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The effect of anharmonic vibrational contributions to the finite-temperature pressure-driven B1-B2 structural
phase transition of LiH is studied by using the stochastic self-consistent harmonic approximation method in
combination with ab initio density functional theory and the quasiharmonic approximation. Contrary to previous
experimental results based on multiple-shock compression, we find that the B1-B2 transition pressure is not
significantly reduced at high temperatures. Moreover, we find that the B2 phase is dynamically unstable at low
temperatures within harmonic theory in a wide range of pressures where its enthalpy is lower than that of the B1
phase, and the inclusion of anharmonic effects stabilizes the B2 phase in this pressure range. Our results imply
that a third, yet unknown phase must exist in the phase diagram of LiH, in addition to the B1 and B2 phases, in
order to explain the shock compression result.
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I. INTRODUCTION

Among the alkali-metal hydrides, LiH has the highest
hydrogen mass content and has therefore been widely studied
as a potential hydrogen storage material, particularly in the
aviation field [1,2]. The recent report of metallization in solid
hydrogen at 495 GPa [3] has renewed interest in the high-
pressure physics of hydrides. LiH is expected to metallize at
lower pressures than hydrogen and is therefore a potential
candidate for high-temperature superconductivity [4]. In ad-
dition, LiH offers a perfect playground to study the crossover
between quantum and classical effects [5]. Its large zero-point
energy (ZPE), the quantum vibrational contribution to the
energy at zero temperature, suggests that quantum effects play
an important role in determining its properties [6,7].

At ambient conditions, LiH crystallizes in the B1 phase,
with the NaCl crystal structure, like all other alkali hydrides,
and it is a large-gap insulator. Under pressure other alkali
hydrides undergo a structural phase transition from B1 to
B2 (CsCl structure), with transition pressures decreasing with
increasing mass of the alkali atom. The transition pressure
varies from 29.3 GPa in NaH to 0.83 GPa in CsH [8,9].
However, in the case of LiH the B2 phase has not yet been
found experimentally at room temperature. The B1 phase of
LiH was reported to be stable up to a pressure of 252 GPa at
300 K in the diamond-anvil cell experiment of Lazicki et al.
[10].

First-principles calculations at zero temperature predict a
B1-B2 transition at pressures between 313 and 340 GPa, de-
pending on the approximations [11–14]. Theory also predicts
that LiH B1 is an insulator up to the transition pressure and
becomes a metal upon transforming into B2.

Experimental evidence for a B1-B2 phase transition at
high temperature was reported recently by Molodets et al.
[15] based on multiple-shock compression experiments. They
observed the appearance of finite electrical conductivity above
120 GPa and 1800 K and showed, based on a semiempirical
theoretical model for the free energy of the two phases, that
the experimental finding is consistent with the occurrence of a
transition from B1 to B2 at 120 GPa and 1800 K. If this result
is compared with the theoretical predictions for the transition
pressure at low temperature (313–340 GPa), the conclusion
that can be drawn from the experiments of Ref. [15] is that
raising the temperature from 300 to 1800 K induces a dramatic
decrease of about 200 GPa of the transition pressure.

This strong dependence of the transition pressure of LiH
on temperature is surprising and calls for a theoretical anal-
ysis. Using the quasiharmonic approximation, Chen et al.
[16] recently observed that the transition pressure changes
only by 50 GPa while increasing the temperature from 0
to 2000 K. These results make us think that the stronger
temperature dependence of the transition pressure observed in
the multiple-shock compression experiment might arise from
hitherto neglected anharmonic contributions to the vibrational
free energy, beyond the harmonic or quasiharmonic contri-
butions. So far, the anharmonic contributions in LiH have
been studied only in the B1 phase by two research groups:
anharmonic effects at ambient condition were investigated by
Monserrat et al. using a combined vibrational self-consistent
field and perturbative approach [17], while Dammak et al.
studied anharmonic effects as a function of pressure by us-
ing quantum thermal bath molecular dynamics and density
functional theory (DFT) [18]. Both these studies pointed out
that anharmonicity plays an important role in modifying the
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vibrational energies of LiH in the B1 phase. However, nothing
is known about anharmonicities at high temperature or in the
B2 phase.

