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Canonical circuit quantization with linear nonreciprocal devices
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Nonreciprocal devices effectively mimic the breaking of time-reversal symmetry for the subspace of dynam-
ical variables that they couple, and can be used to create chiral information processing networks. We study the
systematic inclusion of ideal gyrators and circulators into Lagrangian and Hamiltonian descriptions of lumped-
element electrical networks. The proposed theory is of wide applicability in general nonreciprocal networks on
the quantum regime. We apply it to pedagogical and pathological examples of circuits containing Josephson
junctions and ideal nonreciprocal elements described by admittance matrices, and compare it with the more
involved treatment of circuits based on nonreciprocal devices characterized by impedance or scattering matrices.
Finally, we discuss the dual quantization of circuits containing phase-slip junctions and nonreciprocal devices.
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I. INTRODUCTION

Low-temperature superconducting technology [1] is on
the verge of building quantum processors [2] and simula-
tors [3–7], machines predicted to surpass exponentially the
computational power of classical computers [8–11]. In elec-
tromagnetism, reciprocity is equivalent to the invariance of
a system’s linear response under interchange of sources and
detectors. Nonreciprocal (NR) elements such as gyrators and
circulators [12] have been mainly used in superconducting
quantum technology as noise isolators and classical infor-
mation routers, i.e., out of the quantum regime, due to the
size of currently available devices. Lately, there have been
several proposals for building scalable on-chip NR devices
based on Josephson junction networks [13–15], parametric
permittivity modulation [16], the quantum Hall effect [17,18],
and mechanical resonators [19]. This nonreciprocal behavior
presents quantum coherence properties [18] and will allow
novel applications in the nontrivial routing of quantum infor-
mation [20–22]. Accordingly, there is great interest in building
a general framework to describe networks working fully on
the quantum regime [23–35].

In this article, we use network graph theory to derive
Hamiltonians of superconducting networks that contain both
nonlinear Josephson junctions and ideal lineal NR devices
with frequency-independent response [36]. The correct treat-
ment of such ideal devices will provide us with building
blocks to describe more complex nonreciprocal linear devices
[37] that can be treated as linear black boxes [24,28–30].
This theory lays the ground for the correct description of
circuits in the regime where the nonreciprocal devices can be
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well characterized by a linear response [13–19], even if the
fundamental nonreciprocal behavior is achieved by nonlinear
elements [13–15]. Outside of this regime of validity, a black-
box approach is no longer useful and a microscopic descrip-
tion of nonreciprocal effects is imperative. We emphasize here
that, even though they do not exist as such in nature, ideal
gyrators and circulators can be useful elements to introduce
in complex descriptions of networks. We focus on and ex-
tend the analyses of lumped-element networks of Devoret
[23], Burkard-Koch-DiVincenzo (BKD) [25], Burkard [26],
and Solgun and DiVincenzo [30]. Our extension involves,
first, adding ideal gyrators and circulators described by an
admittance (Y) matrix to obtain quantum Hamiltonians with
a countable number of flux degrees of freedom. As we will
see, a bias towards a specific matrix description of NR devices
(NRDs) appears useful when we want the Euler-Lagrange
equations of motion to be current Kirchhoff equations in terms
of flux variables. We next show how adding ideal NRDs de-
scribed by impedance (Z) or scattering (S) matrices requires a
more involved treatment, in that the system of equations must
be first properly reduced. Finally, we also address canonical
quantization with charge variables to treat dual circuits with Z
circulators; see Ref. [38] for a detailed description on circuit
quantization with loop charges. We apply our theory to useful,
pedagogical, and pathological circuit examples that involve
the main technical issues that more complex networks could
eventually present.

Our emphasis is on quantization of an electrical network,
that is to say, on quantum network analysis, and we set
aside the dual problem of network synthesis. Even so, the
introduction of the techniques presented here implies that
more sophisticated synthesis methods can be used for the
description of quantum devices, since our analysis can be
applied to a wider class of circuits than those previously
considered.
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FIG. 1. (a) A 2-port gyrator: Input ak and output bk signals are
related to each other through the scattering matrix b = Sa; with
b2 = a1 and b1 = −a2, the element behaves as a perfect π -phase
directional shifter (bottom) when impedance matched to transmis-
sion lines at ports. (b) A 3-port circulator: Input signals transform
into output signals cyclically, e.g., bk = ak−1. Port voltages Vk and
currents Ik can be generally related to ak and bk through Eq. (8).

Regarding the need for a more involved treatment of
NRDs with impedance or scattering matrix presentations, bear
in mind that, in microwave engineering, a multiport linear
(black-box) device can be always described by its scattering
matrix parameters S(ω) [39], that relate voltages and currents
at its ports b = Sa, with bk = (Vk − Z∗

k Ik )/
√

Re{Zk} and ak =
(Vk + ZkIk )/

√
Re{Zk}. The reference impedances can be cho-

sen, for simplicity, homogeneous and real, e.g., Zk = R ∈ Re.
Simple properties of the scattering matrix reveal fundamental
characteristics of the device. For instance, a network is re-
ciprocal (lossless) when S is symmetric (unitary). See Fig. 1
for an example of basic NR devices and their conventional
symbols in electrical engineering. When ports are impedance-
matched to output transmission lines (a) a 2-port (4-terminal)
ideal gyrator behaves as a perfect π -phase directional shifter,
i.e., b2 = a1 and b1 = −a2, and (b) a 3-port (6-terminal)
ideal circulator achieves perfect signal circulation, e.g., bk =
ak−1 [37]. Other useful descriptions of multiport devices are
the impedance Z(ω) = R[1 − S(ω)]−1[1 + S(ω)] and admit-
tance Y(ω) = Z−1(ω) matrices that relate port voltages and
currents as V = Z I and I = Y V, respectively [39]. Although
sometimes more useful, immittance descriptions of linear
devices do not always exist, and working with S can be
unavoidable [37,39]. This comes about whenever the S matrix
has +1 and −1 eigenvalues.

In Sec. II we present some basic aspects of network graph
theory, as applicable to electrical circuits, with reference to
the current literature on its use in quantization. We include
nonreciprocal multiport elements in the consideration. We
next address, in Sec. III, the construction of the Lagrangian of
circuits with admittance-described nonreciprocal devices and
the subsequent quantization. We provide specific examples of
this process. In Sec. IV we look into the issue of nonreciprocal
devices with no admittance description. To this point we
have studied circuits with flux variables. In Sec. V the dual,
charge variables are investigated for their use in nonreciprocal
circuits. We finish with conclusions and a perspective on
future work.

