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Fibonacci steady states in a driven integrable quantum system

Somnath Maity,1 Utso Bhattacharya,1 Amit Dutta,1 and Diptiman Sen2

1Department of Physics, Indian Institute of Technology, Kanpur 208016, India
2Centre for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 15 October 2018; revised manuscript received 15 January 2019; published 24 January 2019)

We study an integrable system that is reducible to free fermions by a Jordan-Wigner transformation which is
subjected to a Fibonacci driving protocol based on two noncommuting Hamiltonians. In the high-frequency limit
ω → ∞, we show that the system reaches a nonequilibrium steady state, up to some small fluctuations which
can be quantified. For each momentum k, the trajectory of the stroboscopically observed state lies between two
concentric circles on the Bloch sphere; the circles represent the boundaries of the small fluctuations. The residual
energy is found to oscillate in a quasiperiodic way between two values which correspond to the two Hamiltonians
that define the Fibonacci protocol. These results can be understood in terms of an effective Hamiltonian which
simulates the dynamics of the system in the high-frequency limit.
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Through recent experimental progress [1–5], it has been
realized that whether the unitary time evolution of a closed
many-body quantum system in the thermodynamic limit leads
to a Gibbs ensemble after an asymptotically long time de-
pends on the nature of the system and the initial state under
consideration. To address this question, one considers a small
subsystem of the entire system while the rest of the system
acts as a bath. A system is said to thermalize when the long-
time equilibrium properties of the subsystem are correctly
represented by considering a canonical (or grand canonical)
ensemble for the whole system. In such a scenario, the system
respects the eigenstate thermalization hypothesis [6–8]. The
usual quantum statistical mechanics then holds and can be
applied successfully to understand the long-time steady states
of the subsystem. However, many-body localized systems
[9,10] are examples where a quantum many-body system does
not thermalize under unitary dynamics and retains the mem-
ory of the initial state. Integrable closed many-body quan-
tum systems provide another example where the eigenstate
thermalization hypothesis is violated, although the entropy
maximization principle still remains valid and an appropriate
consideration of the extensive number of conservation laws
usually leads to a description of the system in terms of a
generalized Gibbs ensemble [11–14].

The main interests in the study of quantum statistical
physics is therefore not only to see how a system equilibrates
under the unitary evolution generated by its Hamiltonian,
but also to investigate the nature and relaxation of a system
driven out of equilibrium by a time-dependent Hamiltonian
towards a nonequilibrium steady state (NESS). Due to the
tremendous experimental progress [15–20], a plethora of
works has been carried out on periodically driven closed
quantum systems [21–53]. A time-periodic Hamiltonian
generates far richer possibilities for stabilizing a NESS
with purely unitary dynamics, also rendering the possibility
of exotic phases such as a Floquet time crystal [54,55],
Floquet Majoranas, and other novel topological phases
[22–25]. For Floquet systems which are integrable by a

Jordan-Wigner transformation (from spin-1/2’s to spinless
fermions), the local observables eventually exhibit a steady
state behavior which is described by a periodic Gibbs ensem-
ble which is constructed via the entropy maximization princi-
ple by taking into account all the stroboscopically conserved
quantities [14]. On the other hand, nonintegrable systems in
the absence of disorder generally suffer from a heat death
and eventually reach an infinite temperature ensemble (ITE)
[46].

In recent works, driving protocols that are not periodic
functions of time have been considered [47–50,56–61]. For
Jordan-Wigner integrable systems, it has been shown that any
typical realization of random noise causes eventual heating
to an ITE for all local observables. However, noise that is
self-similar in time can eventually lead to an emergent steady
state which is described by a geometric generalized Gibbs
ensemble [47]. On the other hand, subjecting a disordered
interacting spin chain to a quasiperiodic time-dependent Fi-
bonacci drive typically leads to a long-lived glassy regime that
eventually thermalizes to an ITE [50].