The goal of this work is to study the role of anharmonicity
at finite temperature in B1 and B2 and its impact on the
pressure-temperature phase diagram of LiH. We have em-
ployed a combination of methods based on ab initio DFT,
including density-functional perturbation theory (DFPT) [19]
in the quasiharmonic approximation and the stochastic self-
consistent harmonic approximation (SSCHA) [20]. The rest
of the paper is divided into the following sections: we describe
the details of our calculations in Sec. II; we describe our
results in Sec. III. Finally, we discuss the implications of our
results and conclude in Sec. IV.

II. METHOD

All electronic structure calculations were performed using
ab initio DFT as implemented in the QUANTUM ESPRESSO

package [21]. We treated the electron-ion interaction with
the projector augmented-wave method [22]. The exchange-
correlation functional was approximated by the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernz-
erhof [23]. A plane-wave basis set was used to expand the
electronic wave functions. The cutoff for the basis set and
the cutoff for the corresponding charge densities were set
at 80 and 560 Ry, respectively. Note that both the core and
the valence electrons of Li are taken into consideration. The
space group of the B1 and B2 phases of LiH are Fm3m and
Pm3m, respectively. For both primitive cells Monkhorst-Pack
[24] grids of size 20 × 20 × 20 were used to generate the k
mesh (zone centered) for the corresponding Brillouin-zone
sampling. The Marzari-Vanderbilt smearing technique [25]
was used with a smearing width equal to 0.01 eV for metallic
systems.

Electronic structure calculations have been performed on
both phases, B1 and B2, at several volumes covering the
pressure range of interest. With the above approximations
and without inclusion of finite temperature and/or zero-point
motion, the calculated lattice constants are 4.00 and 2.51 Å for
the B1 and B2 phases, respectively; these values are in good
agreement with the previous theoretical (for both B1 and B2)
results [13].

In order to obtain the ionic vibrational contributions to the
free energy in the harmonic approximation (HA) for both B1
and B2, we have performed calculations based on DFPT [19].
To obtain the harmonic phonon frequencies, the harmonic
dynamical matrices were calculated on a 10 × 10 × 10 q
mesh, q being the wave vector of the corresponding phonon,
and the (real-space) interatomic force constant matrices were
obtained by inverse Fourier transformation. Using these force
constant matrices, the full phonon dispersions for a phase
were then obtained by interpolating the dynamical matrices
on finer q-space grids or along high-symmetry lines. It is
important to note that the above choices of q and k meshes
lead to the convergence of zero-point energies EZPE within
2 meV/LiH. Note that all the values of EZPE mentioned in
Sec. III are calculated within the HA. We would also like to
underline the fact that EZPE can be calculated only for phases
which have dynamically stable harmonic phonons.

Anharmonic calculations were performed using either the
quasiharmonic approximation (QHA) [26] or the SSCHA
[20,27]. In the QHA the anharmonic contribution is obtained
from the volume dependence of the harmonic phonons, and
its validity is therefore limited to those cases where an-
harmonicity is small. Note that the application of SSCHA
is not restricted to T �= 0 K, and it can also be used to
obtain quantum anharmonic effects at T = 0 K (as shown in
Sec. III C).

It worth mentioning here that one of the greatest advantage
of SSCHA is its ability to deal with structures having har-
monic phonon instabilities. Another advantage is to deal with
strong anharmonicity (when the anharmonic contribution is
larger than the corresponding harmonic contribution) by the
virtue of being a nonperturbative approach.

For this work, SSCHA calculations were performed by
using 3 × 3 × 3 and 2 × 2 × 2 supercells for B1 and B2,
respectively. The free energy was initialized by the trial
harmonic dynamical matrices obtained using DFPT in the
corresponding commensurate q mesh; for the cases where a
harmonic dynamical matrix is not stable at a given q point,
the corresponding trial dynamical matrix has been taken from
the regions of volumes where it is stable. The convergence
criteria for free energy was set to 1 meV/LiH for one self-
consistent (SC) cycle; during such a cycle the number of
atomic configurations Nc, obtained by randomly displacing
the atoms in the supercell along the modes predicted by the
trial/updated dynamical matrices, was kept fixed. Several SC
cycles were generally needed in order to have less than 2 cm−1

differences in the renormalized phonon frequencies between
two consecutive SC cycles. In order to obtain the anharmonic
correction, the difference between the harmonic and anhar-
monic dynamical matrices was then Fourier interpolated to a
finer 10 × 10 × 10 q mesh for both B1 and B2. Finally, adding
the harmonic dynamical matrices in the 10 × 10 × 10 q mesh
to this anharmonic correction, the SSCHA dynamical matrices
in the finer q mesh were obtained. All the SC cycles were
carried out with Nc = 20 configurations, except for the final
one, where Nc = 400 had been considered.