II. NETWORK GRAPH THEORY

A lumped-element electrical network is an oriented multi-
graph [23,25]. Each branch of the graph connects two nodes

and has a direction chosen to be that of the current passing
through it. A one-port element will be assigned a branch. The
choice of direction for the corresponding branch is arbitrary
for symmetric elements. More generally, N-port elements
like the circulator are represented by N branches connecting
2N nodes pairwise [37]; see Fig. 1. A spanning tree of the
graph is a set of branches that connects all nodes without
creating loops. The set of branches in the tree are called tree
branches and all others chord branches. Making a choice for
tree and chord branches in an electrical network, we separate
the currents IT = (IT

tr , IT
ch ) and voltages VT = (VT

tr , VT
ch ) to

write Kirchhoff’s equations as

F Ich = − Itr, (1)

FT Vtr = Vch +�̇ex, (2)

where F is the reduced fundamental loop(/cut-set) matrix de-
scribing the topology of the graph. It contains only {0,−1, 1}
entries; see [25,26] for details on graph theory applied to
superconducting circuits. Hence we make reference to F as
the loop matrix. The vector of external fluxes �ex corresponds
to the set of external fluxes threading each of the loops of the
system.

The branch charge (Q) and flux (�) variables are de-
fined from the flow variables I and difference variables V
as IX (t ) = Q̇X (t ) and VX (t ) = �̇X (t ), where the subscript
X = C, L, J, G, T, R, Z, V, B denotes capacitors, induc-
tors, Josephson junctions, nonreciprocal element branches,
transformer branches, resistors, two-terminal impedances,
voltage sources, and current sources, respectively. For the
sake of simplicity we focus here on networks with passive
and lossless elements, i.e., capacitors, inductors, Josephson
junctions, nonreciprocal element branches, and transformer
branches. We forward the reader to Refs. [25,26,29,30] for the
inclusion of two-terminal impedances and voltage and current
sources.

The constitutive equations of capacitors, inductors, and
Josephson junctions are

QC = CVC, (3)

IL = L−1�L, (4)

�J = �0

2π
ϕJ , (5)

IJ = Icsin(ϕJ ), (6)

where Icsin(ϕJ ) is the column vector with Ici sin(ϕJi ) entries,
Ic the critical current of a junction, and �0 the flux quan-
tum. General multiport transformers (Belevitch transformers
[40]) have been previously added to the Burkard analysis in
Ref. [30]. They add voltage and current constraints on the
right ports in terms of its left ports and vice versa,

IR
T = − N IL

T , VL
T = NT VR

T , (7)

where N is the turns ratios matrix and both left and right
current directions are pointing inwards. Dual transformers
exist where the left-right equations (7) are inverted [30,40].
Passing now to the focus of our study, the general constitutive
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equation for the ideal (frequency-independent) nonreciprocal
element branches can be retrieved from the scattering matrix
definition

(1 − S) VG(t ) = (1 + S)R IG(t ), (8)

with R a constant in resistance units.
In order to carry out canonical quantization in circuits, our

task will be to simplify Kirchhoff’s laws together with the
constitutive relations into a set of classical Euler-Lagrange
(E-L) equations, from which Hamiltonian equations can be
derived through a Legendre transformation, and canonically
conjugate variables can be identified. In trivial cases, this
reduces to having a kinetic matrix that is nonsingular.

III. NETWORKS WITH Y NRD

Given that Josephson junctions are nonlinear devices,
E-L equations have been systematically derived in flux vari-
ables so as to have a purely quadratic kinetic sector, e.g.,
Refs. [23,25,26,29,30]. In particular, BKD and Burkard quan-
tization methods are constrained, with respect to Devoret’s
approach, to specific topological classes of circuits to make
the Hamiltonian derivation even more systematic. For in-
stance, in BKD all the capacitors must be included in the tree,
while there are no capacitor-only loops; i.e., all capacitors are
tree branches, and no external impedance can appear in the
tree, while Burkard quantization has dual conditions. These
assumptions about the assignment to tree and chord branches
provide us with a description of the loop matrix in block
matrix form, in such a way that some of the blocks are trivial.
This triviality, in turn, will allow us to construct effective loop
matrices by elimination of variables.

As we shall now see, those approaches can easily incorpo-
rate ideal NR elements described by the admittance matrix (Y
devices) with the realistic assumption that all of their branches
are independently shunted by (parasitic) capacitors.

For instance, the BKD formalism can be extended by
assuming that all ideal NR (G) branches are chord branches.
As stated, in BKD all capacitors of the mesh have to be in
the tree branches, whereas Josephson junctions, which are
always in parallel to at least one capacitor, are chosen to be
chord branches. Inductors can be both in the tree (K) or in
the chord (L) set. In the following, we sketch the derivation
where all inductors are chord inductors. For pedagogical
purposes, we derive a Burkard circuit class extension in
Appendix A. Following Ref. [30], we also include Belevitch
transformers in this analysis.

The fundamental loop matrix of a simplified BKD circuit
can be written in block matrix form as

F =
(

FCJ FCL FCG FCT ch

FT trJ FT trL FT trG FT trT ch

)
. (9)

Real Josephson junctions are always in parallel to capacitors,
so that FT trJ = 0. On the other hand, if all transformer left
branches can be included in the tree, while transformer right
branches are in the chord, then FT LT R = FT trT ch = 0. We can
integrate out the voltages and currents in the transformer
branches [30] inserting (7) into Kirchhoff’s equations (1) and
(2) and write an effective loop matrix

Feff = (
FCJ Feff

CL Feff
CG

)
, (10)

with Feff
CL = FCL + FCT ch N FT trL and Feff

CG =
FCG + FCT ch N FT trG. We insert the constitutive equations
(4) and the admittance version of (8), IG = YG VG, into the
reduced current equation to obtain a second-order equation in
flux variables,

−C�̈C = Icsin
(
ϕCJ

) + M0�C + G�̇C, (11)

where M0 = Feff
CL L−1(Feff

CL )T , G = Feff
CG YG(Feff

CG)T , and ϕCJ
=

ϕJ is the vector of capacitor branch phases [related to the
fluxes by (5)] in parallel with the junctions. YG is a skew-
symmetric matrix (because it is the Cayley transform of
an orthogonal matrix S), and by construction so is G (see
Appendix A). The antisymmetry associated with the first-
order derivatives, together with the fact that these second-
order equations have a nonsingular kinetic matrix, allows us
to derive them from the Lagrangian

