
PHYSICAL REVIEW B 99, 014512 (2019)

Multichannel charge Kondo effect and non-Fermi-liquid fixed points in conventional
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We study multiterminal Majorana and conventional superconducting islands in the vicinity of the charge
degeneracy point using bosonization and the numerical renormalization group. Both models map to the
multichannel charge Kondo problem, but for noninteracting normal leads they flow to different non-Fermi-liquid
fixed points at low temperatures. We compare and contrast both cases by numerically obtaining the full crossover
to the low-temperature regime, and we predict distinctive transport signatures. The differences between the two
types of islands result from a crucial distinction between charge-2e and charge-e transfer in the conventional
and topological case, respectively. In the conventional case, our results establish s-wave islands as a platform
to study the intermediate multichannel Kondo fixed point. In the topological setup, the crossover temperature to
non-Fermi-liquid behavior is relatively high as it is proportional to the level broadening, and the transport results
are not sensitive to channel coupling anisotropy, moving away from the charge degeneracy point or including a
small Majorana hybridization, which makes our proposal experimentally feasible.
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I. INTRODUCTION

The prospect of robust quantum computation using Majo-
rana zero modes [1–5] sparked enormous experimental inter-
est in the material platforms that enable direct observation
and study of these topological quasiparticles. Among the
leading platforms are proximitized semiconductor nanowires
with spin-orbit coupling, which are predicted to become topo-
logical superconductors and host Majorana zero modes under
external magnetic fields [6,7]. The immense experimental
effort over the past several years has resulted in a significant
improvement in material and device fabrication quality, and
also helped to rekindle interest in mesoscopic superconduc-
tivity in semiconductor devices [8–24].

When considering the physics of mesoscopic conductors
and superconductors, it is crucial to take into account the
Coulomb blockade effect that arises due to electron-electron
interaction. Since the charging energy of the island depends
quadratically on the number of electrons it contains, it is
possible to use an external gate to tune two charge states of the
island to be equal in energy. In conventional superconductors,
where putting an odd number of electrons on the island
requires an extra energy cost of the superconducting gap, the
ground state consists of an even number of electrons. This
effect has been directly observed as an even-odd asymmetry
in aluminum islands [25–28]. On the other hand, in topo-
logical superconductors, zero-energy Majorana bound states
exist that can accommodate an unpaired electron without
any additional energy. In this case, the degeneracy can occur
between states with an even and odd number of electrons. This
even-odd degeneracy underlies the phenomenon of electron
teleportation [29], which involves phase-coherent transport
of a single electron via the spatially separated Majorana
modes. A recent experiment [13] on a proximitized InAs
island connected to two normal leads via tunnel junctions

observed a transition from resonant Cooper pair transport to
single-electron transport above a critical magnetic field, which
is broadly consistent with the scenario of transition from a
conventional to a topological superconducting island [30,31].

The degeneracy between the two charge states of the
superconducting islands—2N and 2N + 2 (2N + 1) in the
conventional (topological) case—can be a source for Kondo-
type phenomena. These degenerate levels can be represented
as a pseudospin-1/2 object, which enables observation of
phenomena related to the multichannel Kondo effect [32,33].
In the topological case, when the superconductor is tuned into
charge degeneracy, it has been shown [34,35] that the system
exhibits quantized dc conductance Gijdc = 2e2

Nh
in the T = 0

limit for N Majorana modes coupled to N normal leads by
mapping the model onto quantum Brownian motion (QBM)
on a honeycomb lattice [36,37]. Moreover, it has recently been
shown that if the topological superconductor is time-reversal-
invariant, the two-terminal island will realize the two-channel
Kondo effect without fine-tuning [38]. In the s-wave case, the
setup based on a two-terminal island at charge degeneracy has
recently been shown [39] to map to the two-channel Kondo
problem. These parallel developments not only enable a direct
comparison of the properties of both a conventional and a
topological setup, but also provide an attractive platform for
studies of quantum criticality.

While initially the Kondo effect has been considered in
the context of dilute magnetic impurities, the interest in this
phenomenon was revived after theoretical proposals for its
realization in normal state quantum dots [40–42] and subse-
quent experimental confirmation of the predictions [43,44].
The next step was then the extension to the elusive multichan-
nel Kondo effect, which was again guided by theory [45–49]
and culminated with detailed studies of various properties
of this setup [50–54]. These theoretical and experimental
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results established highly tunable normal-state nanostructures
as a perfect window into the world of strongly correlated
electron systems, and so they are intensively studied in order
to extract the essence of the physical phenomena without the
picture being blurred by the complexity of the real materials.
Now we want to extend the realm of device platforms to
superconducting nanoislands.

Motivated by the above results on Majorana and conven-
tional superconducting islands, we expand on these studies
by comparing and contrasting the charge Kondo effects
due to even-odd and even-even degeneracies in both types
of mesoscopic islands using bosonization and numerical
renormalization-group (NRG) methods. We provide a map-
ping of the N -terminal conventional superconductor island
model to the N -channel charge Kondo problem in the
bosonization language, and then we examine the differences
in the treatment of the Majorana island. For noninteracting
leads in the topological model, the system flows to a strong-
coupling fixed point, as opposed to the flow toward inter-
mediate coupling in the conventional case (see Fig. 2). The
non-Fermi-liquid fixed point of the Majorana island is robust
to channel coupling asymmetry (in contrast to anisotropy
being a relevant perturbation at the intermediate fixed point
in the conventional system). These differences between both
types of islands in transport properties are due to the crucial
distinction of charge 2e transfer in the Andreev processes in
the conventional case versus charge e transfer by single elec-
tron tunneling in the topological island [29]. In the topological
case, while each tunneling process transfers a single electron
charge e, due to the statistical transmutation [34] the system
behaves as if a charge-e boson was transferred, which enables
a nontrivial mapping to a Kondo model [34,35].

