate in
the zero-distance limit, kD,0, and for a realistic value of the
wave-function decay length, λ = 0.3 nm, the dependence of
the diffusion coefficient on the guest concentration is stronger
than as obtained assuming Förster-type transfer, as shown
in Sec. SIV in Ref. [19]. The diffusion contribution to kTT,2

shows for the case of Dexter transfer therefore a superlinear
dependence on the guest concentration dependence (see Sec.
SV in Ref. [19]). For RF,TT � 3 nm, the diffusion contribution
is found to be approximately proportional to (RF,TT − R0),
with R0 = 1.8 nm, as for the case of Förster transfer. For a sys-
tem with cg = 20 mol%, RF,TT = 4 nm, kD,0 = 1.6 × 1011 s−1,
and λ = 0.3 nm, kTT,2,diff is equal to 1.00 × 10−18 m3 s−1.
For comparison, kTT,2,nd is then equal to 0.84 × 10−18 m3 s−1.
Using Eqs. (9) and (10), the value estimated from the cap-
ture radius formalism assuming Rc,eff = RF,TT − R0 would
be 0.51 × 10−18 m3 s−1. The capture radius formalism thus
provides again a good rough estimate.

B. Effect of diffusion on the r ratio

In the previous subsection, we have concluded that for
Förster radii and guest concentrations that are relevant
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FIG. 5. Dependence of the r ratio on the guest concentration, for
various values of RF,diff and for RTT,2 = 3 (a) and 5 nm (b). The
full curves (and their dashed extrapolation) provide a guide to the
eye. The long-dashed (short-dashed) horizontal lines give the r ratio
in the absence of diffusion, obtained from simulations with Rmax =
2RTT,2 (4RTT,2). The numerical 2σ accuracy is approximately ±0.1.

to OLED applications, the strong-diffusion regime is not
reached. Even for RF,TT as small as 2.5 nm and RF,diff as large
as 3.5 nm, saturation of the TTA loss was only found for guest
concentrations larger than about 20 mol% [see Fig. 2(c)].
As discussed in Sec. II, this can be probed experimentally
by measuring the r ratio [Eq. (3)]. Figure 5 gives the guest
concentration dependence of the r ratio for RF,TT = 3 and
5 nm, and for various values of RF,diff. The decrease of the
r ratio with increasing guest concentration is indeed seen
to reflect the gradual transition from the no-diffusion to the
strong-diffusion regime.

Figure 6 shows that for all systems studied, the relative
diffusion contribution to kTT,2 is strongly correlated with the
relative r ratio enhancement. This remarkable result implies
that for any system of the type studied in this work, the
relative contribution of diffusion to kTT,2 (and hence to the
PL efficiency loss) can simply be derived from a measure-
ment of the r ratio for that system and the value rnd in the
low-concentration (no-diffusion) limit. A simple empirical fit
to the simulation data (dashed curve in the figure) has the
form

r − 1

rnd − 1
∼= 1 − tanh

[
1.5 log10

(
kTT,2

kTT,2,nd

)]
. (11)

FIG. 6. Relative enhancement of the r ratio with respect to
the value in the strong-diffusion, normalized to the enhancement
for the no-diffusion limit, (r − 1)/(rnd − 1), as a function of the
enhancement of kTT,2 due to diffusion, kTT,2/kTT,2,nd, as obtained from
KMC simulations for all systems included in this study. The dashed
curve gives an empirical fit [see Eq. (11)].

V. SUMMARY AND CONCLUSIONS

Using KMC simulations, we have studied how the effi-
ciency loss due to Förster-type TTA in organic semiconductor
host-guest systems is enhanced due to Förster-type guest-
guest diffusion. The simulations show that for realistic Förster
radii describing the rates of these processes, about 3.5 and
2 nm, respectively, and for guest concentrations around or
below 10 mol%, as used in OLEDs, the effect of exciton
diffusion can be significant, viz. up to a factor of 2 [see
Fig. 2(a)]. However, in a more formal manner, the role of
diffusion is still best characterized as “weak,” in the sense
that the diffusion of excitons is insufficient to maintain in
systems in which the exciton density is locally reduced due
to TTA at any moment in time still a spatially almost uniform
triplet density distribution. Conventional analysis methods for
analyzing the results of time-dependent PL experiments that
probe TTA, assuming strong-diffusion conditions and based
on Eq. (2), are therefore invalid.