L = 1
2

(
�̇

T
C C�̇C + �̇

T
C G�C − �T

C M0�C
) − U

(
ϕCJ

)
. (12)

The conjugate charge variables are QC = ∂L/∂�̇C = C�̇C +
1
2 G�C . Notice that conjugate charge variables are not nec-
essarily identical to capacitor branch charge variables, which
are those that appear in Eq. (3). Promoting the variables to
operators with canonical commutation relations [�̂Cn , Q̂Cm ] =
ih̄δnm, we derive the quantum Hamiltonian

Ĥ = 1
2

(
Q̂C − 1

2 G�̂C
)T

C−1
(
Q̂C − 1

2 G�̂C
)

+ 1
2 �̂

T
C M0�̂C + U

(
ϕ̂CJ

)
. (13)

The nonlinear potential is defined as U (ϕ̂CJ
) =

−∑
i EJi cos(ϕ̂Ji) and the Josephson energy of each junction

is EJi = Ici�0/(2π ). Given the velocity-position coupling
term arising from the G matrix, a form first devised in
Ref. [36], a diagonalization of the harmonic sector requires
a symplectic transformation, that can be carried out either
in the classical variables or after the canonical quantization
procedure; see Appendix C. Notice the similarity of the G
terms to a magnetic field, and their breaking time-reversal
invariance. In the same manner as a magnetic field, these
gyroscopic terms are energy conserving.

Examples

These extended BKD and Burkard analyses can be directly
applied to a huge family of circuits to derive Hamiltonians in
position-flux variables with Y NRDs. Up till now, most of the
interest in quantization of circuits has been connected with the
presence of Josephson junctions. In the present analysis we
combine that presence of Josephson junctions with nonrecip-
rocal devices. We are thus motivated to keep the flux variables
as the only position coordinates of a Lagrangian/Hamiltonian
mechanical system. Here we demonstrate the quantization
of two circuits consisting of two Josephson junctions cou-
pled to (i) a general 2-port nonreciprocal black box and
(ii) the specific nonreciprocal impedance response of the
Viola-DiVincenzo Hall effect gyrator [17]. The first circuit is
a pedagogical and useful example where the black box, in its
N-port configuration, would represent the response of any
of the given proposals in Refs. [13–19] within their valid
frequency range containing two gyrators. In the second
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FIG. 2. Two junctions capacitively coupled to a nonreciprocal
lossless impedance. Gyrator R0 implements an antisymmetric pole
at infinity B∞. The network connected by gyrator R1 yields the term
(sA1 + B1)/(s2 + �2

1). There is a pure reciprocal stage A2. Effective
tree capacitor branches are marked in red, and current directions for
each branch are represented with arrows.

circuit, we exploit a specific 2-port impedance response,
which includes a gyrator, to get an easy lumped-element
approximation that can be directly quantized. Extensions of
these circuits with N-port Y circulators would also be read-
ily treated by this formalism. We study corner cases where
the circulators cannot be described by Y matrices below in
Sec. IV.

1. NR black box coupled to Josephson junctions

The first circuit consists of a 2-port nonreciprocal lossless
impedance [41] capacitively coupled to two charge qubits
at its ports; see Fig. 2. This is a generalization of the
Foster reactance-function synthesis for the 1-port reciprocal
impedance Z (s), with s = iω, and a simplified version of the
Brune multiport impedance expansion in Refs. [30,42].

A lossless multiport impedance matrix can be fraction-
expanded as

Z(s) = B∞ + s−1A0 + sA∞ +
∞∑

k=1

sAk + Bk

s2 + �2
k

. (14)

It is easy to synthesize a lumped-element circuit that has this
impedance to the desired level of accuracy; see [41]. In a
lossless linear system, the S matrix is unitary, and therefore
Z(s) = −Z†(s) must be anti-Hermitian. If, additionally, the
system is reciprocal, it must be symmetric. The only complex
parameter being s, a lossless reciprocal impedance matrix
must be odd in the variable s, −Z(−s) = Z(s). Therefore,
in the fraction expansion above, the s-odd parts correspond
to reciprocal elements, while the s-even parts come from
nonreciprocity. Thus, all A matrices are symmetric and are
implemented by reciprocal elements while B matrices are
antisymmetric, and can be decomposed into networks with
gyrators. A0 and A∞ terms correspond to the limits L2 → ∞
and C2 → 0, respectively, in a reciprocal stage (see Fig. 2).

A∞ requires special treatment, but would generally be absent
because of parasitic capacitors.

The general circuit implementing Z(s) contains Belevitch
transformer branches [40] that can be eliminated as explained
above [30] to derive a canonical Hamiltonian. An analysis
of the lossless reciprocal multiport network can be found in
Ref. [35]. The tree and chord branch sets are divided in IT

tr =
(IT

C , IT
T L ) and IT

ch = (IT
J , IT

L , IT
T R ), with left (right) transformer

branches being tree (chord) branches. The capacitance matrix
is by construction full rank and hence invertible,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CJ1

CJ2

Cg1

Cg2

C1R

C1L

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Inductive M0 and gyration G matrices are computed using the
turn ratios matrix

N =
⎛
⎝nL

11 0 0 nL
12 0 0

0 nR
11 0 0 nR

12 0
0 0 n21 0 0 n22

⎞
⎠ (16)

to calculate the effective loop submatrices Feff
CL, Feff

CG in (10);
see Appendix B for an explicit form of the matrices. We recall
that this analysis can be completed because the constitutive
equation of the nonreciprocal elements (8) simplifies to IG =
YG VG, where IG = (IG0L , IG0R , IG1L , IG1R )T and

YG =
(

YG0 0
0 YG1

)
, (17)

with YGi the admittance matrix for each gyrator i ∈ {0, 1}.