Using the numerical renormalization group, we first sup-
port our bosonization results at T = 0 by calculating the
residual entropy and conductance matrix elements. For the
conventional island, we confirm that the dc conductance in
T = 0 approaches the predicted value of 2 and 8

3 sin2( π
5 ) e2/h

for two and three terminals, respectively. In the Majorana
setup for three terminals, we obtain the anticipated dc con-
ductance of 2e2

Nh
= 2/3 e2/h, which is robust against the tunnel

coupling anisotropy (even if all three couplings are different)
and moving away from the charge degeneracy point. More
importantly, we go beyond the zero-temperature limit and
obtain the full crossover to non-Fermi-liquid fixed points in
both cases. In the conventional setup, our results establish the
s-wave island as a platform for studying the physics of the
intermediate multichannel Kondo fixed point. For Majorana
islands, we demonstrate that the transition at the charge de-
generacy point happens at a much higher temperature than in
the Coulomb valley regime of the topological Kondo effect
studied previously [55–67]. Our results will facilitate the
future experimental observation of quantized conductance.
For the three-terminal case, we predict a nontrivial crossover
between the regimes dominated by two and three leads with
an intermediate dc conductance plateau at 2/3 e2/h, which
emerges at sufficiently low temperature while tuning the
tunnel coupling of the third lead. This, together with the
aforementioned robustness to variation in setup parameters,
provides an experimental signature that can be used to verify
our claims for the Majorana island.

VgVg

S-wave

FIG. 1. Multiterminal (a) conventional and (b) Majorana islands
at charge degeneracy (charging energy is controlled by a gate). Both
islands are connected to N normal leads (blue) via either Andreev
reflection or tunneling into Majorana zero modes.

II. MODELS

In this work, we consider two types of setups with mul-
titerminal superconducting islands (Fig. 1). We begin by
describing the full Hamiltonian of the systems analyzed in the
following sections, which consists of three parts:

H = HC + HL + HT . (1)

The central point of both setups considered in this paper is
a mesoscopic superconducting island, either of an ordinary
s-wave or topological nature with a gap � that is the largest
energy scale of the problem. In the s-wave case, there are
no quasiparticle excitations inside of the superconducting
gap, and so in the usual BCS formalism, introducing an odd
number of electrons into the island requires an energy cost of
�. On the other hand, the topological superconductor hosts an
even number of zero-energy Majorana bound states, and this
allows us to put an additional electron into the island without
paying the extra energy. Since we are studying a mesoscopic
superconducting grain that is not grounded, we also have
to consider the charging effects that arise due to Coulomb
interactions. The electrostatics can be taken into account by
including into the Hamiltonian a term

HC = EC (N̂ − Ng )2, (2)

where EC is the charging energy related to the capacitance of
the island, N̂ is the number of charges in the superconductor,
and Ng is the potential determined by the external gate. This
tunability gives rise to a possible degeneracy between the two
charge states of the island. However, the number of charges in
the degenerate states differs in both of the considered cases.
For the conventional superconductor, since we are working in
the regime where EC � �, we can consider the states with an
odd number of electrons to be unfavorable energetically, and
so when we set Ng to be an odd integer 2N0 + 1, according
to (2), the states with 2N0 and 2N0 + 2 electrons will be
degenerate and lowest in energy. The situation is different in
the topological superconductor, where there is no additional
energy cost for the states with an odd number of electrons.
There we can set Ng to 2N0 + 1

2 , and then states with 2N0

and 2N0 + 1 are degenerate. At very low temperatures, we
can then restrict our Hilbert space to just those pairs of charge
states of the island. The subspace of charge states can then
be described by a pseudospin-1/2 object, with sz eigenstates
corresponding to 2N0/2N0 + 1 or 2N0/2N0 + 2 states. Then
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the slight deviation from the charge degeneracy point can be
taken into account by introducing a Zeeman-like term δsz into
the Hamiltonian, where δ can be tuned by the external gate.

A common part of both setups is a set of N normal
leads, which are tunnel-coupled to the superconductor. In the
conventional superconductor setup, they are described by the
Hamiltonian of spinful fermions with dispersion linearized
close to the Fermi energy:

HL = −ivF

N∑
a,σ=↑/↓

∫ ∞

0
dx ψ

†
a,R,σ ∂xψa,R,σ −ψ

†
a,L,σ ∂xψa,L,σ ,

(3)
where ψa,r=L/R,σ=↑/↓(x) are operators annihilating left/right
-moving modes with spin σ at the point x of the lead
a, combining into ψa,σ (x) = ψa,R,σ (x)eikF x + ψa,L,σ e−ikF x .
However, a difference arises in the topological case, because
Majorana states couple only to one of two spin components
[68,69]. This allows us to drop the spin index in this case and
consider spinless fermions.

The leads are semi-infinite, ending at x = 0, where they
are in contact with the superconductor. The exact form of
the tunneling Hamiltonian depends then on the type of su-
perconductor. In the case of the s-wave superconductor, the
charge transfer into the island will occur due to the Andreev
processes in which the incident electron in the lead is reflected
as a hole and at the same time a single Cooper pair is added to
the superconductor. Using the pseudospin-1/2 representation
of the charge state of the island, we can write the tunneling
Hamiltonian following Ref. [39]:

HT =
N∑

a=1

ta[ψ†
a,↑(0)ψ†

a,↓(0)s− + ψa,↓(0)ψa,↑(0)s+], (4)

where we are either adding or removing two electrons of
opposite spin at the x = 0 point of the lead a and at the same
time changing the charge state of the island between 2N0 and
2N0 + 2. In writing this Hamiltonian, we assumed that the
superconducting island is large enough so that the crossed
Andreev reflection is suppressed. On the other hand, in the
case of a topological superconductor, the tunneling will occur
into the Majorana zero modes. We also use a pseudospin-1/2
representation of the charge state, with transitions between the
states with 2N0 and 2N0 + 1 electrons. Then the tunneling
Hamiltonian has the form [34,35]

HT =
N∑

a=1

[taψ
†
a (0)s−γa + H.c.], (5)

where ta are tunnel couplings to the leads, ψ
†
a (0) are creation

operators at the end of the leads, and γa = γ
†
a are Majorana

operators.
Before turning to a bosonization analysis of these models,

we would like to comment on the similarities and differences
between superconducting islands and normal dots. In normal
dots with small energy level spacing, transport at the charge
degeneracy point is usually dominated by inelastic cotun-
neling events [47] and therefore is incoherent. In the case
of an ordinary superconductor, transport occurs via resonant
tunneling of Cooper pairs and is also incoherent. However, in
topological islands, the resonant tunneling processes through

Majorana states are phase-coherent [29] and therefore allow
for interference effects to be used as probes for topological
states.