Note that all the above calculations were performed at
fixed volumes of B1 and B2 at different temperatures. The
corresponding pressures at these volumes were obtained from
the Birch-Murnaghan equation of state (EOS) through the ap-
propriate energies (with or without vibrational contributions,
depending on the case) of the respective phases [28].

III. RESULTS

A. Structural stability

At temperature T = 0 K, the thermodynamic stability of
a phase is determined by the value of the corresponding
enthalpy H at a given pressure P , which can be expressed
as

H (P ) = EDFT(V (P )) + EZPE(V (P )) + PV (P ), (1)

where EDFT and EZPE are the electronic contributions calcu-
lated using DFT and the zero-point vibrational contribution
to the energy, respectively, both calculated at the volume V

corresponding to pressure P .
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Neglecting the zero-point energy, our DFT calculations
give a value of 320 GPa for the B1-B2 transition pressure
PTr [12,13]. The B1 phase is insulating at ambient conditions
with an experimental band gap of 4.94 eV [29] and has been
reported to remain an insulator up to at least 120 GPa [10].
Accurate calculations based on the GGA + GW approxima-
tion [12] reproduce very well the band gap at ambient pressure
and predict that B1 remains an insulator up to the theoretical
transition pressure to B2. According to these calculations, the
band gap of B1 decreases with pressure, and it is 0.8 eV
at the transition pressure. A similar behavior is predicted by
GGA calculations, although the B1 band gap vanishes at the
transition pressure within this approximation. On the contrary,
local-density approximation calculations erroneously predict
a closing of the band gap well within the domain of stability of
B1. All previous calculations predict a metallic nature for B2
at and above the transition pressure. Our calculations, based
on GGA, give a band gap of 2.98 eV at ambient pressure that
vanishes at 320 GPa. Regarding B2, we find that the gap closes
at 50 GPa, i.e., much lower than the transition pressure, in
agreement with earlier studies by Wang et al. [11]. Also, our
result is in good agreement with the earlier finding that the
B1-B2 transition coincides with the insulator-metal transition
in LiH.

In order to determine the ZPE contribution and to check the
dynamical stability of the two phases, we performed phonon
calculations at different pressures for both B1 and B2. In
Fig. 1(a), we show the pressure dependence of the phonon
dispersion in B1 along some high-symmetry lines of its Bril-
louin zone. We find that B1 is dynamically stable throughout
the pressure range of interest. At a pressure P � 300 GPa,
there is an incipient softening of the transverse-acoustic (TA)
mode at the high-symmetry point X; however, the mode never
becomes unstable up to the highest pressure considered in this
study. We compare our results with previous experimental and
theoretical results in Fig. 1(b), where we show the frequencies
of all four modes at X—TA, longitudinal acoustic (LA),
transverse optical (TO), and longitudinal optical (LO)—as a
function of (V/V0), where V0 is the volume of the B1 phase
at ambient conditions. We find that our results agree well
with the previous experimental results (see open circles) [10].
However, our results deviate significantly from the previous
theoretical results by Zhang et al. [30] when V/V0 < 50%;
in particular, we find that the TA frequency starts to decline
at much smaller volumes (i.e., at higher pressures) than in
the case of Ref. [30]. Notice that the volume at which Zhang
et al. find the TA frequency to vanish is within the range of
stability of B1, as later determined with x-ray diffraction by
Lazicki et al. [10], so their results are clearly inconsistent with
experiments. We trace the origin of this discrepancy to the
use of the frozen-core approximation (FCA) by these previous
authors for Li 1s2 in the entire pressure range considered by
them. Grüneis [14] showed that the FCA holds only around
the equilibrium lattice constant of LiH and also showed that
FCA underestimates the value of PTr by 60 GPa.