Motivated by the above considerations, in this Rapid Com-
munication we study an intermediate case between periodic
and random driving of a Jordan-Wigner integrable quantum
many-body system. Our system, although integrable, will
be taken to be driven according to a quasiperiodic driving
which follows the Fibonacci sequence. We ask whether such a
driving protocol will cause heating to an ITE or saturation to a
steady state for the local operators. Interestingly, we find that
quasiperiodic driving leads to a NESS in the high-frequency
limit. Furthermore, the timescale in which the system reaches
a NESS is comparable to that of periodic driving and is
therefore experimentally observable. This is in contrast to the
scale-invariant situation in Ref. [47], where a NESS appears
only at astronomically large times. We will further illustrate
to what extent the generator of the quasiperiodic evolution
can be reduced to an effective Hamiltonian whose spectrum
in turn quantifies both the asymptotic value and the nature of
the approach towards the NESS.
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We consider the paradigmatic one-dimensional transverse
field Ising model as an example of a Jordan-Wigner integrable
system [62–65]. For each momentum mode, this is described
by a 2 × 2 Hamiltonian [66],

Hk (t ) = [h(t ) − cos k]σz + sin kσx, (1)

where the σ ’s are Pauli matrices. We first consider a perfectly
periodic driving with Hk (t + τ ) = Hk (t ), where the time pe-
riod is τ = 2T , with a square pulse driving protocol of the
form

Hk (t ) =
{

HA
k for 0 � t < T,

HB
k for T � t < 2T,

(2)

where HA
k and HB

k are the momentum space Hamil-
tonian given in Eq. (1) with transverse fields hA and
hB, respectively (see Ref. [66] for details). For such a
periodic protocol the system reaches a periodic steady
state and the residual energy density (RE) reaches a
steady state value [31,48,66] [see the cyan curve in
Fig. 1(a)]. We recall that the RE is defined as εres(t ) ≡
(1/L)

∑
k[ek (t ) − eg

k (0)], where ek (t ) = 〈ψk (t )|Hk (t )|ψk (t )〉
and eg

k (0) = 〈ψk (0)|Hk (0)|ψk (0)〉, |ψk (t )〉 is the time-evolved
state starting from the initial state |ψk (0)〉, Hk (0) and Hk (t )
are the initial and instantaneous Hamiltonians of the system,
respectively, and L is the system size.

We will now study the effect of a quasiperiodic driving pro-
tocol corresponding to a Fibonacci sequence of two distinct
square wave pulses A and B [with Hamiltonians HA and HB,
respectively, in Eq. (2)], beginning as ABAABABAABAAB · · · ;
we choose the first pulse to be A. We generate the Fibonacci
sequence using the recursion relation

Vn = Vn−2Vn−1 (3)

for n � 2 with two initial unitary matrices V0 = UB and V1 =
UA; here, UA and UB are evolution operators defined over a
stroboscopic time T for two different integrable Hamiltonians
HA and HB, such that

UA = e−iT HA ≡ eA,

UB = e−iT HB ≡ eB. (4)

We will measure the local observables after N stroboscopic
intervals, t = NT . The unitary operators for the first few
values of N are given by

U (N = 1) = eA,

U (N = 2) = eBeA � eB+A+ 1
2 [B,A], (5)

U (N = 3) = eAeBeA � eA+B+A+ 1
2 [B,A]+ 1

2 [A,B], (6)

and so on. We note that the last two approximations in
Eqs. (5) and (6) involve the multiplication of noncommuting
matrices eA and eB and the application of the Baker-Campbell-
Hausdorff formula retaining only leading-order terms in 1/ω.
The underlying assumption here is that the frequency ω =
2π/T is much greater than the bandwidths of the two static
Hamiltonians HA

k and HB
k . For each k mode, we can calculate

the evolution operator Uk (N ) after N stroboscopic intervals as
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FIG. 1. (a) Numerical results for the RE,∑
k[〈ψk (N )| HA

k |ψk (N )〉− eg
k (0)]/L, vs N . The cyan curve

shows the RE for perfectly periodic driving with the protocol
given in Eq. (2). The orange curve show the RE when |ψk (N )〉
is generated by the Fibonacci sequence. The plus signs indicate
the approximate analytical results for the Fibonacci case using the
unitary evolution in Eq. (7), and they show an excellent fit to the
numerical results. (b) Trajectory {θk (N ), φk (N )} of the state |ψk (N )〉
in Eq. (13) on the Bloch sphere as a function of N up to N = 1000
for a particular momentum mode k = 159π/200. In (a) and (b), we
have chosen L = 500, ω = 500, and hA = 1 and hB = 10 in Eq. (2).
The trajectory (in red) for the periodic dynamics [with the protocol
in Eq. (2)] forms a circle on the Bloch sphere. The trajectory for
the Fibonacci driven sequence (in blue) fluctuates within the area
bounded by two nearby and concentric circles lying on the Bloch
sphere. (c) The figure shows that β(N )/N quickly reaches a steady
state value, equal to 0.382 shown by the blue line, as N becomes
large. The inset shows that δ(N )/N keeps fluctuating with the same
amplitude even when N becomes large.
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(see Ref. [66])