III. BOSONIZATION ANALYSIS

Both setups can now be studied using bosonization by
transforming the normal leads into Luttinger liquids, spinful
in the case of an s-wave island and spinless when leads are
coupled to Majorana zero modes. We derive the results for
the ordinary superconductor and then highlight the differences
that arise in the Majorana setup [34,35].

A. s-wave island

After spinful bosonization, the Hamiltonian of the leads
now has the form [70]

HL =
N∑

a=1

v

2π

∑
j=ρ,σ

∫ ∞

0
dx Kj (∇θa,j )2 + 1

Kj

(∇φa,j )2,

(6)
where we have used the following convention:

ψa,r,σ (x) = Ua,r,σ√
2πα

e
− i√

2
{rφa,ρ (x)−θa,ρ (x)+σ [rφa,σ (x)−θa,σ (x)]}

, (7)

with α being the short-distance cutoff, and Ua,r,σ are the Klein
factors. Using (7) we can now express the tunneling Hamilto-
nian using bosonic fields. Since the lead ends at x = 0, we can
impose the open boundary condition ψa,L,σ (0) = ψa,R,σ (0).
This in turn means that φρ/σ (0) = 0 and that Klein factors
for right and left movers of each spin are equal: Ua,R,σ =
Ua,L,σ = Ua,σ . An alternative approach would be to consider
a single chiral bosonic field obtained by unfolding right- and
left-moving modes onto a single axis extending from −∞ to
∞. Combining all of this together, we express the tunneling
Hamiltonian (4) as

HT =
N∑

a=1

2ta

πα
(Ua,↑Ua,↓e−i

√
2θa,ρ (0)s− + H.c.). (8)

We can form a parity operator from the Klein factors pa =
iUa,↑Ua,↓, and since p2

a = 1 we can use the identity eiγpa =
cos(γ ) + ipa sin(γ ). For γ = π

2 this translates to ipa = ei π
2 pa ,

so we have Ua,↑Ua,↓ = −ipa = e−i π
2 pa . Thus the Klein fac-

tors translate to a phase shift, which can be absorbed into the
bosonic field, because the parity in each lead is fixed as the
only allowed tunneling process transfers pairs of electrons.
The final form of the tunneling Hamiltonian is then

HT =
N∑

a=1

2ta

πα
(e−i

√
2θa,ρ (0)s− + ei

√
2θa,ρ (0)s+). (9)

Therefore, both bosonic fields from the spin sector (θσ and
φσ ) and φρ are not present in the tunneling Hamiltonian, and
they are present only in the quadratic part of the action. This
means that we can integrate them out from the imaginary-time
action. Moreover, the field θρ is taken only at x = 0 in HT ,
so we can also integrate it out away from x = 0. After this
procedure, we obtain the imaginary-time action:

Ss-wave = Ss-wave
0 + Ss-wave

T , (10)
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Ss-wave
0 =

N∑
a=1

Kρ

2π

∫
dω

2π
|ω||θa,ρ (ω)|2, (11)

Ss-wave
T =

N∑
a=1

∫ β

0
dτ

J⊥,a

2
(e−i

√
2θa,ρ (0)s− + H.c.). (12)

In anticipation of the connection of this action to the multi-
channel Kondo problem, we have introduced the notation for
the coupling J⊥,a = 4ta

πα
.

B. Majorana island

The procedure of obtaining the effective boundary action
in the case of a Majorana island is essentially the same, with
the important distinction that the leads now contain effectively
spinless electrons and so the bosonization identity now takes
the form

ψa,r (x) = Ua,r√
2πα

e−i[rφa (x)−θa (x)] (13)

with α again being the short-distance cutoff and Ua,r are the
Klein factors. The bosonized Hamiltonian of the leads is

HL =
N∑

a=1

v

2π

∫ ∞

0
dx K (∇θa )2 + 1

K
(∇φa )2 (14)

and the tunneling Hamiltonian is

HT =
N∑

a=1

2ta√
2πα

(e−iθa (0)s− + eiθa (0)s+), (15)

where the Klein factors hybridized with Majorana operators
in a process of statistical transmutation [34,71].

When the bosonic field is integrated out away from x = 0,
we obtain the imaginary-time action:

SM = SM
0 + SM

T , (16)

SM
0 =

N∑
a=1

K

2π

∫
dω

2π
|ω||θa (ω)|2, (17)

SM
T =

N∑
a=1

∫ β

0
dτ

J⊥,a

2
(e−iθa (0)s− + eiθa (0)s+). (18)

This time we made the identification J⊥,a = 4ta√
2πα

. It is inter-
esting to make a comparison between tunneling parts of the
action for both cases. Equations (12) and (18) have virtually
the same form, apart from the factor of

√
2 in the exponent

for the s-wave superconducting island model. One can then
perform the following transformation of the action (18): θa →√

2θ̃a . To keep the quadratic part of the action the same under
this transformation, we also have to rescale the Luttinger
parameter K: K → K̃/2. This means that the topological
system will behave exactly the same as the conventional one,
but with the interaction parameter rescaled by a factor of 2.
This bears important consequences for the flow diagram of the
perturbative RG close to the noninteracting value of K = 1.

C. Perturbative renormalization-group analysis

Because we have shown that there exists a direct cor-
respondence between the actions for both s-wave and
topological islands, it is sufficient to perform perturbative
renormalization-group analysis of the action of the s-wave
setup and then recover the behavior of the Majorana island by
substituting K̃ for Kρ . During the RG procedure, an additional
term is generated that is proportional to ∂xφa,ρ , even if its
coupling is initially zero. Therefore, we add it into the action
right from the beginning with Jz coupling:

Sz = −
N∑

a=1

v√
2
Jzsz∂xφa,ρ. (19)

With this additional term and the relabeling of the cou-
plings done in the previous section, the complete action for
our problem has exactly the same form as the anisotropic
multichannel Kondo problem action [36,37]. Therefore, the
analysis steps follow directly from the standard procedure
applied previously to the Kondo problem.