We now move to the phonon spectra of B2. Yu et al.
[13] found that LiH B2 is dynamically stable above 160 GPa
and displays a phonon instability at point M in the Brillouin
zone below 160 GPa. In Fig. 2(a), we show our calculated
pressure dependence of the phonon dispersions of B2 along
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FIG. 1. (a) Phonon dispersion of LiH B1 as a function of pressure
along the high-symmetry points of the Brillouin zone. (b) The
frequency of the transverse acoustic mode of the B1 phase at X as
a function of pressure. Our results are represented by lines, and the
results from Refs. [10,30] are represented by open symbols and solid
orange squares, respectively.

high-symmetry lines of the corresponding Brillouin zone. Un-
stable phonon modes are represented by negative frequency
values throughout this paper. At ambient pressure we find that
B2 has a phonon instability over an extended region of the
q space, including the M point. At 100 GPa the instability is
confined to a region close to the X point, and at about 150 GPa
the instability at X is also lifted. However, at pressures higher
than 150 GPa we continue to observe the presence of an
elastic instability at small q along the high-symmetry line
�-X. Because phonon dispersions in Fig. 2(a) have been
obtained by interpolating frequency calculations on a coarser
10 × 10 × 10 grid than the width in the q space of the
elastic instability, we checked the accuracy of the frequency
determinations close to � by performing calculations at q
points (1/20, 0, 0) and (1/10, 0, 0). For these calculations we
used a denser k-mesh grid (40 × 40 × 40). The results are
shown in Fig. 2(b) and confirm the results obtained with a
coarser q mesh. In particular we find that the elastic instability
persists up to 420 GPa, above which LiH B2 finally becomes
dynamically stable.
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FIG. 2. (a) Phonon dispersion of LiH B2 as a function of pressure
along the high-symmetry points of the Brillouin zone. (b) Frequency
at two q points at a denser k mesh of 40 × 40 × 40 for different
values of pressure.

An important consequence of this finding is that a window
of pressure exists between the B1-B2 transition pressure
300–350 and 420 GPa, where B2 is dynamically unstable
and where therefore either (i) the thermodynamically stable
phase of LiH is neither B1 nor B2 or (ii) B2 is stabilized by
quantum effects. Before analyzing in more detail the behavior
of LiH in this pressure window, let us remark that inclusion
of ZPE in Eq. (1) for B1 (at all pressures) and B2 (above 420
GPa) and extrapolation of the B2 enthalpy to P < 420 GPa
lead to an estimated B1-B2 transition pressure of 318 GPa,
in good agreement with previous calculations, with ZPE
included [13].

We now concentrate on the pressure window where B2
displays the elastic instability shown in Fig. 2(b). We searched
for a lower-enthalpy structure by distorting the B2 structure
applying strains corresponding to the unstable phonon branch.
We obtained a monoclinic structure with space group P 2/m.
We will refer to this structure as distorted B2 (d-B2). In
Figs. 3(a)–3(c), we plot the difference in energy δE between
B2 and d-B2, as a function of the monoclinic angle α at three
different values of pressure (α = 90◦ corresponds to B2). We
find that the value of δE and the amount of deformation
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FIG. 3. Relative energy δE = E(d-B2) − E(B2) is plotted as a
function of the monoclinic angle at (a) V/V0 = 0.32, (b) V/V0 =
0.30, and (c) V/V0 = 0.28. δE < 0 indicates that the distorted B2
(d-B2) is more stable than the B2 phase in LiH.

decrease as we increase pressure from 250 to 350 GPa,
which is consistent with the disappearance of the instability
at 420 GPa inferred from Fig. 2(b).

We also find that the magnitude of the distortion is ex-
tremely small. The equilibrium angle deviates by less than
a degree from 90◦, and the energy gain δE is at least two
orders of magnitude smaller than thermal energies at ambient
temperature. While it cannot be excluded that d-B2 remains
stable at ambient and higher temperatures or after inclusion of
quantum effects, anharmonicity is likely to lift the dynamical
instability of B2, as it does in other systems [31–33]. In any
event, a calculation of the relative free energy between B2
and d-B2 at finite temperature and/or with quantum effects
is beyond the scope of this work, so in the remaining part of
this work, where we focus on finite-temperature properties,
we will perform calculations only for B1 and undistorted B2.