2. Hall effect NR device

The Hall effect has been proposed as instrumental in the
implementation of nonreciprocal devices. In Ref. [17], capac-
itively coupled Hall effect devices were studied by Viola and
DiVincenzo in order to break time-reversal symmetry while
keeping losses negligible. This 2-port capacitively coupled
Hall bar has an impedance matrix description [17]

Z2P(ω) = 1

σ

(−i cot(ωCL/2σ ) −1
1 −i cot(ωCL/2σ )

)
, (18)

where σ and CL are conductance and capacitance character-
istic parameters of the device, which is equivalent to that of
an ideal gyrator with R = 1/σ connected in series to two λ/2-
transmission line resonators of Z0 = 1/σ and vp/L = 2σ/CL;
see Fig. 3(a). Lumped-element Foster expansions of the res-
onators can approximate the behavior of such a device when
coupled to other lumped-element networks at its ports. This
connection is achieved with lumped capacitance and induc-
tance parameters determined by the distributed ones as C0 =
CL/2, Ck = CL/4, and Lk = CL/(σkπ )2, for k ∈ {1, . . . , N};
see Fig. 3(b).

We can systematically apply BKD theory and write a La-
grangian in terms of the flux branch variables of the capacitors
�T

tr = �T
C = (�CJ1

,�CJ2
,�0L, . . . , �NL,�0R, . . . , �NR).
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FIG. 3. The VD Hall effect gyrator capacitively coupled to
Josephson junctions. (a) An effective circuit of the device proposed
by Viola and DiVincenzo matching the impedance response (18)
consists of an ideal gyrator coupled to λ/2-transmission line stubs.
(b) The discrete approximate circuit based on a lumped element
expansion of the transmission lines [39] that is canonically quantized.
Tree (capacitor) branches are marked in red.

The flux variables at the ports of the gyrators and at the tree
capacitors are related by �G = FT

CG �C , where

FCG =

⎛
⎜⎝

1 0
0 1

1N 0
0 1N

⎞
⎟⎠, (19)

with 1N an N-component column vector of ones. Explicitly,
the three matrices describing the harmonic sector are the
symmetric

C =

⎛
⎜⎝

CJL

CJR

CN

CN

⎞
⎟⎠ and (20)

M0 =

⎛
⎜⎜⎝

0
0

L−1
N

L−1
N

⎞
⎟⎟⎠ (21)

matrices, and the skew-symmetric nonreciprocal

G = 1

R

⎛
⎜⎜⎜⎝

0 1 0 1T
N

−1 0 −1T
N 0

0 1N 0 1N 1T
N

−1N 0 −1N 1T
N 0

⎞
⎟⎟⎟⎠, (22)

FIG. 4. (a) N-port S circulator shunted by Josephson junctions.
The family of S matrices of Eq. (23) does not have Y description, nor
does it have Z for even N . (b) Dual circuit with a 3-port Z circulator
shunted by phase-slip junctions in series with inductors.

where we have defined the capacitance submatrix CN =
C0diag(1, 1/2, . . . , 1/2) and the inductance submatrix L−1

N =
L−1

0 diag(0, 1, 4, . . . , N2), N being the number of oscilla-
tors to which we truncate the response of the resonators.
Blank elements of the matrices correspond to zeros. The
Hamiltonian (13) can be readily computed and the canonical
variables promoted to quantum operators. The diagonalization
of the harmonic sector can be implemented through a sym-
plectic transformation both before or after the quantization of
variables following Appendix C below.

IV. NETWORKS WITH Z AND S NRDs

The rules described above are useful to derive Hamilto-
nians of circuits containing ideal nonreciprocal devices char-
acterized by a constant skew-symmetric Y matrix. However,
linear systems cannot be described by admittance matrices
when their S matrix has an eigenvalue −1. For example,
ideal circulators with even (odd) number of ports, even (odd)
number of “−1” entries, and even (even) number of “1”
entries in their scattering matrix admit only S-constitutive
equations as in Eq. (8) (both S and Z equations) [37].

We illustrate the problems arising when including circu-
lators without Y descriptions with simple circuits containing
3- and 4-port circulators shunted by Josephson junctions; see
Fig. 4(a). Let us assume for concreteness that the N-port
circulator is described by the scattering matrix

SN = (−1)N

⎛
⎜⎜⎝

1
1

. . .
1

⎞
⎟⎟⎠, (23)

blank elements being zero. This family of circulators cannot
be assigned a Y matrix, nor do they have a Z description for
even N . We depart from BKD and Burkard rules and choose as
tree branches the circulator branches, Itr = IG, and capacitors
and Josephson junction branches as chord branches IT

ch =
(IT

J , IT
C ). Kirchhoff’s laws can be simply written as − IG =

IC + IJ and VG = VC = VJ = �̇, choosing FGC = FGJ = 1.
Without loss of generality and in the interest of clarity let
us assume that all Josephson junctions have homogeneous
capacitances Ci = C.

Introducing Kirchhoff’s and constitutive equations for ca-
pacitors (IC = C�̈) and junctions [IJ = ∇�U (�)] into (8)
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results in

−R(1 + S)[C�̈ + ∇�U (�)] = (1 − S)�̇, (24)

with ∇�U (�) = (U ′
1(�1),U ′

2(�2), . . . )T . Let P = v−1v
T
−1

be the projector onto the eigenspace of S such that PS = −P,
as it is the case for the family of matrices (23). Equation
(24) implies P�̇ = 0; i.e., there is a frozen combination of
fluxes, which corresponds to a degenerate kinetic matrix that
makes the Legendre transformation impossible to perform.
A simple solution is to change coordinates to single out
the frozen variable from the dynamical ones, and remove it
through a projection of Eq. (24) into Q = 1 − P. Integrating
the frozen variable, we can express � = αv−1 + ∑N−1

n=1 wn fn,
where {wn} is a real basis expanding the projector Q, α an
initial-value flux constant, and { fn} the reduced set of degrees
of freedom. For the four-port case we have the following
systems of equations, vT

−1�̇ = 0 and

C f̈1 = −∂Ũα ( f )/∂ f1, (25)

C f̈2 = R−1 ḟ3 − ∂Ũα ( f )/∂ f2, (26)

C f̈3 = −R−1 ḟ2 − ∂Ũα ( f )/∂ f3, (27)

with the definition Ũα ( f ) = U (�(α, f )) and f = ( f1, f2, f3).
A similar system of equations can be derived for the three-port
case except for (25), associated with eigenvalue λ = 1 and
only appearing in the four-port case; see Appendix D for the
general N-port solution. Finally, the quantized Hamiltonian
with fully dynamical variables is

Ĥ = 1

2C

(
Q̂ − 1

2
GQ f̂

)T (
Q̂ − 1

2
GQ f̂

)
+ Ũα ( f̂ )

with Q = ∂L/∂ ḟ the conjugated charge variables, and the
skew-symmetric matrix reads

GQ = 1

R

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠.