Uk (N ) � e−iT (α(N )HA
k +β(N )HB

k −i(T/2)δ(N )[HA
k ,HB

k ])

≡ e−iNT HFib
k (N ). (7)

Here,

β(N ) = 2N −
N∑

m=1

γ (m),

α(N ) = N − β(N ),

δ(N ) =
N∑

m=1

{
[γ (m) − 1](m − 1) −

⌊
mG

G + 1

⌋}
,

γ (m) = �(m + 1)G	 − �mG	, (8)

where G = (
√

5 + 1)/2 is the Golden ratio, and �x	 denotes
the largest integer � x. We note that the function γ (m) is equal
to either 1 or 2 for any positive integer m. We can now define
an effective Hamiltonian HFib

k (N ) which is the generator of
Uk (N ) as shown in Eq. (7),

HFib
k (N ) = a1σx + a2σy + a3σz, (9)

where the coefficients ai are given by

a1 = sin k,

a2 = δ(N )

N
T �h sin k,

a3 = hA − cos k + β(N )

N
�h, (10)

and �h = hB − hA is the amplitude difference of the two
pulses. This effective Hamiltonian HFib

k (N ), in contrast to the
Floquet Hamiltonian in the periodic case, depends on the
stroboscopic time N ; thus, it yields time-dependent eigen-
values and eigenvectors which determine the behavior of the
expectation values of local observables at all stroboscopic
times.

Before evaluating a local observable, we examine the dy-
namics of the time-evolved state |ψk (N )〉 vs N on the Bloch
sphere for each k mode. This state is numerically generated
by acting with the Fibonacci evolution operator Uk (N ) on the
initial state |ψk (0)〉 to yield

|ψk (N )〉 = Uk (N ) |ψk (0)〉 =
[

cos (θk (N )/2)

sin (θk (N )/2)eiφk (N )

]
. (11)

In Fig. 1(b), we show the trajectory of [θk (N ), φk (N )] for
a particular k mode on the Bloch sphere as it evolves with
increasing N . We note that in contrast to the trajectory for the
case of periodic driving shown by the red circle, the trajectory
of the points for the Fibonacci driving fluctuates but always
lies in the area bounded by two nearby and concentric circles
lying on the Bloch sphere. This behavior can be understood
by noting that although β(N )/N quickly reaches a steady state
value equal to 1 − 1/G � 0.382 as N becomes large, δ(N )/N
continues to fluctuate even for very large N [see Fig. 1(c)
and its inset]. The persistent fluctuations in δ(N )/N prevent
the trajectory from collapsing on to a single circle such as in
the periodic case. The spread of the trajectory on the Bloch
sphere is k dependent and is directly related to the amount of

fluctuations of δ(N )/N . Reference [66] provides an analytical
derivation of β(N )/N and the spread in δ(N )/N which is
found to lie between 1 − 1/G and −1/G � −0.618.

Given the trajectory of the Fibonacci time-evolved state
on the Bloch sphere, we are now ready to study whether the
system attains a steady state asymptotically. To this end, we
calculate the RE in analogy with that of a perfectly periodic
situation where the RE is given by the expectation value of the
time-independent Hamiltonian Hk (N ) = HA

k summed over all
momenta modes. For the case of Fibonacci driving, we find
that the Hamiltonian is N dependent and is given by

Hk (N ) = [γ (N ) − 1]HA
k + [2 − γ (N )]HB

k . (12)

Since γ (N ) is equal to either 1 or 2, Hk (N ) can either be HA
k

or HB
k for each N . Then the RE is evaluated as εFib

res (N ) =
(1/L)

∑
k [〈ψk (N )|Hk (N )|ψk (N )〉 − eg

k (0)]. Using the high-
frequency approximation (7), the state after N stroboscopic
intervals can be written as

|ψk (N )〉 = e−iNT HFib
k (N ) |ψk (0)〉 . (13)

Using the basis of eigenstates of HFib
k (N ), we can evaluate the

RE in the high-frequency limit for a thermodynamically large
system with L → ∞,

εFib
res (N ) =

∫
dk

2π

{|c+
k (N )|2H++

k (N ) + |c−
k (N )|2H−−

k (N )