B. Phase diagram at finite temperatures

Having discussed the structural stability and the phase dia-
gram at T = 0 K and in the harmonic limit, we now move to
the investigation of the finite-temperature portion of the phase
diagram and to the inclusion of anharmonic contributions. As
stated in Sec. II, finite-temperature effects on the crystal free
energy can be added in two different ways: (a) by using the
quasiharmonic approximation and (b) by using the stochastic
self-consistent harmonic approximation.
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FIG. 4. Comparison of phonon dispersions and the phonon density of states (ph DOS) of (a) and (b) B1 and (c) and (d) B2 at T = 300 K
(dashed orange line) and T = 1800 K (blue line) obtained by SSCHA calculations with the corresponding results obtained at T = 0 K (gray
line) obtained using HA. Note that the anharmonic effects to phonon dispersions and the phonon DOS at T = 0 K are shown by the dotted
cyan line in (c). For B2, the phonon DOS has been shown only for stable phonons.

The SSCHA offers at least two advantages over the QHA:
(a) it enables one to investigate the role of temperature even
when the structure is dynamically unstable within the HA,
and (b) it allows the calculation of the anharmonic contri-
butions beyond the perturbative regime, including at T =
0 K [20,27]. We therefore begin our analysis of the finite-
temperature effects on the LiH phase diagram by analyzing
the dynamical stability of B1 and B2 at different temperatures,
within the SSCHA. In Fig. 4 we show the phonon dispersions
calculated at different temperatures with the SSCHA method,
and we compare them with the harmonic dispersions for B1
[Figs. 4(a) and 4(b)] and B2 [Figs. 4(c) and 4(d)].

We find that in both B1 and B2, the phonon frequencies
are modified by temperature. Except for B2 at low pressure,
we find that the optical phonons harden at high temperature,
whereas the acoustic phonons remain almost unchanged. Op-
tical modes have a predominant hydrogen component, con-
trary to acoustic modes which are dominated by Li. The find-
ing that anharmonicities are stronger for hydrogen-dominated
modes is consistent with the lower mass of H. The largest
departure with respect to the harmonic limit is found in B2
at low pressure. The prominent harmonic phonon instability
at X is removed at all temperatures (from 0 to 1800 K) by the
anharmonic contribution. The stabilization of the B2 structure
already at T = 0 K indicates that quantum effects are crucial
for the structural stability of B2. Increasing temperature from
0 to 1800 K increases the stability of the B2 structure, al-
though by a smaller extent with respect to the contribution
of quantum effects at 0 K. We verified that the calculation
of the phonon spectra from the SSCHA free-energy Hessian
[34] keeps the system dynamically stable at the X point. The

correction imposed by the latter calculation to the auxiliary
SSCHA phonons plotted in Fig. 4 is just a slight redshift.

In order to clearly show that anharmonic effects remove
the harmonic phonon instabilities of the B2 phase in the entire
pressure range of this study, especially in the pressure range
where B2 wins over B1 in terms of enthalpy (see Sec. III A),
we have plotted the phonon dispersions at T = 300 K for
various volume fractions (corresponding to the pressure range
of harmonic phonon instabilities) in Fig. 5(a). Figure 5(b)
shows a zoomed-in region of the phonon dispersion along the
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FIG. 5. (a) Phonon dispersions of LiH B2 as a function of volume
fractions at T = 300 K. (b) A zoomed-in region of (a) along �-X.
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FIG. 6. B1-B2 phase diagram. Blue and pink regions represent
the regions of phase stability of B1 and B2, respectively, obtained
from SSCHA. The blue line represents the transition line obtained
from QHA. The red line represents the transition line suggested by
Ref. [15]; the orange star represents the position of the appearance of
electrical conductivity observed by these authors.

�-X direction where phonon frequencies become positive due
to the inclusion of anharmonic effects. A similar behavior is
observed at T = 1800 K.

In order to determine the relative stability of B1 versus B2,
we calculate the Gibbs free energy of the two phases:

G(P, T ) = F (V (P, T ), T ) + PV (P, T ), (2)

where V (P, T ) is obtained by inverting P = −(∂G/∂V )T .
The Helmholtz free energy is approximated by

F (V, T ) = EDFT(V, T = 0) + Fvib(V, T ), (3)

where Fvib(V, T ) is the total vibrational contribution to F

(including the ZPE), calculated in the QHA or in the SSCHA.
At the temperatures of interest for this work the temperature
dependence of the electronic energy is negligible [16].