We find that the effect of diffusion on the TTA-induced
efficiency loss in time-dependent PL experiments, as ex-
pressed by the rate coefficient kTT,2, can be quite accurately
understood using a simple expression [Eq. (8)] within which
the diffusion contribution is additive and proportional to the
guest concentration, superlinearly dependent on RF,diff and
proportional to an effective capture radius, RF,TT − R0, with
R0 a cutoff distance. The effective triplet exciton diffusion
coefficient that follows from this expression using the capture
radius formalism [Eq. (9)] agrees quite well with the actual
triplet diffusion coefficient, obtained in Appendix for a range
of concentrations and values of RF,diff from KMC simulations.
Carrying out such dedicated KMC diffusion simulations was
found to be necessary, as for dilute systems with random
emitter locations percolating filamentary pathways lead to a
strong enhancement of the diffusion coefficient as compared
to the value expected from analytical theory based on the
average guest-guest distance. Experimentally, the validity of
the assumption of strong diffusion can be probed by analyzing
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the detailed time-dependence of the photoluminescence. We
have shown how a characteristic number that follows from the
precise shape of the time-dependent photoluminescence, the r

ratio, decreases gradually with increasing guest concentration
and can be used to quantify [via Fig. 6 and Eq. (11)] the
relative contribution of exciton diffusion to kTT,2.

Future extensions of this work are expected to include
the effects of molecular-scale details of the amorphous thin
film materials, such as triplet energetic disorder and molec-
ular orientational disorder, on the excitonic interaction rates.
Also when such refinements are included, we expect that the
methodology discussed in this paper will be a powerful tool
for analyzing experiments that probe the efficiency loss due
to TTA.
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APPENDIX: KMC SIMULATIONS OF EXCITON
DIFFUSION IN ORGANIC HOST-GUEST SYSTEMS

In this appendix, we use KMC simulations to study the
diffusion coefficient, D, resulting from guest-guest exciton
transfer in organic host-guest systems. We thus assume that
the excitons are well-confined to the guest sites. We focus
on the dependence on the guest concentration. In the main
text, the results obtained in this appendix are used to analyze
the guest concentration dependence of the efficiency loss due
to TTA.

Approximate expressions for weakly diluted systems. For
the case of nearest-neighbor (NN) exciton transfer with a rate
k in a nondiluted system with all molecules positioned on
a simple cubic lattice with lattice constant a0, the diffusion
coefficient is given by

DNN = a2
0k. (A1)

We will show below from KMC simulations that for weakly
diluted systems, a0 may be replaced by the average guest-
guest distance a ≡ cg

−1/3a0, with cg the guest concentration.
For the case of Förster-type transfer, with τ the exciton
lifetime and RF,diff the Förster radius for exciton diffusion,
a summation over contributions from hops over all possible
lattice distances leads then to the following approximate ex-
pression for the diffusion coefficient:

D ∼= csc,F
a2

τ

(
RF,diff

a

)6

(A2)

with csc,F = 2.755 (Ref. [28] gives csc,F = 2.76). We note that
this approximation was given earlier by Zhang and Forrest,
albeit including only NN transfer (i.e., with csc,F equal to 1)
[15]. Equation (A2), within which the effects of the random
distribution of emitter molecule locations are neglected, is
exact in the nondilute limit. We will show below that it is not
valid for strongly diluted phosphorescent host-guest systems
with triplet exciton transfer parameters that are realistic for
OLED applications. At small guest concentrations, Eq. (A2)

FIG. 7. Relative emission profiles (symmetrized) as obtained
from KMC simulations within which absorption at random guest
sites in the x = 0 plane and subsequent Förster-type exciton diffusion
with RF,diff = 1.5 nm takes place, for host-guest systems with guest
concentrations of 1, 15, and 50 mol%.

significantly underestimates the contributions to diffusion via
percolating pathways made available due to the randomness
of the distribution of emitter molecule locations. In Sec. SIV
in Ref. [19], an analogous expression for the case of Dexter
transfer is given.