Had −1 not been an eigenvalue of S, all initial variables
would have been dynamical. Generally, there is a coordinate
transformation for any ideal circulator such that G is block
diagonal, with 2 × 2 blocks, and, possibly, one zero in the
diagonal associated with eigenvalue +1 (see Appendix D).

V. DUAL QUANTIZATION IN CHARGE VARIABLES

The procedures explained above are useful to derive La-
grangians with flux variables as positions in a mechanical
system. Equivalent descriptions of linear systems are possible
with charge-position variables, with E-L voltage equations,
or with a mixed combination of both flux and charge vari-
ables. Indeed, fluxes have been used as position variables in
the context of superconducting qubits because the Josephson
junction has a nonlinear current-voltage constitutive equation
(6). Thus, the Lagrangian of a circuit with these elements and
Z circulators in charge variables results in nonlinear kinetic
terms. Although possible, dealing with such terms is usually
more cumbersome.

In recent years, the phase-slip (PS) junction [43,44], a
nonlinear low-dissipative element in charge variable, has been
implemented in superconducting technology [45–47]. This el-
ement has a constitutive equation dual to that of the Josephson
junction; i.e., its voltage drop is VP(t ) = Vc sin(πQP/e), and it
is usually represented as in Fig. 4(b) in green. Quantization of
circuits with PS junctions and ideal Z-NR elements in charge
variables can be implemented directly, using the constitutive
equation VG = ZG IG. For example, the circuit in Fig. 4(b)
with a ZG circulator, the dual circuit of Fig. 4(a), has the
dual Lagrangian interaction term LG = (1/2)Q̇ZGQ and the
quantum Hamiltonian

Ĥ = 1
2

(
�̂ − 1

2 ZGQ̂
)T

L−1
(
�̂ − 1

2 ZGQ̂
) + U (Q̂),

where L is the diagonal inductance matrix and U (Q̂) =
−∑

i ESi cos(πQ̂i/e). We forward the reader to Ref. [38] for a
systematic quantization method of circuits with loop charges
[48].

VI. CONCLUSIONS

We have presented a general framework to quantize canon-
ically superconducting circuits with Josephson junctions and
ideal linear nonreciprocal devices. We have introduced sys-
tematic rules for quantizing classes of circuits with ideal
admittance-described nonreciprocal devices in flux variables.
In such a scheme we have derived the Hamiltonian of Joseph-
son junctions capacitively coupled to both a general linear
nonreciprocal 2-port black box and the Viola-DiVincenzo
gyrator at its ports. These two examples show the crucial
elements that we address in the general construction, and will
be of interest in their own right in forthcoming experimental
devices. We have given an explicit method to quantize N-port
ideal Z and S circulators shunted by Josephson junctions
in flux variables, by careful elimination of frozen variables.
Finally, we discussed an extension of these procedures to
quantize circuits in terms of charge variables, a dual method
of special importance when dealing with circuits containing
nonreciprocal elements and phase-slip junctions. Further work
will be required to add distributed elements, e.g., infinite
transmission lines, to the analysis.
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APPENDIX A: EXTENDED BURKARD ANALYSIS

We extend Burkard [26] and Solgun-DiVincenzo [30] anal-
yses to include ideal multiport NR Y devices under the as-
sumption that each branch of a NRD is shunted by a capacitor
in the circuit independently. Relaxing the requirements of the
BKD analysis, we allow nonreciprocal branches to appear
both in the tree and in the chord set. We divide the tree and
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chord currents and voltages for the different components of
the circuit in the following way:

IT
tr = (

IT
J , IT

L , IT
Gtr , IT

T tr

)
, (A1)

IT
ch = (

IT
CJ

, IT
C , IT

Gch , IT
T ch

)
, (A2)

VT
tr = (

VT
J , VT

L , VT
Gtr , VT

T tr

)
, (A3)

VT
ch = (

VT
CJ

, VT
C , VT

Gch , VT
T ch

)
, (A4)

where we have added gyrator branches to both branch sets.
We can write Kirchhoff’s current laws without external fluxes
for simplicity,

F Ich = − Itr, (A5)

FT Vtr = Vch, (A6)

making use of the fundamental loop matrix F; see
Refs. [25,26] for a detailed analysis of graph theory applied
to superconducting circuits, that can be partitioned as

F =

⎛
⎜⎝
1 FJC FJGch FJT ch

0 FLC FLGch FLT ch

0 FGtrC FGtrGch FGtrT ch

0 FT trC FT trGch FT trT ch

⎞
⎟⎠. (A7)

We eliminate ideal transformer branches IT
T = (IT

T tr , IT ch )T

[30], which do not store energy and are not degrees of freedom
of the system, by making use of Kirchhoff’s current law for
tree transformer branches and the current constraint equation
of the transformer (7),

IT tr = −(FT trC IC + FT trGch IGch ), (A8)

IT ch = − N IT tr , (A9)

with N the turns ratios matrix. Here we have assumed that
transformer tree (left) branches are not shunted by trans-
former chord (right) branches, i.e., FT trT ch = 0 [30,40]. We
can thus express the current in the right branches of Belevitch
transformer as

IT ch = N(FT trC IC + FT trGch IGch ). (A10)

We write tree Josephson, inductor, and NR tree branch cur-
rents as a function of only capacitor and NR chord branch
currents,

− IJ = ICJ + FJC IC + FJGch IGch + FJT ch IT ch

= ICJ + Feff
JC IC + Feff

JGch IGch , (A11)

− IL = Feff
LC IC + Feff

LGch IGch , (A12)

− IGtr = Feff
GtrC IC + Feff

GtrGch IGch . (A13)

Here, we have defined effective loop submatrices [30]

Feff
XC = FXC + FXT ch N FT trC, (A14)

Feff
XGch = FXGch + FXT ch N FT trGch , (A15)

with X = {J, L, Gtr}, that have real entries instead of the usual
ternary set {−1, 1, 0} for branches with currents in the same
or opposite direction or out of the loop, respectively.