We begin by considering the isotropic limit when all
J⊥,a = J⊥. In such a case, the RG equations for the couplings
are

dJz

dl
= J 2

⊥

(
1

Kρ

− N

2
Jz

)
, (20)

dJ⊥
dl

=
(

1 − 1

Kρ

)
J⊥ + JzJ⊥

(
1 − NKρ

4
Jz

)
. (21)

Those equations are exact in Jz and perturbative in J⊥. We
notice that in the isotropic case, the couplings flow to the
Toulouse fixed point, where Jz becomes 2

NKρ
and its flow

stops. This means that we can perform a unitary transforma-
tion and eliminate the ∂xφρ term from the Hamiltonian

U = eiKρJz

√
N
2 �(0)sz , (22)

U †HU = HL −
n∑

a=1

J⊥
2

(e−i
√

2[θa,ρ (0)− 1√
N

�(0)]
s− + H.c.),

(23)

where �(0) = 1√
N

∑
j θj,ρ (0) is the global mode.

We can now determine the fixed points of the problem and
understand them using the quantum Brownian motion (QBM)
correspondence. In the QBM picture, the state of the system
is described as a position of a fictitious particle placed in a pe-
riodic potential with a dissipative environment. This enables
us to approach the problem from two dual perspectives: tun-
neling between the minima of a strong periodic potential, and
free motion with weak potential as a perturbation. To make
the mapping clearer, we can write the tunneling operators in
the action as e−i

√
2	θρ

	R(a)
0 s−, where 	θρ = (θ1,ρ, . . . , θN,ρ ), and

	R(a)
0 is a vector with 1 on the ath component and 0 on the

rest. In this notation, one can think of 	θρ as the momentum of
the particle, and the number of charges in the leads (which
is a variable conjugate to 	θρ) describes the position of the
particle. When the periodic potential is strong, the particle
is mostly localized in the minima of the potential, which are
connected by the lattice vectors 	R(a)

0 and only occasionally
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FIG. 2. (a) Visualization of the QBM lattice for N = 3. Each
axis corresponds to the number of Cooper pairs (or electrons in the
topological island case) inside of a particular lead. Blue and red
points form planes to which the motion of the particle is restricted for
given N . (b) Renormalization-group flow for s-wave and topological
superconducting (TSC) islands connected to N < 5 leads as a func-
tion of the Luttinger parameter K . Stable and unstable fixed points
are depicted as solid and dashed lines, respectively. The bottom line
corresponds to the limit of weak tunneling (t → 0) and the top line
corresponds to weak periodic potential (v 	G → 0). Due to a rescaling
of K , the Majorana island case for noninteracting leads (K = 1) is
of a strong-coupling nature, compared to intermediate coupling for
the s-wave island.

tunnels between them. Since we have charging energy in our
setup and the island can only accommodate a single additional
Cooper pair, the total number of charges in the leads Ntot can
only change between N /N + 2, and the particle’s motion is
restricted to two planes in the N -dimensional space. The cor-
responding lattices are a 1D zigzag chain for N = 2 channels
and a (N − 1)-dimensional hyperhexagonal lattice for N > 2.
Both lattice types are nonsymmorphic with a two-atom basis,
which corresponds to the presence or absence of the additional
Cooper pair in the superconducting island. An example of
such a lattice for N = 3 leads is shown in Fig. 2(a). Each
axis corresponds to Ni of Cooper pairs present in the leads,
so 2N1 + 2N2 + 2N3 = N . Blue points form a plane for one
particular value of N , while red points form a neighboring
plane corresponding to N + 2.

In this language, the global mode introduced after the
unitary transformation at the Toulouse fixed point corresponds
to the product of 	θρ and the vector 	R⊥ = 1√

N
(1, . . . , 1)

perpendicular to the planes to which the particle motion is
confined. The tunneling operators after the transformation are

e−i
√

2	θρ
	R(a)
‖ s−, with 	R(a)

‖ = 	R(a)
0 − 1√

N
	R⊥. The scaling dimen-

sion of the tunneling operator is then

�[e−i
√

2	θρ
	R(a)
‖ s−] = | 	R(a)

‖ |2
Kρ

= 1

Kρ

(
1 − 1

N

)
. (24)

Therefore, determining whether the tunneling operator is rel-
evant depends on the Luttinger parameter Kρ—the condition
for relevancy is Kρ > N−1

N
. Importantly, this means that for

noninteracting electrons (Kρ = 1), for all N the tunneling
operator is relevant and the system will be flowing in the
direction of decreasing periodic potential strength, away from
the localized fixed point. Since the coupling increases sub-
stantially, the perturbation theory breaks down and we need
to find the stable fixed-point properties in another way. To do
this, we can use the dual perspective of looking at the QBM

as a free motion with weak potential perturbation. In this case,
the periodic potential can be expressed using its Fourier com-
ponents V (	r ) = ∑

	G v 	Gei 	G·	r , where 	G are reciprocal-lattice
vectors of the honeycomb lattice. Then the scaling dimension
of the most relevant v 	G (corresponding to the shortest 	G) is
given by [34]

�[ei 	G·	r ] = Kρ | 	G|2 = Kρ

(
1 − 1

N

)
. (25)

Again, the relevancy of the periodic potential perturbation
depends on the value of Kρ . The criterion in this case is
Kρ < N

N−1 , which for noninteracting leads is always satisfied:
the periodic potential is a relevant perturbation to the free
motion fixed point. Therefore, there have to be additional fixed
points between the localized and free motion, including at
least one stable fixed point. This analysis is summarized for
N < 5 in Fig. 2, which indicates stable and unstable fixed
points as solid and dashed lines, respectively. For N � 5 there
exists another unstable intermediate-coupling fixed point that
has been analyzed in more detail by Yi [37]. The stable
intermediate-coupling fixed point for noninteracting leads has
been studied using conformal field theory in the context of the
multichannel Kondo problem [72,73]. Applying those results
to our model, we can immediately find the zero-temperature
residual entropy:

Simp(T = 0) = ln

[
2 cos

(
π

N + 2

)]
. (26)

Moreover, we can also deduce the zero-temperature conduc-
tance matrix elements to be

Gij (T = 0) = 8 sin2

(
π

N + 2

)(
1

N
− δij

)
e2

h
. (27)