KMC simulation method. For determining the exciton
diffusion coefficient from KMC simulations, we have used
the simulation tool BUMBLEBEE [22] to mimic a photolumi-
nescence (PL) experiment in which excitons are randomly
absorbed at guest sites in a monolayer at x = 0 in a simple
cubic lattice. The excitons are allowed to diffuse and to decay
radiatively, with a radiative lifetime τ = 1 μs. The lattice con-
stant is a0 = 1 nm. From the continuum diffusion equation,
the volume density of excitons resulting from an initial areal
density nA in the x = 0 plane is given by

n(x, t ) = nA√
4πDt

exp

(
− x2

4Dt

)
. (A3)

The emission profile is then given by

I (x) =
∫ ∞

0

1

τ
exp

(
− t

τ

)
nA√
4πDt

exp

(
− x2

4Dt

)
dt

= nA√
4Dτ

exp

(
− |x|√

Dτ

)
. (A4)

Using this expression, we determine the diffusion coefficient
from the slope of a linear fit to the symmetrized function
log10[(I (x) + I (−x))/2] for x � a0.

As an example, Fig. 7 shows the simulation results for
the case of Förster-type diffusion with RF,diff = 1.5 nm in
systems with guest concentrations of 1, 15, and 50 mol%,
obtained from in total about 3 × 106, 3 × 105, and 1 × 105

emission processes, respectively. Transfer over distances up to
6 nm in the x, y, and z directions was included. No energetic
disorder was assumed. The figure shows the relative number
of emission processes per layer, after symmetrization and after
shifting (for clarity) the 15 mol% and 1 mol% data by two and
four orders of magnitude, respectively. The diffusion length,
defined as

√
Dτ , was found to be 0.78, 1.72, and 3.54 nm
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FIG. 8. KMC simulation results of the exciton diffusion coeffi-
cient in host-guest systems, resulting from Förster-type transfer with
τ = 1 μs. (a) Guest concentration dependence for various values of
the Förster radius. The dashed lines indicate the result expected from
Eq. (A2). (b) Dependence on the Förster radius, for various values of
the guest concentration. The full red curves are a guide-to-the-eye.

for the 1, 15, and 50 mol% systems, respectively. For Förster-
type diffusion, D ∝ 1/τ , so that the diffusion length does not

depend on τ . Interestingly, the figure reveals at x = 0 a clear
deviation from the continuum theory developed above: when
the diffusion length is close to the intermolecular distance
of 1 nm, or smaller, a larger-than-expected fraction of the
excitons does not diffuse. For nondilute systems (100 mol%
guest), there is no anomaly at x = 0. The effect is due to
contributions to the emission from excitons created at sites
that are quite isolated from other guest sites. At very small
cg, the concept of a diffusion coefficient is thus of limited
value, even though it is possible to formally derive a value
from the data for x � a0 using the procedure discussed above.
This should also be kept in mind when designing experiments
probing exciton diffusion. When studying disordered systems,
the view on the validity of the diffusion coefficient concept
offered by this method is a clear advantage with respect to
calculations of D based on the mean-square of the diffusion
distance.

KMC simulation results for Förster-type diffusion. Figure 8
shows the dependence of the exciton diffusion coefficient
in host-guest systems resulting from Förster-type guest-guest
transfer with τ = 1 μs, as obtained from KMC simulations.
When D = 1 × 10−12 m2 s−1, the diffusion length is equal to
the intersite distance of 1 nm.

Panel (a) shows that Eq. (A2) is well obeyed for systems
within which cg and RF,diff are sufficiently large, so that
D > 10−11 m2 s−1. In such a situation, D ∝ cg

4/3. However,
for situations that are more realistic for phosphorescent host-
guest systems used in OLEDs, with 1 mol% < cg < 10 mol%
and RF,diff ≈ 2 nm, a linear relationship (D ∝ cg) is a better
approximation. The figure, furthermore, shows that the depen-
dence of D on RF,diff decreases with decreasing cg. Panel (b)
shows that for all concentrations a power-law dependence of
the type D ∝ RF,diff

α provides a good fit, with an exponent
α that decreases from 6 for nondiluted systems to about 3.4,
3.9, 4.9, and 5.7 for cg = 1, 2, 5, and 15 mol%, respec-
tively. In the main text, these approximate descriptions of the
dependence of D on cg and RF,diff will be used to provide
a quite accurate description of the diffusion contribution to
the TTA rate coefficient [Eq. (8)]. Figure S2 in Sec. SV in
Ref. [19] provides analogous simulation results for the case of
Dexter-type diffusion.
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