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Hund nodal line semimetals: The case of a twisted magnetic phase in the double-exchange model
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We propose a class of topological metals, which we dub Hund nodal line semimetals, arising from the strong
Coulomb interaction encoded in the Hund’s coupling between itinerant electrons and localized spins. We here
consider a particular twisted spin configuration, which is realized in the double-exchange model which describes
the manganite oxides. The resulting effective tetragonal lattice of electrons with hoppings tied to the local spin
features an antiunitary nonsymmorphic symmetry that, in turn, together with another nonsymmorphic but unitary
glide-mirror symmetry, protects crossings of a double pair of bands along a high-symmetry line on the Brillouin
zone boundary. We also discuss the stability of Hund nodal line semimetals with respect to symmetry breaking
arising from various perturbations of the twisted phase. Our results motivate further studies of other realizations
of this state of matter, for instance, in different spin backgrounds, properties of its drumhead surface states, as
well as its stability to disorder and interactions among the itinerant electrons.
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Introduction. Weyl semimetals, paradigmatic representa-
tives of topological metals, have recently attracted consider-
able attention in both theoretical and experimental condensed
matter communities due to their intriguing properties, such
as unusual Fermi arc surface states and chiral anomaly [1,2].
Due to either broken time-reversal or inversion symmetry,
they host chiral Weyl fermions at isolated points in the Bril-
louin zone (BZ). In contrast, Dirac semimetals host fourfold
degenerate Dirac points, in the presence of time-reversal and
inversion symmetry [3,4].

Band crossings can also occur on a manifold of higher
dimensionality, such as a line, in the BZ, yielding nodal line
semimetals (NLSMs) [5]. NLSMs feature localized drumhead
surface states forming flat electronic bands, thereby providing
a platform for a possible realization of interaction-driven
states, such as superconductors, magnetic phases, charge
density waves, and anomalous Hall states [6–9]. As their
pointlike analogs, NLSMs can be of a Dirac or a Weyl type,
depending on the degeneracy of the bands crossing at the
nodal line. Topology and various symmetries protect NLSMs,
including a combination of inversion and time-reversal [10]
and nonsymmorphic lattice symmetries [11,12], both with and
without spin-orbit coupling [13]. Recently, NLSMs have been
theoretically proposed and experimentally realized in various
materials, for instance, ZrSiS [14,15], HfSiS [16,17], HfC
[18], Cu3PdN [19], CaP3 [20], TlTaSe2 [21], and graphenelike
three-dimensional systems [22,23]; see also Ref. [24].

The emergence of topological states in gapless systems in
conjunction with the nonmagnetic lattice symmetries is by
now rather well understood [25–30]. In contrast, topological
metallic states in magnetic lattices have just begun to be
explored [31–36]. In that respect, the questions regarding
possible topological phases emerging out of magnetic lattices
with noncollinear spins and the specific mechanisms are still

pertinent, and we address these in the present Rapid Commu-
nication.

We study magnetic phases in a broad class of materials,
such as manganites or colossal magnetoresistance systems
(CMRs) [37]. These materials exhibit a large number of
magnetic phases [38–40], which can be tuned by doping or
a magnetic field. Most of them are metals well described by
the double-exchange model [41–43]. For manganites such as
La1−xCaxMnO3, the oxidation state of Mn fluctuates between
Mn3+ and Mn4+ as a function of doping. Additionally, these
states give rise to strongly localized spins due to the alignment
of the three t2g orbitals in the crystal-field split d band of Mn
(in a cubic lattice) exhibiting a total spin of S = 3/2. Due to
a strong intra-atomic Hund’s coupling, the carriers’ spins are
aligned parallel to the core spin, such that the magnetic phase
influences the hopping of the delocalized carriers between
neighboring Mn sites. The rich variety of magnetic phases
was initially assigned to canting of the core spins. It was
later shown that electronic phase separation is also likely
[44,45], which explains the observed hysteretic behavior of
many CMR systems.