The important distinguishing feature is that compared to
the Kondo problem, the conductance matrix element here
is quadrupled. Each Andreev reflection process transfers the
charge of 2e between the leads and superconducting island,
corresponding to doubling of the current compared to the con-
ventional charge Kondo effect. This current operator is then
used in the Kubo formula to obtain conductance as a current-
current correlation function, and the doubling translates in this
way to quadrupling of Gij (T = 0). The conformal field theory
also gives the scaling dimension of the leading irrelevant
operator at the intermediate fixed point that translates to the
leading temperature correction to Gij (T = 0):

Gij (T ) = Gij (T = 0)

[
1 − c

(
T

TK

)λ
]
, (28)

where λ is 1 for N = 2 [47,74,75] and 2
5 for N = 3 [33,51,73],

c is a constant on the order of unity, and TK is the Kondo
temperature. One important characteristic of the intermediate
fixed point is that it is unstable to channel coupling asymmetry
[76,77]: when one of the couplings is increased, the system
will flow to a Fermi liquid fixed point that describes the
single channel Kondo model, and when one of the couplings
is decreased, the system will behave as an N − 1 channel
setup in low temperatures. In general, the asymmetric system
will behave as an Nmax channel setup at low-energy scales,
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where Nmax is the number of leads with the largest coupling
value. This constitutes a significant difficulty in performing
experiments that verify the theoretical claims listed above.

Now we can turn to the case of a Majorana island in which
we have to substitute Kρ → K̃ = 2K . This change essentially
shifts the flow diagram and redefines the condition for the
relevancy of tunneling and weak periodic potential operators,
which are now K > N−1

2N
and K < N

2(N−1) , respectively. This
is also indicated in Fig. 2(b) (which again is valid for N < 5
with a new unstable fixed point appearing for N � 5). The
redefinition of the relevancy condition brings about a crucial
change for the noninteracting leads: while the tunneling op-
erator is still relevant for K = 1, the weak periodic potential
becomes irrelevant for all N . This means that the free motion
fixed point becomes stable and that conductance will assume
the maximum value allowed by charge conservation. Remem-
bering that in the Majorana island the tunneling processes
carry a charge of 1e, we find that the conductance is

Gij (T = 0) = 2

(
1

N
− δij

)
e2

h
. (29)

The weak periodic potential becomes now the leading
irrelevant operator, and its scaling dimension will now de-
termine the exponent of the temperature correction of the
conductance:

�irr = 2

(
1 − 1

N

)
. (30)

The form of the correction is still described by (28). The
change of the nature of the low-temperature fixed point
comes with another major difference: the channel coupling
anisotropy, which corresponds to deformation of the periodic
potential, becomes an irrelevant perturbation and does not
cause the system to flow to the Fermi liquid fixed point. This
will be explored in more detail in Sec. IV.

IV. NUMERICAL RESULTS

To verify the analytical results and obtain a fuller un-
derstanding of the crossover regime between the fixed
points of the studied models, we employ the numerical
renormalization-group (NRG) method, a powerful nonpertur-
bative method for obtaining thermodynamics and correlation
functions of quantum impurity systems, connected to non-
interacting leads [78]. As we want to capture the universal
physics of this setup, we simplify the problem by assuming
that all the leads are identical with bandwidth 2D and a flat
density of states ρ = 1/2D. Then we express the Hamilto-
nians in the form suitable for numerical calculations. More
details of the numerical calculation are presented in Appendix
A. The NRG simulations have been performed using the NRG
Ljubljana code, which internally makes use of the SNEG
library [79].

To directly relate our results to the experiment, we focus
on the dc conductance in our calculations. We work in the
framework of the linear-response theory and compute ac con-
ductance using the Kubo formula as the correlation function
of the number of electrons in one lead and current in the other
lead. This allows us to avoid computation of the delicate limit
present in the usual current-current correlation approach (see

Appendix A). Finally, we obtain dc conductance as the limit
Gjkdc(T ) = limω→0 Gjkdc(ω, T ) of the ac conductance.

A. Superconducting island

We begin by analyzing the numerical results obtained in
the case of an s-wave superconductor island. Since this setup
maps exactly to the multichannel Kondo problem (as shown
above), which has been studied extensively using NRG, we
only highlight that the Andreev reflection Hamiltonian indeed
reproduces the key results of the Kondo effect. The Hamilto-
nian used in NRG simulations is

H NRG
SC = Hleads +

N∑
a=1

tac
†
a0↑c

†
a0↓f↓f↑ + H.c., (31)

where ca0σ are the fermionic operators at the end of the Wilson
chain that are connected to the superconducting island, and fσ

describes the pair of fermionic states in the island that are only
both occupied or both empty at the same time, simulating the
two possible charge states of the island. First, we look at the
entropy of the island at low temperatures [Fig. 3(a)]. For both
the two- and three-channel cases tuned to the critical point,
we observe residual entropy as in the usual Kondo effect.
In the two-channel case, the entropy flows to S2ch(T = 0) =
ln(2)/2, which is explained by the observation of Emery and
Kivelson [80] that the two-channel Kondo model maps to a
resonant level system with only half of the impurity degrees
of freedom coupled to the conduction electrons. For the three-
channel case, the entropy flows to S3ch(T = 0) = ln( 1+√

5
2 ),

which is consistent with the conformal field theory result and
previous numerical studies of the regular Kondo effect [81].
The inset of Fig. 3(a) shows scaling of the Kondo temperature
for the two-channel model as the tunnel couplings are varied,
and this dependence also exactly follows the behavior of the
charge Kondo problem [74]:

TK/D ∼ ρJ exp

(
− π

4ρJ

)
. (32)

Next we move on to linear conductance between the nor-
mal leads. In Fig. 3(b) we show the ac conductance matrix
element G12(ω) for several temperatures for the case of two
channels. All the curves follow the same universal behavior
before saturating at their respective dc limit, which in the
limit of T = 0 is equal to 2e2/h as predicted by the low-
energy fixed point in the perturbative renormalization-group
scheme and obtained previously by Pustilnik et al. [39].
The values of G12(ω → 0) are then determined for all the
remaining temperatures and plotted in Fig. 3(c), together with
corresponding values for the three-channel setup. For the
three-channel setup, the predicted value of 8

3 sin2( π
5 ) ≈ 0.92

is also observed. This calculated temperature dependence is
then fitted with the low-temperature correction determined by
the scaling dimension of the leading irrelevant operator at the
intermediate fixed point. For T � TK we observe excellent
agreement of the calculated curve with the predicted exponent
�G ∼ T in the case of two leads and �G ∼ T 2/5 in the case
of three leads.