As the QHA can be employed only for dynamically stable
phases, a QHA-based determination of Fvib would have to
be limited to the pressure range P > 420 GPa, where B2 is
dynamically stable. However, as discussed at the end of the
previous section, the dynamical instability of B2 observed
above 150 GPa leads to an enthalpy gain that is at least two
orders of magnitude smaller than thermal energies. In the
remaining part of this study we will assume that temperature
removes the instability, and we will technically compute QHA
averages over the phonon Brillouin zone (BZ) by setting
frequencies to zero in the tiny portion of the B2 BZ (about
10−4 of the whole BZ) where they are imaginary. The B1-
B2 transition pressure thus obtained is shown as a blue line
in Fig. 6. Note that the calculated values of the transition
pressure PTr are 291 and 278 GPa at T = 300 and 1800
K, respectively. It is worth mentioning that due to the dif-
ferences in the methods used, the T = 0 K behavior of the
QHA transition line does not exactly correspond to the zero-
point energy corrected transition pressure at T = 0 K (see
Sec. III A).

With the SSCHA approximation, we find that the values
of PTr for the B1-B2 transition are 293 GPa at 300 K and

FIG. 7. Equation of states (EOS) at T = 0, 300, and 1800 K.
The solid black and blue lines represent the EOSs of B1 and B2,
respectively, at T = 0 K; the solid (dotted) orange and red lines
represent the EOSs of B1 and B2, respectively, at T = 1800 K
(300 K). The insets show the percentage of change of volume �V/V0

at the corresponding transition pressures at a given temperature
(shown by green horizontal lines).

286 GPa at 1800 K. These values are considerably smaller
than the transition pressure calculated at T = 0 K without
vibrational contributions (320 GPa). Therefore quantum ef-
fects are essential for a quantitative determination of the tran-
sition pressure. Moreover, the difference between the results
obtained with the QHA and SSCHA approximations indicates
that anharmonic effects cannot be neglected. The phase di-
agram at finite temperatures was obtained by interpolating
SSCHA calculations of the B1-B2 transition pressure at two
different temperatures (T = 300 and 1800 K) and is shown
in Fig. 6. Differences between the QHA and SSCHA grow
with temperature, indicating that anharmonic effects become
more relevant as temperature is increased, as expected. Within
both approximations the transition line bends towards lower
pressures when temperature is increased, indicating that the
vibrational entropy of B2 is higher than that of B1. We have
taken the value of PTr at T = 0 K to be the same as that at T =
300 K obtained by SSCHA calculations. In Fig. 7 we show the
equation of states for B1 and B2 at T = 0, 300, and 1800 K.
We find that the effect of temperature on the EOSs of B1
and B2 is similar. The volume jump at the transition pressure
is slightly smaller (1%) at T = 1800 K than at T = 0 K
(1.2%).

IV. DISCUSSION AND CONCLUSIONS

Our calculated phase diagram indicates that the B1-B2
transition pressure of LiH does not reduce significantly with
increasing temperatures, contrary to the prediction made by
Molodets et al. [15] based on shock-wave experiments. The
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B1-B2 transition line proposed by Molodets el al. would
have implied a reduction of more than 200 GPa in the
B1-B2 transition pressure upon increasing temperature from
ambient to 1800 K (see red line in Fig. 6), much larger
than our calculated value. The onset of conductivity observed
in shock-wave experiments at 120 GPa and 1800 K must
therefore originate from a different type of transition. We
checked if metallization within the B1 phase could provide
an explanation for the shock-wave results, without invoking
the presence of a structural phase transition. To this aim,
we computed the electronic structure of all the converged
atomic configurations (Nc = 200) for B1 at T = 1800 K at
120 GPa and found that all of them have a finite band gap
of at least 0.9 eV. We can therefore rule out metallization in

B1 as a reason for the shock-wave discontinuity. Incidentally,
we notice that Monserrat et al. [17] also found a positive slope
for the temperature dependence of the B1 band gap at ambient
pressure.

We conclude that the onset of conductivity seen in the
shock-wave experiment of Molodets et al. [15] must originate
from a structural phase transition to a so far unknown
phase. In addition, we find that the anharmonic vibrational
contributions remove harmonic phonon instabilities of the B2
phase, especially in the region of pressure where B2 wins
over B1 in terms of enthalpy. Further work is required to shed
light on the open questions which imply the presence of one
or maybe more yet to be determined phases of LiH in the
megabar regime.
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