Here, we show that the properties of double-exchange
materials allow us to define a class of NLSMs, which we dub
Hund nodal line semimetals, arising from a strong Hund’s
coupling between itinerant and localized electrons forming
a noncollinear spin configuration [46]. Specifically, we con-
sider the twisted magnetic phase [38], which is realized in
the double-exchange model as discussed in the context of
manganites [47–49]. Strong Hund’s coupling leads to the
emergence of an effective spin lattice, which, as we show, fea-
tures an antiunitary nonsymmorphic symmetry, that, together
with the unitary glide-mirror symmetry, protects the Hund
nodal line semimetallic state. To corroborate this mechanism,
we consider various perturbations of the twisted phase, and
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FIG. 1. Spin configuration in the two sublattices.

explicitly show that the nodal line is stable as long as the
resulting Hamiltonian on the BZ boundary respects the pro-
tecting symmetries.

The model. The double-exchange model is characterized by
a strong Hund’s coupling between the localized spin Si and the
itinerant electron spin si at site i, with si = ∑

α,β c
†
i,αξαβci,β .

Here, ci,α is the annihilation operator for an electron with
spin projection α =↑,↓, and ξ are Pauli matrices. Projecting
out the electrons’ spin component antiparallel to the localized
spins leads to an effective tight-binding model for the itinerant
electrons but now with the spin parallel to Si [50],

H = t
∑
ij

[〈θiφi |θjφj 〉c†
i cj + H.c.]. (1)

The hopping elements are given in terms of the overlap
〈θiφi |θjφj 〉 between the localized spins and ci is the an-
nihilation operator for an electron (after the projection) at
site i. Here, the localized spin S is described as a classical
three-dimensional unit vector, |S| = 1, with spherical angles
(θ,φ). In addition, the localized spins are coupled through the
superexchange interaction, which, together with the effective
hopping Hamiltonian in Eq. (1), defines the double-exchange
model.

Twisted phase. We consider the itinerant electrons hopping
in the background of the localized spins in the twisted phase
given by [38]

Si = cos φ(−1)x+yex + sin φ(−1)zey, (2)

where (x, y, z) are the Cartesian coordinates of the site i

of a cubic lattice in units of the lattice spacing (a) and ej ,
j = x, y, z, is the unit vector in the lattice direction j . Since
the spin is confined to the x-y plane, it can be parametrized by
a polar angle φ. This spin configuration spans two sublattices
in the x-y plane (Fig. 1). Additionally, the two adjacent
planes feature inequivalent spin configurations. We therefore
construct a unit cell with four sites labeled as αk , α = a, b is
the sublattice index in the x-y plane, and k = 1, 2 denotes the
two inequivalent adjacent x-y planes. The lattice translations
are generated by x± = a

√
2(ex ± ey ) ≡ ã(ex ± ey ) and z =

2aez. The Brillouin zone is diamond shaped in the x-y plane:
−π

ã
� k± � π

ã
, − π

2a
� kz � π

2a
, with k± = kx ± ky . The four

distinct sites exhibit the four spin states |±φ〉 and |±φ + π〉,

FIG. 2. Electronic structure of the pristine model with φ = 2
and a = t = 1. (a) Band structure calculated along a high-symmetry
path. (b) Energy bands forming a nodal line for z = π/2. (c) Position
and shape of the nodal line in the Brillouin zone together with
high-symmetry points.

given by

|±φ〉 = 1√
2

(
1

e±iφ

)
, |±φ + π〉 = i√

2

(
1

−e±iφ

)
. (3)

Considering only nearest-neighbor hoppings, the tight-
binding Hamiltonian in Eq. (1) can be written as H NN

tw =∑
k ψ

†
kH NN

tw (k)ψk [51],

H NN
tw (k) = (cos kx + cos ky )[−(1 − cos 2φ)σ0 ⊗ τ2

− sin 2φ σ3 ⊗ τ1] + cos kz[(1 + cos 2φ)σ1 ⊗ τ0

+ sin 2φ σ2 ⊗ τ3], (4)

in the spinor basis ψk = (a1,k, b1,k, a2,k, b2,k )ᵀ with αs,i as
the annihilation operator at a site i belonging to a sublattice
α = a, b in the one of the two inequivalent x-y planes s =
1, 2. The Pauli matrices σi and τi act in the (1,2) and (a, b)
spaces, while σ0 and τ0 are 2 × 2 unity matrices; the lattice
spacing of the original cubic lattice a and the overall energy
scale t are both set to unity. This Hamiltonian yields twofold
degenerate valence and conduction bands,