Using Kirchhoff’s current law and the capacitor constitu-
tive equation, we write the inductors in terms of the junction
and inductor voltages,

ICJ = Q̇CJ
= CJV̇J , (A16)

IC = C
((

Feff
JC

)T
V̇J + (

Feff
LC

)T
V̇L + (

Feff
GtrC

)T
V̇Gtr

)
. (A17)

We rewrite again current-voltage constitutive relations for
inductors and junctions, Eqs. (4)–(6) in the main text (MT),
for the symmetric elements,

IJ = Ic sin(2π�J/�0) = −∇�JU (�J ), (A18)

IL = L−1�L, (A19)

while that for the Y-NR branches, Eq. (8) in the MT, can be
decomposed into(

IGtr

IGch

)
=

(
YGtrGtr YGtrGch

YGchGtr YGchGch

)(
VGtr

VGch

)
. (A20)

Introducing Kirchhoff’s voltage law in the current-voltage
relation for chord NR branches we derive

IGch = [
YGchGtr + YGchGch

(
Feff

GtrGch

)T ]
VGtr

+ YGchGch

[(
Feff

LGch

)T
VL +(

Feff
JGch

)T
VJ

]
. (A21)

Substituting Eqs. (A18)–(A21) in (A11), (A12), and (A13) we
have the equations of motion of the circuit that can be derived
from the Lagrangian,

L = 1
2 �̇

T C�̇ − 1
2�T M0� + 1

2 �̇
T G� − U (�J ), (A22)

with �T = (�T
J ,�T

L ,�T
Gtr ). The symmetric capacitive and

inductive matrices read

C =
⎛
⎝CJ 0 0

0 0 0
0 0 0

⎞
⎠ + F eff

C C
(
F eff

C

)T
, (A23)

M0 = ILL−1IT
L , (A24)

where we defined

F eff
X =

⎛
⎜⎝

Feff
JX

Feff
LX

Feff
GtrX

⎞
⎟⎠, IL =

⎛
⎝ 0
1L

0

⎞
⎠, (A25)

and X = {C, Gch}. The skew-symmetric matrix is

G = IGtr YGtrGtrIT
Gtr + F eff

Gch YGchGch

(
F eff

Gch

)T

+F eff
Gch YGchGtrIGtr + IT

Gtr YGtrGch

(
F eff

Gch

)T
, (A26)

with the identity vector

IGtr =
⎛
⎝ 0

0
1Gtr

⎞
⎠. (A27)
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Explicitly,

G =
⎛
⎝ GJJ GJL GJGtr

−GT
JL GLL GLGtr

−GT
JGtr −GT

LGtr GGtrGtr

⎞
⎠, (A28)

where all the submatrices are defined as

GJJ = Feff
JGch YGchGch

(
Feff

JGch

)T
,

GJL = Feff
JGch YGchGch

(
Feff

LGch

)T
,

GLL = Feff
LGch YGchGch

(
Feff

LGch

)T
,

GJGtr = Feff
JGch

[
YGchGtr + YGchGch

(
Feff

GtrGch

)T ]
,

GLGtr = Feff
LGch

[
YGchGtr + YGchGch

(
Feff

GtrGch

)T ]
,

GGtrGtr = Feff
GtrGch YGchGch

(
Feff

GtrGch

)T + YGtrGtr

+ Feff
GtrGch YGchGtr + YGtrGch

(
Feff

GtrGch

)T
.

The Hamiltonian of this system is

H = 1
2

(
Q − 1

2 G�
)T C−1

(
Q − 1

2 G�
) + 1

2�T M0� + U (�J ),

(A29)

where Q = ∂L/∂� are the conjugate charges to the flux vari-
ables. Canonical quantization follows promoting the variables
to operators with commutation relations [�i, Qj] = ih̄.

APPENDIX B: NR 2-PORT IMPEDANCE COUPLED TO
JOSEPHSON JUNCTIONS

We explicitly compute matrices of Hamiltonian (13) for
circuit in Fig. 2, both in the MT, of a nonreciprocal 2-port
lossless impedance [42] capacitively coupled to Josephson
junctions.

The tree and chord branch sets are divided in IT
tr =

(IT
C , IT

T L ) and IT
ch = (IT

J , IT
L , IT

T R ), with left (right) transformer
branches being tree (chord) branches. A general turns ratios
matrix for the Belevitch transformer is

N =
⎛
⎝nL

11 0 0 nL
12 0 0

0 nR
11 0 0 nR

12 0
0 0 n21 0 0 n22

⎞
⎠. (B1)

We will calculate with it the effective loop matrix (10) and get
Hamiltonian (13) in main text. The capacitance matrix is full
rank,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CJ1

CJ2

Cg1

Cg2

C1R

C1L

C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

where the blank elements of the matrix are zero. The inductive
M0 matrix can be computed with the loop submatrix

Feff
CL = FCL =

(
0M 0
0 1

)
, (B3)

where M = J + g + G1 + L. {J, g, G1, L} are, respectively,
the number of (i) Josephson junctions (2), (ii) coupling

capacitors (2), (iii) gyrator-shunted capacitors (2), and (iv)
inductors (L). 0M represents a zero square matrix of M dimen-
sion. The skew-symmetric gyration matrix G can be computed
using the effective loop submatrix,

Feff
CG = FCG + FCT R N FT LG

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0

nL
11 nL

12 1 0
nR

11 nR
12 0 1

n21 n22 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

which is calculated through the turn ratios matrix N and the
submatrices

FCG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

FCT R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

FT LG =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (B7)

This analysis can be performed because the constitutive
equation of the nonreciprocal elements (8) in the MT could be
simplified to IG = YG VG, where IG = (IG0L , IG0R , IG1L , IG1R )T

and

YG =
(

YG0 0
0 YG1

)
, (B8)

with

YGi = 1

Ri

(
0 1

−1 0

)
, (B9)

the admittance matrix for each gyrator i ∈ {0, 1}. The final
gyration matrix is

G = Feff
CG YG

(
Feff

CG

)T
. (B10)

APPENDIX C: SYMPLECTIC DIAGONALIZATION

We discuss now the procedure to diagonalize the quadratic
sector of Hamiltonian (13). We can perform a canonical
change of variables QC = C1/2OT q, �C = C−1/2OT f such
that we diagonalize the pure capacitive and inductive sectors
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of the Hamiltonian,

H = 1

2
(qT , f T )