All of the results described above are unstable with respect
to the tunnel coupling anisotropy, so if the values of ta are
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FIG. 3. (a) The impurity entropy Simp(T ) curves showing the crossover between local moment [Simp(T ) = ln(2)] and non-Fermi-liquid

fixed points [Simp(T ) = ln(
√

2) for two channels and ln( 1+√
5

2 ) for three channels]. The inset shows that TK obtained at the center of the
crossover (blue points) is given by TK ≈ ρJ⊥ exp( π

4ρJ⊥ ) (orange line). (b) G12(ω) conductance matrix element for two channels in the isotropic
case t1 = t2 = 0.15D for several temperatures. (c) dc conductance G12dc(T ) with a power-law correction given by the leading irrelevant
operator for two (�G ∼ T ) and three (�G ∼ T 2/5) channels.

detuned from a common value, the system in general flows
to the Fermi-liquid fixed point of the single-channel Kondo
model, as expected [76].

B. Majorana island

In the numerical analysis of the Majorana island model, we
limit our considerations to the first nontrivial case with N =
3 leads. We consider a model that includes four Majorana
modes in the island, one of which is not coupled to any
lead. In such a system, the dimension of the Hilbert space
is 4. It is then divided into two two-dimensional subspaces
labeled by the fermion parity of the island. To transform the
Hamiltonian to a form suitable for NRG calculations, we
introduce a spinless fermion f † on the island to distinguish the
two subspaces. Each of the two-dimensional parity subspaces
is then described by a pseudospin-1/2 impurity 	σ . We note
that this pseudospin-1/2 object is different from 	s used in the
bosonization treatment, which was related to different charge
states of the island. Then the Hamiltonian has the following
form:

H = Hleads +
3∑

j=1

(tjψ
†
j σjf + H.c.) + δ

(
f †f − 1

2

)
. (33)

We then define the level broadening � = ρt2
avg, where

tavg is the average tunnel coupling between the island and
the leads. Even though Majorana hybridization is a relevant
perturbation in our model, in most of our calculations we
neglect it, motivated by experimental results [13] that suggest
that minimizing the hybridization by using sufficiently long
nanowires is possible and allows for performing satisfactory
measurements. However, in order to test this assumption, we
performed some calculations with an additional term Hhyb =
bjkiγjγk . In our mapping of the Majoranas to a pseudospin-
1/2 object, this translates to Hhyb = 	K · 	σ , an effective mag-
netic field for this spin. The Hamiltonian of Eq. (33) is now
suitable for NRG treatment.

In our numerical analysis, we will be comparing the model
of a topological superconductor island at charge degeneracy

(presented above) with the previously studied model [57] that
describes the island in the Coulomb valley regime (topological
Kondo regime). We begin our investigation with the first
property that distinguishes the charge degeneracy point model
from the topological Kondo regime, namely the temperature
of the transition from the local moment fixed point to the
non-Fermi-liquid fixed point. The dependence of the tran-
sition temperature T ∗ on the lead coupling parameter can
be established in more detail by analyzing the flow of the
entropy of the island to the non-Fermi-liquid fixed point,
which is shown in Fig. 4(a). The entropy values flow from
the local moment fixed point with Simp(T ) = ln(4) to the
non-Fermi-liquid fixed point with Simp(T ) = ln(

√
3). When

the temperatures are expressed in units of the level broad-
ening �, all the entropy curves collapse into one universal
dependence. Now we define the transition temperature T ∗ as
the temperature for which the impurity entropy attains the
value [ln(4) + ln(

√
3)]/2 that is in the middle between values

at the two fixed points. We obtain it by numerically solving
the equation Simp(T ∗) = [ln(4) + ln(

√
3)]/2 and plot it as a

function of the level broadening [inset of Fig. 4(a)]. The line
on which the T ∗ points lie is defined as T ∗ = c�, where
c ≈ 3.60 is a constant coefficient determined from the fitting
procedure. Since there is a direct relation between T ∗ and �,
one can assess the transition temperature by estimating the
value of level broadening as g� [30], with g being the sum
of dimensionless conductances and � the superconducting
gap in the Majorana island. In such a case, level broadening
values are of the order of 10 μeV. Such values translate to a
temperature of about a few hundred mK. To contrast this with
the previous proposals, in Fig. 4(b) we show the comparison
between the crossover temperatures T ∗ for our model and
the model in the topological Kondo regime (details of the
model are provided in Appendix B) in the fully isotropic
case (t = t1 = t2 = t3). Even for large tunnel couplings, T ∗
at the charge degeneracy point is at least three orders of mag-
nitude higher than in the topological Kondo regime. More-
over, the Kondo temperature drops sharply with decreasing
couplings (TK ∼ (ρt )2 exp[−1/(2ρt )]), while at the charge
degeneracy point T ∗ ∼ t2, which can lead to a much easier
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FIG. 4. (a) The collapsed (for T in units of �) island’s entropy Simp(T ) curves showing the crossover between local moment [Simp(T ) =
ln(4)] and non-Fermi-liquid fixed points [Simp(T ) = ln(

√
3)]. The inset shows the linear relation T ∗ = c� with c ≈ 3.60 obtained from fitting.

(b) Crossover temperature comparison between the charge degeneracy point and the topological Kondo (Coulomb valley) regime for several
values of t = t1 = t2 = t3. The temperature at the charge degeneracy point is at least three orders of magnitude higher than in the topological
Kondo regime.

experimental observation of the multiterminal teleportation.
Furthermore, it would be possible to directly measure the
dependence of T ∗ on the tunnel couplings by tuning them
using external gates.