E±,k = ±2
√

(cos kx + cos ky )2 sin2 φ + cos2 kz cos2 φ. (5)

The obtained band structure features diamond-shaped nodal
lines at kx ± ky = ±π in each of the Brillouin zone boundary
planes kz = ±π/2 (Fig. 2). Importantly, at low energies the
NLSM exhibits linear dispersion in the directions perpendic-
ular to it, with a momentum-dependent Fermi velocity in the
x-y plane ∼ sin kx , with kx along the nodal line.

Symmetry group of the system and protection of the line
nodes. The four sites in the unit cell are associated to the spin
states |φ〉, |−φ〉, |φ + π〉, and |π − φ〉. Starting from |φ〉, we
construct three symmetry elements that realize the mapping to
the remaining three sites (Table I).

First, the complex conjugation K maps φ → −φ. In the
basis ψk this operation corresponds to the permutations a1 ↔
a2 and b1 ↔ b2, which can be expressed as (σ2 ⊗ τ0)K . We
therefore conclude that the combination of complex conjuga-
tion accompanied by a fractional shift in the unit cell along
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TABLE I. Symmetry operations and their representation in the spin basis, in the real and momentum space, as well as in the pseudospinor
basis ψk defined by the unit cell in the twisted phase.

Symmetry element Action on |φ〉 Action on (x+, y+, z) Action on (k+, k−, kz ) Action on site basis

{K|0, 0, 1/2} |−φ〉 (x+, x−, z + 1/2) (−k+, −k−, −kz ) (σ2 ⊗ τ0)K
{IC2z|1/2, −1/2, 0} |φ + π〉 (x+ + 1/2, x− − 1/2, −z) (k+, k−, −kz ) i(σ1 ⊗ τ2 )
{KIC2z|1/2, −1/2, 1/2} |π − φ〉 (x+ + 1/2, x− − 1/2, −z + 1/2) (−k+, −k−, kz ) −i(σ3 ⊗ τ2)K

the z axis is a symmetry of the Hamiltonian and denote it by
{K|0, 0, 1/2}.

Second, consider the twofold rotation about the z axis,
C2z : (x+, x−, z) → (−x+,−x−, z), which operates in spin
space as exp(iξ3π/2) = iξ3. Therefore, under C2z, the spin
state |±φ〉 → |π ± φ〉, which corresponds to the permutation
a1 ↔ b2, a2 ↔ b1. This implies that the combined operation
of C2z, inversion I (swapping the planes 1 ↔ 2), and an
improper translation by half a lattice constant in x+ and
x− direction is also a symmetry, {IC2z|1/2,−1/2, 0}. This
operation corresponds to a glide-mirror symmetry and can be
expressed as iσ1 ⊗ τ2 (i is included to satisfy double group
algebra, i.e., IC2

2z = E). As the system is lattice periodic, the
operations represent the generators of a factor group G/T ,
where G denotes the full space group and T the group of
pure lattice translations which is an Abelian normal sub-
group of G. It follows that there has to be a third nontriv-
ial symmetry element {KIC2z|1/2,−1/2, 1/2}, given by the
composition of {K|0, 0, 1/2} and {IC2z|1/2,−1/2, 0}. This
operation corresponds to the map |φ〉 → |π − φ〉, realized by
the permutations a1 ↔ b1 and a2 ↔ b2, which is represented
as −iσ3 ⊗ τ2 in the basis defined by ψk. Furthermore, since
spin is involved, each of the elements comes with a respective
double group partner. The factor group itself is isomorphic
to the magnetic double group G/T � CS ⊕ {K|0, 0, 1/2} ◦ CS,
where ⊕ denotes the set sum and CS = {E,E, IC2z, IC2z}.