(
1 Γ

ΓT Ω2

)(
q
f

)
+ U ( f ), (C1)

with the definitions Γ = − 1
2 OC−1/2GC−1/2OT and Ω2 =

OC−1/2L−1C−1/2OT − Γ2 a diagonal matrix. The conjugate
variables (q, f ) are canonical in that {qi, f j} = δi j . The pres-
ence of the antisymmetric matrix Γ in the harmonic part of
the Hamiltonian leads to new normal frequencies that are
greater or equal to those without it. In order to carry out
canonical quantization of this Hamiltonian it is convenient to
proceed with the symplectic diagonalization of the harmonic
part. Consider thus the matrix

Hh =
(
1 Γ

ΓT Ω2

)
. (C2)

Since this matrix is symmetric and definite positive, the
corresponding theorem of Williamson [49] holds that it can
be brought to the canonical form D = diag(Λ, Λ), with Λ
a definite-positive diagonal matrix, by a symplectic trans-
formation S. That is, ST HhS = D with symplectic matrix
S. The determination of the symplectic eigenvalues and of
the canonical symplectic transformation can be achieved by
considering the matrix HhJ, with

J =
(

0 1
−1 0

)
. (C3)

Its eigenvalues form conjugate pure imaginary pairs, ±iλ j ,
where the positive numbers λ j are the diagonal elements
of Λ. Choose an eigenvector v j corresponding to iλ j . Its
complex conjugate, v∗

j , is an eigenvector with −iλ j eigen-
value. Organize the column eigenvectors in a matrix F =
(v1 v2 · · · vN v∗

1 · · · v∗
N ). Normalize the vectors

by the condition FF† = Hh. Define a matrix function SV =
(F†)−1VD1/2 acting on unitaries V. It is clearly the case that,
for all unitaries V and phase choices for the eigenvectors
v j , S†

VHhSV = D, since F−1Hh(F†)−1 = 1. The unitary V
is determined by the requirement that it provide us with a
symplectic matrix, ST JS = J. Inter alia, this means that S
is real. In fact, the choice

V = 1√
2

(
1 i
1 −i

)
(C4)

achieves this objective. This can be readily checked by
noticing that

V†F† = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v†
1 + vT

1
...

v†
N + vT

N

−i
(
v†

1 − vT
1

)
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(C5)

is explicitly real in this case, so S−1 = D−1/2V†F† is seen
to be real. Furthermore, this choice also determines S as
symplectic.

In the new variables, (ξT πT ) = ST (qT fT ), the quadratic
part of the Hamiltonian is diagonal. They can now be
canonically quantized, in the form ξn = (an + a†

n)/
√

2, πn =
−i(an − a†

n)/
√

2.

APPENDIX D: REDUCTION OF VARIABLES IN CIRCUITS
WITHOUT Y IDEAL NRDs

We formalize and generalize the problem of the quantiza-
tion of circuits in flux variables with linear NR devices that are
only described by a constitutive equation through S. Further
below, we apply this method to the derivation of the circuits
in Fig. 4(a) in the main text.

We start from the equation of motion (24) of the main text,
that we rewrite as

(1 + S)[C�̈ + ∇�U (�)] = −R−1(1 − S)�̇, (D1)

with ∇�U (�) = (U ′
1(�1),U ′

2(�2), . . . )T , and U ′
i (�i ) =

EJi sin(�i ). C is a nondegenerate capacitance matrix. An ideal
N-port circulator can always be described by a scattering
matrix

S =

⎛
⎜⎜⎝

sN

s1

. . .
sN−1

⎞
⎟⎟⎠, (D2)

where each nonzero element can only be sk = ±1. By a
correct choice of terminals, it can be proven that there are
only two canonical types of ideal N-port circulators: those
with values (sk = 1) in all their entries, and others with all
(sk = 1), except for one (s j = −1); see Ref. [37] for further
details.

The eigenvalue equation of the scattering matrix can be
retrieved noticing that SN = ∏

k sk1,

λN =
∏

k

sk = ±1. (D3)

The eigenvalues of the scattering matrix lie on the unit circle,
eiεπ/N e2iπn/N with n ∈ {0, N − 1}, and ε either 0 or 1. The
eigenvalue λ = −1 appears with multiplicity one for N even
(N odd) with

∏
sk = 1 (

∏
sk = −1). On the other hand, the

eigenvalue λ = 1 is present also with multiplicity one for N
both even and odd when

∏
sk = +1. All other eigenvalues

come in pairs of complex conjugate values (λk and λ∗
k ).

Let us assume that S presents eigenvalue −1. We define the
projector P = v−1v

T
−1 such that SP = −P = PS, where v−1

is the normalized eigenvector corresponding to the eigenvalue
−1. We complete the identity with the projector Q = 1 − P,
which also commutes with S: [S, Q] = [S, P] = 0. It is trivial
to prove that P is real and that thus so it is Q. If −1 is
an eigenvalue, it always has multiplicity 1. Then, given that
S = S∗,

(Sv−1)∗ = −v∗
−1 = Sv∗

−1, (D4)

Sv−1 = −v−1. (D5)

The above two equations can only be true if v−1 = v∗
−1. Then,

applying P to Eq. (D1), we have

P�̇ = 0. (D6)

This equation can be integrated, so that the flux variable vector
is expressed as

� = P� + Q� = αv−1 + �, (D7)
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where we defined � = Q�, and α is an initial-value constant
in flux units. Inserting the above expression in the equation of
motion and applying Q on the left, we have

Q(1 + S)Q[CQ�̈ + Q∇�Ũα (�)] = −R−1Q(1 − S)Q�̇,

(D8)

with CQ = QCQ a new symmetric reduced capacitance ma-
trix, and Ũα (�) = U (Q� + αv−1) the new potential. The dif-
ferential nabla operator on the original flux variables becomes
∇� = Q∇� + v−1∂α . In this new N − 1 dimensional space,
the remnant of Q(1 + S)Q is invertible. Formally, we derive
in this reduced space the Euler-Lagrange equation

CQ�̈ + Q∇�Ũα (�) = −GQ�̇, (D9)

with GQ = R−1[Q(1 + S)Q]−1[Q(1 − S)Q], again under-
stood in the reduced space. There, GQ is the Cayley transform
of an orthogonal matrix, and thus a skew-symmetric matrix.