+ [eiNT [μ+
k (N )−μ−

k (N )]c+∗
k (N )c−

k (N )H+−
k (N )

+ c.c.] − eg
k (0)

}
, (14)

where c±
k (N ) = 〈 f ±

k (N )|ψk (0)〉, and | f ±
k (N )〉 are the eigen-

states with eigenvalues μ±
k (N ) =

√
a2

1 + a2
2 + a2

3 of the
Hamiltonian HFib

k (N ). The matrix elements of Hk (N ) in this
basis are given by

H±±
k (N ) = 〈 f ±

k (N )| Hk (N ) | f ±
k (N )〉 . (15)

In the limit of large N , the off-diagonal terms containing
H+−

k (N ) and its complex conjugate in Eq. (14) oscillate
rapidly and vanish on integrating over all the k modes due
to the Riemann-Lebesgue lemma, giving the steady state
expression

εFib
res =

∫
dk

2π

{|c+
k (N )|2H++

k (N )+|c−
k (N )|2H−−

k (N ) − eg
k (0)

}
= [γ (N ) − 1]〈HA〉 + [2 − γ (N )]〈HB〉, (16)

where we have used Eqs. (12) and (15) and the terms 〈HA/B〉
are given by

〈HA/B〉=
∫

dk

2π

⎧⎨
⎩

∑
j=±

∣∣c j
k (N )

∣∣2 〈
f j
k (N )

∣∣ HA/B
k

∣∣ f j
k (N )

〉⎫⎬⎭. (17)

The quantities 〈HA/B〉 can be obtained from the expectation
values of HA/B,

〈HA/B(N )〉 =
∫

dk

2π

{ 〈ψk (N )| HA/B
k |ψk (N )〉 − eg

k (0)
}
. (18)

In taking the limit of large N , we drop the highly oscillating
off-diagonal terms as they vanish upon integration over all
the momentum modes in the thermodynamic limit. Although
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FIG. 2. (a) 〈HA〉 and 〈HB〉 in Eq. (17) plotted vs N for a
Fibonacci protocol driven system with hA = 1, hB = 10, ω = 500,
and L = 500. The solid black (blue) lines show the numerically
obtained results for 〈HA〉 (〈HB〉), while the red (magenta) lines are
the corresponding analytical steady state values. The green plus
signed markers show how the RE [given in Eq. (16)] is supported
on the two quantities 〈HA〉 and 〈HB〉. (b) This zoomed section of (a)
focuses on the part between N = 1000 and 1010. The black (blue)
markers indicate the values of the 〈HA〉 (〈HB〉). Following the green
markers placed on top of the black (blue) markers, we observe that
the steady state RE has support only on the upper (lower) branch
when the system is viewed along the A (B) sequence in the Fibonacci
series shown by the gray dashed line.

the diagonal terms depend on N through the basis vectors
| f ±

k (N )〉, the quantities 〈HA〉 and 〈HB〉 reach a steady state for
a thermodynamically large system in the limit of large N , as
shown in Fig. 2(a). The system reaches a steady state because
the contributions of the fluctuating δ(N )/N terms to 〈HA/B〉
vanish up on integration over the k modes. Moreover, the
steady state value of 〈HA/B〉 also depends on β(N )/N which,
after some initial transients, settles to a value equal to 1 − 1/G
and becomes independent of time.

Here, we would like to remark about the role of the N
dependence of γ (N ) in Eq. (16). In the case of a perfectly

periodic driving, the steady state attains a constant value
only when the system is observed at asymptotic stroboscopic
instants N . There could of course be micromotion present
in the system within a stroboscopic interval. If the system
is observed at such intermediate times, it may not appear as
steady. Similarly, in the case of the Thue-Morse sequence
[47], the steady state emerges only when it is observed at
geometric intervals of 2N and not at stroboscopic intervals
N . In our case, the steady state only attains a constant value
when it is observed at the A or B stroboscopic instants of the
Fibonacci sequence. Of course, it quasiperiodically oscillates
between two different constant values [see Fig. 2(b)] if the
system is instead observed at each stroboscopic instant N . But,
if we observe the system at the time instances A or B, then the
corresponding steady state has only one constant value.