In the double-exchange model for the twisted phase,
time-reversal symmetry is broken. Instead, the antiunitary
symmetries {K|0, 0, 1/2} and {KIC2z|1/2,−1/2, 1/2}
are present. Furthermore, {K|0, 0, 1/2}2 = 1 and
{KIC2z|1/2,−1/2, 1/2}2 = −1, which indicates that
{KIC2z|1/2,−1/2, 1/2} can be regarded as an effective
time-reversal operation [51]. However, as the spin degree of
freedom is frozen into the lattice, this effective time-reversal
operation acts in a pseudospin space spanned by the
pseudospinor ψk. Another example of effective time-reversal
symmetry, with similar algebraic properties, was discussed
in Ref. [31], in terms of the antiferromagnetic time-reversal
symmetry. Additionally, {IC2z|1/2,−1/2, 0} is a unitary
glide mirror.

A combination of effective time reversal and the unitary
glide mirror protects the line nodes on the BZ boundary as
shown subsequently. We first notice that the product operation
acts on the spatial coordinates (x+, x−, z) as

KIC2z � IC2z : (x+, x−, z) → (x+ + ã, x− − ã, z + a), (6)

while

IC2z � KIC2z : (x+, x−, z) → (x+ + ã, x− − ã, z − a). (7)

Therefore,

KIC2z � IC2z = e2ikzaIC2z � KIC2z, (8)

implying that these two operators commute and anticommute,
respectively, at kz = 0 and at the BZ boundary plane, kz =
±π/2a. We have removed the explicit reference to partial
translations for notational clarity. Since the unitary opera-
tor IC2

2z = −1, its eigenvalues are g± = ±i. The antiuni-
tary operator KIC2

2z = −1, and transforms the momentum
as (k+, k−, kz) → (−k+,−k−, kz). Therefore each band is
Kramers degenerate at k0 = (k0

+, k0
−, kz), with k0

+ = ±π/ã

and k0
− = ±π/ã, representing the surface of the BZ. In addi-

tion, on this surface we now take a line kz = k0
z , with k0

z = 0
(k0

z = ±π/2a) and denote the line by �. Consider a Bloch state
on �, |�k〉, such that IC2z|�k〉 = g+|�k〉. Then,

IC2z[KIC2z|�k〉] = e2ikzaKIC2z[IC2z|�k〉]
= e2ikzag−[KIC2z|�k〉]. (9)

Therefore, for the line � in the middle of the BZ, k0
z = 0, the

Kramers partners of bands at the same momentum have op-
posite eigenvalues of the unitary operator and thus anticross.
On the other hand, for the line � that lies on the BZ boundary,
the eigenvalues of the Kramers partners are the same and the
bands can cross along this line. Most importantly, as we just
showed, the crossing is protected by the combination of these
two symmetries, i.e., it cannot be removed as long as these
symmetries are operative.

Having established the underlying symmetries for the
twisted phase, it is possible to construct a general lattice
tight-binding Hamiltonian H (k, φ), given by

H (k, φ) =
4∑

j=1

∑
α=e,o

∑
μν

f (j )
μν (k)F j,α

μν (φ)�j,α
μν . (10)

Here, F
j,e,o
μν (φ) are respectively even and odd functions of φ,

index j labels the four combinations of the parities of the
function f (j ) under the change of sign of the x-y and the z

components of the momentum, and �μν are matrices allowed
by the symmetries [51].

Symmetry breaking perturbations. In the following, we
consider alternations in the spin structure, which can break the
symmetries protecting the Hund NLSM. First, we introduce a
slight tilt of the magnetic moments in the z direction with a
staggering between the two layers in the unit cell, breaking
IC2z and K, while the KIC2z symmetry is kept intact [51].