Next, we move to computing the transport properties of
the three-terminal Majorana island. We start by analyzing the
results exactly at the charge degeneracy point (when δ = 0).
In Fig. 5(a), we show the G12(ω) ac conductance matrix
element in the isotropic case (t1 = t2 = t3 = 0.05D) for vary-
ing temperatures. All the computed curves follow a universal
dependence, and at low temperature the fractional quantized
value of 2/3e2/h is attained as predicted by the quantum
Brownian motion mapping. In Fig. 5(b) the temperature de-
pendence of the G12dc dc conductance is shown. The whole
crossover happens over the span of approximately two orders
of magnitude in temperature, which means it is much steeper
than the crossover studied previously in the topological Kondo
regime. This is another factor that can make the experiment

possible—the increase of conductance should start at several
Kelvins and approach the fractional quantized value for sev-
eral mK. The quantum Brownian motion mapping provides a
prediction of a universal power-law temperature correction to
conductance at the strong-coupling fixed point, which has the
form

G12dc(T ) = G12dc(T = 0)
[
1 − c′(T/T ∗)2/3

]
. (34)

The curve presented in the plot is a fit of the predicted
dependence, and it correctly describes a significant part of
the crossover. This fact, together with the high crossover
temperature, should allow for experimental verification of this
low-temperature conductance correction.

However, in a real experiment, reaching the exact isotropic
case requires fine-tuning. Therefore, it is important to verify
the prediction of robustness to channel coupling asymmetry.
In Fig. 5(c) we show the results for a fully anisotropic set
of coupling constants (t1 = 0.0475D, t2 = 0.0525D, and t3

FIG. 5. (a) G12(ω) conductance matrix element in the isotropic case t1 = t2 = t3 = 0.1D for several different temperatures showing a
universal behavior. (b) G12dc(T ) dc conductance with a fit of the universal temperature power-law correction with an exponent of 2/3.
(c) G12(ω) conductance matrix element in a fully anisotropic case t1 = 0.0475D, t2 = 0.0525D, and t3 from the interval [0.00625D, 0.2D]
with each curve increasing t3 by a factor of 2. The inset shows the temperature dependence of G12dc(ω) dc conductance for the case when
t1 = t2 = 0.05D, t3 = 0.0125D with a nonmonotonic behavior that is a signature of crossover between two- and three-terminal teleportation.
The curve is a fit of T 2/3 dependence.

014512-8



MULTICHANNEL CHARGE KONDO EFFECT AND NON- … PHYSICAL REVIEW B 99, 014512 (2019)

FIG. 6. G12dc(δ) dc conductance away from the charge degener-
acy point for several temperatures. For low temperatures, the top of
the curve becomes flattened at the value of 2/3 e2/h, which implies
robustness against charge detuning.

varying in the range [0.006 25D, 0.2D] in T = 0, with each
step increasing t3 by a factor of 2). In this case, the dc
conductance also reaches the value of 2/3 e2/h independently
of the initial value of t3, which is in stark contrast to the
s-wave island model. Moreover, in the case of decreasing
t3, one can observe a nontrivial crossover between the cases
with two and three leads. For ω just below �, the value of
conductance goes beyond the value of 2/3 and comes close to
1 e2/h, which is the value corresponding to the electron tele-
portation between only two leads. However, going further to
lower frequencies decreases conductance and it again attains
the fractional quantized value. This behavior is mimicked
in the temperature dependence of dc conductance, which is
shown in the inset of Fig. 5(c). We observe a nonmonotonic
dependence, which first rises above the fractional value for
intermediate temperatures, but in the low-temperature limit
goes back to 2/3 e2/h. The curve is a fit of a T 2/3 de-
pendence, in this case with a positive coefficient in front
of it. This nonmonotonic behavior can be used as one of
the experimental signatures of crossing between two- and
three-terminal teleportation regimes. However, due to the slow
decay of conductance back to the fractional value, reaching
the low-temperature limit may prove to be more difficult.

Another important factor for the experimental verification
of our claims is the sensitivity to tuning the system exactly
to the charge degeneracy point. In Fig. 6 we present dc
conductance of our system as a function of the energy shift
δ away from the charge degeneracy point for four different
temperatures. For the lowest temperature, the curve becomes
flattened at the top, which corresponds to the conductance
value of 2/3 e2/h. This flat top means that even when one
moves away from the resonance, the observed conductance
would still be equal to the fractional quantized value. For
increased temperatures, the curves become narrower, but still
it is reasonable to expect to observe a nonzero value of
conductance even when being away from the charge degen-
eracy point. Nevertheless, this proves that tuning the system
into the vicinity of the charge degeneracy point is crucial
to observe fractional conductance at the temperatures within
experimental reach.

FIG. 7. G12(ω) in the isotropic case t1 = t2 = t3 = 0.1D for sev-
eral values of hybridization strength Kx �= Ky �= Kz with a constant
ratio 0.84 : 1 : 1.11 (K being the proportionality constant). The
hybridization affects conductance only for very small frequencies
(and temperatures), so even a sizable overlap of Majorana states
would not preclude experimental observation.

Finally, we study how the conductance is impacted by
introducing Majorana hybridization into our Hamiltonian.
Since hybridization is a relevant perturbation, one expects
that in low temperatures it will significantly change the be-
havior of conductance. In Fig. 7 we show G12(ω) in the
isotropic case t1 = t2 = t3 = 0.1D for several generic values
of hybridization strength Kx �= Ky �= Kz with constant ratio
0.84 : 1 : 1.11 between the components of 	K (additional re-
sults for different values of 	K components are presented in
Appendix B). The conductance rises from 0, reaches a value
of 2/3 e2/h, and then at lower energy scales changes to some
nonuniversal value. The scale at which the crossover happens
depends on the hybridization strength. We define the transition
energy scale ωH as the value for which conductance is in
the middle between 2/3 e2/h and the nonuniversal value. We
can then extract ωH ∼ aK3/2, with the value of a dependent
on the tunnel couplings in a particular simulation and in the
cases presented here a lies in the range between 0.1 and 0.7.
The most important fact is that even with a sizable magnitude
of hybridization, it affects conductance only in the very low-
energy scales, and the fractional quantized conductance still
prevails in the range of temperatures available in the experi-
ment. This justifies neglecting the Majorana hybridization in
the rest of the calculations.