Let us illustrate the procedure with the choice of a spe-
cific decomposition of the real projector Q. Consider vk

and its complex conjugate v∗
k to be orthogonal vectors in

the subspace complementary to P. It is then easy to prove
that real Re{vk} = (vk + v∗

k )/2 and imaginary parts Im{vk} =
−i(vk − v∗

k )/2 are orthogonal vectors, again orthogonal to the
P eigenspace. This assumption will hold if the vector vk is an
eigenvector of S with complex eigenvalue. If the eigenvalue
λ = 1 is present, its associated eigenvector is also real; the
proof is completely analogous to the above for the eigenvector
v−1. Normalizing all vectors, we can write

Q = v1v
T
1 +

∑
k

xkxT
k + ykyT

k =
N−1∑
n=1

wnw
T
n , (D10)

with xk = Re{vk}/||Re{vk}|| and yk = Im{vk}/||Im{vk}||, k
running through all the vectors coming in complex conjugate
pairs. In general, let us denote by wn those real orthonormal
vectors spanning the orthogonal space.

Using this nomenclature and Eq. (D7) we write

� = αv−1 +
∑

n

fnwn = M
(

α

f

)
, (D11)

with fn = wT
n �, and M = [v−1,w1,w2, . . .] an orthogonal

matrix, i.e., MMT = 1. The nabla operator can be rewritten
as

∇� = (M−1)T

⎛
⎜⎜⎝

∂
∂α
∂

∂ f1

...

⎞
⎟⎟⎠ = M

(
∂
∂α

∇ f

)
. (D12)

Finally, inserting the above decompositions (D11), (D12),
(D10) in Eq. (D9), we rewrite the equation of motion∑

n,m,l

wn(1 + S)nm[(C)ml f̈l + ∂ fmŨα ( f )]

= −R−1
∑
n,l

wn(1 − S)nl ḟl , (D13)

with (A)rt = wT
r Awt , together with α̇ = 0. Multiplying from

the left with the real row vectors {wT
n }, and inverting the first

matrix on the left-hand side, we arrive at an explicit form of
Eq. (D9),

(C)ml f̈l + ∂ fmŨα ( f ) = −(GQ)ml ḟl ,

where we have defined (GQ)ml = R−1(1 + S)−1
mn (1 − S)nl

and we have used Einstein’s notation of summation over re-
peated indices. Here, we can identify � ≡ (0, f ) in Eq. (D9).
Furthermore, the matrix CQ has as matrix elements in this
basis precisely (C)ml . The Lagrangian without constraints and
full-rank kinetic matrix with such equations of motion

L = 1
2 ḟ

T
CQ ḟ + 1

2 ḟ
T
GQ f − Ũα ( f ),

with f = ( f1, f2, . . .). Finally, the quantized Hamiltonian is

Ĥ = 1
2

(
Q̂ − 1

2 GQ f̂
)T

C−1
Q

(
Q̂ − 1

2 GQ f̂
) + Ũα ( f̂ ),

again with Q = ∂L/∂ ḟ the conjugated charge variables, later
to be promoted to operators.

Examples

Let us now use this general theory to quantize the specific
cases illustrated in the main text. The scattering matrix of
Eq. (15) introduced in the circuits in Fig. 3(a) in the MT,

SN = (−1)N

⎛
⎜⎜⎝

1
1

. . .
1

⎞
⎟⎟⎠, (D14)

has −1 eigenvalues for all N and +1 eigenvalues for even-N
numbers of ports. Notice that in the analysis of the equations
of motion above we have not made use of the canonical form
of S matrices mentioned earlier, and indeed this example does
not and need not conform to that canonical presentation.

a. 3-port case

The eigenvalues and eigenvectors for N = 3 are λ3 =
(−1, λ3, λ

∗
3 ) and V3 = [v−1, v3, v

∗
3]T , respectively, with

λ3 = e2π i/3 and v3 = (e2π i/3, e−2π i/3, 1)/
√

3. The eigenvalue
λ = −1 of SN , present in this family of matrices, is associated
with the constraint vT

−1�̇ = 0 where v−1 = (1, 1, 1)/
√

3 is the
normalized eigenvector.

We can apply the theory described above to compute the
projectors

P = v−1v
T
−1 = 1

3

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠, (D15)

Q = 1 − P = 1

3

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠. (D16)

The reduced capacitance matrix is

CQ = 1

2

(
1
3 (C1 + C2 + 4C3) C2−C1√

3
C2−C1√

3
(C1 + C2)

)
, (D17)

while the gyration matrix is

GQ = 1

R
√

3

(
0 1

−1 0

)
. (D18)
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Finally, the potential function Ũα = U (M(α, f T )T ), with
U (�) = −∑3

i=1 EJi cos(�i ) and

M =

⎛
⎜⎜⎝

1√
3

1√
3

1√
3

− 1√
6

− 1√
6

√
2
3

1√
2

− 1√
2

0

⎞
⎟⎟⎠. (D19)

b. 4-port case

The eigenvalues and eigenvectors for N = 4 are λ4 =
(−1, 1, λ4, λ

∗
4 ) and V4 = [v−1, v1, v4, v

∗
4]T , respectively, with

λ4 = i and v4 = (−i,−1, i, 1)/2. The eigenvalue λ = −1 of
SN , present in this family of matrices, is associated with
the constraint vT

−1�̇ = 0 where v−1 = (−1, 1,−1, 1)/2 is the
normalized eigenvector.

The inhomogeneous capacitance matrix is

CQ =

⎛
⎜⎝

C1+C2+C3+C4
4

C4−C2

2
√

2
C3−C1

2
√

2
C4−C2

2
√

2
C2+C4

2 0
C3−C1

2
√

2
0 C1+C3

2

⎞
⎟⎠, (D20)

that reduces to CQ = C1 for Ci = C. On the other hand, the
gyration matrix has now a zero column and row corresponding
to the eigenvalue λ = +1,

GQ = 1

R

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠. (D21)

Given the complex-conjugate pairwise nature of the eigen-
values and eigenvectors, the gyration matrix can always be
written in a basis with 2 × 2 blocks, except for the row and
the column of zeros corresponding to the +1 eigenvalue.
Finally, we have the potential function Ũα = U (M(α, f T )T ),
with U (�) = −∑3

i=1 EJi cos(�i ) and

M =

⎛
⎜⎜⎜⎜⎝

− 1
2

1
2 − 1

2
1
2

1
2

1
2

1
2

1
2

0 − 1√
2

0 1√
2

− 1√
2

0 1√
2

0

⎞
⎟⎟⎟⎟⎠. (D22)
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