For a small tilting angle, this perturbation vanishes on
the BZ boundary plane kx ± ky = ±π , and consequently pre-
serves the degeneracy of the line node, as shown in Fig. 3(a).
Otherwise, it splits the twofold degeneracy of the bands in the
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GEILHUFE, GUINEA, AND JURIČIĆ PHYSICAL REVIEW B 99, 020404(R) (2019)

FIG. 3. Lifting the Hund nodal line via symmetry breaking per-
turbations. (a) A perturbation introduced by slightly tilting the spins
in the z direction preserves the Hund NLSM state. (b) A mass
term respecting only KIC2z symmetry splits the fourfold line node,
yielding two pairs of line nodes symmetrically split about E = 0. A
similar effect is obtained when the spins are slightly tilted in the z

direction but staggered in the x-y plane.

kz = 0 and kz = π/2 planes, since it breaks IC2z symmetry.
Furthermore, a perturbation that preserves KIC2z but breaks
both IC2z and K symmetries in contrast gives rise to a mass
term which is nonvanishing along the edge of the BZ bound-
ary at kz = π/2 [51]. The two Kramers pairs of nodal lines are
then symmetrically split about the zero energy, while retaining
Kramers degeneracy [Fig. 3(b)].

To further illustrate the symmetry protection of the line
node, we consider slightly twisted spins in the z direction
staggering between the a and b sites [51]. The corresponding
perturbation breaks both IC2z and KIC22 symmetries while
only the K symmetry is kept. Similarly to the previous
case, this perturbation leads to a fully gapped band structure
[Fig. 3(b) and Sec. S2 of the Supplemental Material (SM)
[51]].

Surface states. To illustrate the topological nature of the
model we have calculated the surface electronic structure for a
cut along the (001) surface [51], by means of the k-dependent
local density of states or Bloch spectral function projected on
the surface layer. Figure 4 compares the energy dispersion for
the bulk and the surface. The surface band structure features a
dispersing drumhead state with maximal localization at � (the
center of the surface BZ) ending with completely delocalized
states at the edge of the surface BZ which are connected to the
bulk nodal lines. This in turn demonstrates the bulk-surface
correspondence for the Hund NLSM.

FIG. 4. Correspondence between bulk and surface band structure
through the calculated local density of states. (a) Bulk band structure
in the kz = 0 plane along the S-�-X high-symmetry line (not cutting
the nodal line). (b) Bulk band structure in the kz = π/2 plane along
the R-Z-U high-symmetry line (cutting the nodal line). (c) Surface
band structure for a cut through the crystallographic (001) plane
along the high-symmetry S̄-�̄-X̄ directions (inset). The local density
of states scales with brightness.

Discussion and conclusions. We show that nodal line
semimetals protected by nonsymmorphic unitary and antiuni-
tary symmetries can emerge out of a strong Hund’s coupling
between the localized spins forming a noncollinear magnetic
phase and the itinerant electrons. This situation is likely to
exist in systems described by the so-called double-exchange
model, such as the colossal magnetoresistance manganite
oxides [37,42]. In that respect, prominent candidates include
La2−2xSr1+2xMn2O7 for x = 0.58 reported to be metallic with
a magnetic state consistent with a twisted in-plane spin config-
uration [52], as well as Nd1−xSrxMnO3 for x = 0.5–0.6 [53],
and Ca1−xSmxMnO3 for x < 0.12 [54], both also metallic
with a possible noncollinear spin state. In addition, the rich
phase diagram of the double-exchange materials allows for
electronic phase separation [44,45], and the coexistence of
phases with different topologies. Nontrivial interface states
are expected to emerge. The response to magnetic topological
defects, such as vortices and skyrmions (for spin textures with
an out-of-plane spin component), through binding of special
midgap states, may further distinguish magnetic topological
states in comparison with their nonmagnetic counterparts
[55,56]. Our findings therefore open up a route for studying
the emergence of exotic states of matter in materials where
localized spins and itinerant electrons are strongly coupled.

This should motivate further studies of the experimental
imprints of this class of topological metals, through, for
instance, the drumhead surface states, in the tunneling exper-
iments and transport. Furthermore, the bulk magnetotransport
signatures should be observable, as a direct manifestation of
the recently proposed parity anomaly for NLSMs [57,58].
Finally, the role of interactions [59] and different types of
disorder [60] in this context are still open problems.
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