In summary, we have studied the behavior of a transverse
Ising chain subjected to a Fibonacci driving protocol. For
periodic driving, the evolution of each momentum mode on
the Bloch sphere observed for a sufficiently long duration lies
on a circle. In contrast, for the case of Fibonacci driving,
we find in the high-frequency limit that the evolving points
lie within a small area bounded by two concentric circles on
the surface of the sphere; we have provided an explanation
for this in terms of small but persistent fluctuations in the
evolution operator. (It turns out that the axis of rotation of the
circle changes after an astronomically large number of drives.
Namely, the direction of the axis changes by ε after a number
of drives of the order of Gεc/T 2

, where c is a number of order
1. For some fixed values of ε and c, this is an enormously
large number if T is very small. Thus a change in the axis
and therefore in the steady state would not be discernible
within experimental timescales. This analysis is presented
in Ref. [66]). Thus we have the interesting result that a
thermodynamically large many-body system viewed strobo-
scopically reaches a different Fibonacci NESS and does not
heat up to an ITE in the limit of large N . Rather, when viewed
after stroboscopic intervals N , the RE oscillates between two
steady state values of the REs of the two Hamiltonians HA

and HB. These oscillations are quasiperiodic and exactly
follow the Fibonacci sequence. Whenever the sequence hits
A or B, the RE of the system follows the steady state RE
calculated using HA or HB. Thus, if the residual energy of
the system is measured not after every stroboscopic interval,
but either along the A’s in the Fibonacci sequence or along
the B’s, it would appear that the steady state value of the
RE is equal to the steady residual energy measured with
respect to either HA or HB, respectively. It is worth noting that
the system has two accessible steady states between which
the ones associated with 〈HB〉 release energy and have a
negative RE (see Fig. 2) compared to the initial state. This
negative value of the RE occurs due to a greater population of
those energy levels of HB which have a lower energy than that
of the initial ground state. This negative value can be tuned
by varying the frequency ω and the field hB with respect to
hA. In comparison, the RE in the perfectly periodic situation is
always semipositive. To conclude, in spite of the quasiperiodic
nature of the driving, it is remarkable that the local properties
of the system in the long-time limit manage to synchronize
with the quasiperiodic drive and can eventually be described
by a different nonequilibrium statistical ensemble.
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We establish these findings by analytically deriving an
effective Hamiltonian HFib

k (N ), which is N dependent unlike
the periodic Floquet scenario and can nearly exactly simulate
the dynamics of the system in the high-frequency limit [see
Fig. 1(a)]. The time-dependent spectrum of HFib

k (N ) can ef-
fectively provide a microscopic understanding of the nature
of evolution towards a steady state as N becomes large.

We would like to conclude by highlighting that our work
interestingly shows the emergence of a steady state behavior
albeit only at high frequencies. The emergence of such a
steady state and its form (namely, an annular spread of the
eigenstates on the Bloch sphere) are not a priori obvious.
The uniqueness of the steady state lies in the fact that when
the system is observed perfectly periodically, the steady state
value oscillates quasiperiodically, following the Fibonacci
sequence, whereas, if it is observed at Fibonacci instances, the
system oscillates periodically between two constant values.
Furthermore, this emergent behavior is well explained through
an analytical framework devised using the high-frequency ap-
proximation which is in complete agreement with numerical
simulations. The analytical results allow us to explore the
behavior of the system in the large N limit, where numerical
errors due to matrix multiplications eventually creep in. We
note that if the frequency is not high, no such steady state

exists, and the system can exhibit a rich variety of long-time
behaviors depending on the values of the driving parameters
[61]. The role of interactions and disorder and the eventual
heating up to an ITE has been investigated in Ref. [50].

As long as the driving sequence is of the Fibonacci type,
the fact that the system eventually reaches a steady state is not
restricted to the square pulse nature of the driving protocol,
though the steady state value of the RE may depend on the
strength of the driving involved. The analytic evaluation of
the RE assumes a knowledge of the binary noncommuting
unitary evolution operators over a complete stroboscopic pe-
riod whose generators are Jordan-Wigner integrable and are
devoid of local disorder. Thus, the same results are expected
to hold for higher-dimensional systems as well. We note
that the binary aperiodic situation comprising a δ-function
kicking protocol has already been experimentally realized
for a single rotor [67]; similar experimental studies for our
quasiperiodically driven situation are indeed possible.

We thank Sourav Nandy and Arnab Sen for many stimu-
lating discussions. A.D. acknowledges SERB, DST, India and
D.S. thanks DST, India for Project No. SR/S2/JCB-44/2010
for financial support.
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