Having verified the claim of robustness of our results with
respect to the tunnel coupling anisotropy, charge degeneracy
detuning, and showing that hybridization affects the results
only at very low temperatures, we propose an experiment
that yields a direct signature of the multiterminal Majorana-
assisted electron teleportation. In Fig. 8 we show the dc
conductance as a function of the tunnel coupling of the third
lead for several different temperatures slightly off the charge
degeneracy point to simulate the experimental conditions. At
high temperatures, the conductance increases straight to the
values close to 1 e2/h while decreasing the tunnel coupling,
as is expected for the electron teleportation between two leads.
However, as the temperature is lowered, a plateau at 2/3
e2/h emerges and it becomes wider in the process of cooling

014512-9



MICHAŁ PAPAJ, ZHENG ZHU, AND LIANG FU PHYSICAL REVIEW B 99, 014512 (2019)

FIG. 8. G12dc(t3) dc conductance slightly away from the charge
degeneracy point (δ = 0.0035D) as a function of tunnel coupling of
the third lead for several temperatures. In high temperatures there is a
simple transition from 0 to over 0.8 e2/h. When the system is cooled
down, a plateau emerges at 2/3 e2/h, signifying a transition from
two- to three-terminal electron teleportation.

down the system. Remarkably, the whole shape of the curve
changes, the increase of conductance starting for larger tunnel
couplings in lower temperatures, which allows us to observe
the change for a large range of tunnel coupling strengths. This
change of conductance curve shape provides direct evidence
of entering the multiterminal teleportation regime.

V. SUMMARY

We have shown that both the conventional and the topolog-
ical superconducting islands at the charge degeneracy point
are interesting in their own right. By applying bosonization
techniques, we demonstrated that the multiterminal s-wave
superconductor island Hamiltonian maps to the multichannel
Kondo problem. For the case of noninteracting leads, this
means that at low temperatures the system is described by
an intermediate coupling fixed point that displays non-Fermi-
liquid behavior and for which many observables are known
from conformal field theory. We supported the mapping by
a numerical renormalization-group calculation, which gives
the residual entropy and conductance consistent with the an-
alytical prediction. The intermediate fixed point is in general
unstable to channel coupling asymmetry, and so experimental
verification would require fine-tuning. On the other hand, due
to Luttinger parameter rescaling, the topological supercon-
ductor island flows to a strong-coupling fixed point, which
grants robustness to the anisotropy. This conclusion is backed
by numerical calculation in which the conductance for N = 3
leads reaches the value of 2/3 e2/h independently of the ini-
tial tunnel couplings. Moreover, the crossover to a non-Fermi-
liquid fixed point happens at experimentally plausible tem-
peratures, compared to the previous studies of the topological
Kondo effect. Thanks to this robustness, for the topological
island we have predicted distinctive experimental signatures
of a crossover between two- and three-terminal cases: one is
a nonmonotonic temperature dependence of dc conductance
when the coupling of one of the leads is decreased, and the
other is the change of the shape of the tunnel coupling strength
dependence of dc conductance with a plateau emerging at

2/3 e2/h while decreasing the temperature. As the experi-
mental control of the hybrid semiconductor-superconductor
structures sees rapid progress, our predictions may soon be
verified in the laboratory.
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APPENDIX A: NRG CALCULATION DETAILS

We perform the spectral function calculations in the frame-
work of full density matrix NRG [82] using a complete basis
set [83] in order to properly account for finite-temperature
effects. We also perform sliding parameter averaging [84–86]
over four values of sliding parameter z to remove spurious
oscillations in the results. In the calculations of the s-wave
island model, we use the discretization parameter � = 5 for a
two-channel system and � = 10 for a three-channel system.
To make the three-channel case numerically tractable, we use
the interleaved Wilson chain scheme [81,87], which requires
some fine-tuning of the individual tunnel couplings to obtain
the critical behavior. The cutoff energy has been set to Ecut =
14 for two leads and Ecut = 8.5 for the three-lead case, with
the maximum number of kept states 15 000 and 40 000,
respectively. In the Majorana island part, we used � = 3 and
kept up to 5000 states in each iteration.

We calculate conductance in the framework of linear-
response theory using the Kubo formula. To obtain the final
expression for conductance, we follow a similar procedure as
in Appendix B of Galpin et al. [57]. Therefore, we study how
a perturbation of the form H ′(t ) = Ômf (t )eηt (with η → 0 to
account for turning on the perturbation adiabatically) changes
the equilibrium expectation value of an operator Ôn. We use
a standard result in the first order of perturbation theory to
express the change by

δ〈Ôn(t )〉 = − i

h̄
Tr

∫ t

−∞
eηt ′ [Ôm, ρeq]Ôn(t − t ′)f (t ′)dt ′,

(A1)
where we define δ〈Ôn(t )〉 = Tr[ρ(t )Ôn − ρeqÔn], and ρeq =
e−βH /Z and ρ(t ) are the density matrices in equilibrium and
in the presence of the perturbation, respectively, and Ôn(t −
t ′) is defined in the interaction picture:

Ôn(t − t ′) = e
i
h̄
Ĥ (t−t ′ )One

− i
h̄
Ĥ (t−t ′ ). (A2)

To obtain conductance using the formula (A1), we have to
study how current through a lead Ij changes when ac voltage
Vk is applied to another lead. Therefore, we make the follow-
ing substitutions: Ôn → Ij = e〈Ṅj 〉 = e〈 i

h̄
[H,Nj ]〉, Ôn →

Nk , and f (t ) → eVk cos(ωt ). This leads to a formula for the
current present in the perturbed system:

Ij (t ) = − ie2Vk

h̄
Tr

∫ t

−∞
eηt ′ [Nk, ρeq]Ṅj (t − t ′) cos(ωt ′)dt ′.

(A3)
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We change the variable of integration t ′′ = t − t ′ and de-
fine the conductance tensor element Gjk as

Gjk (t, ω) = ∂Ij

∂Vk

= − ie2

h̄
Tr

∫ ∞

0
eη(t−t ′′ )[Nk, ρeq]Ṅj (t ′′)

× cos[ω(t − t ′′)]dt ′′. (A4)

To simplify the considerations, we focus on the value of
conductance at t = 0. Using the cyclic property of a trace, we
arrive at

Gjk (t = 0, ω)

= − ie2

h̄
Tr

∫ ∞

0
e−ηt ′′ρeq[Nk, Ṅj (t ′′)] cos(ωt ′′)dt ′′

= − ie2

2h̄

∫ ∞

0
e−ηt ′′ 〈[Nk, Ṅj (t ′′)]〉(eiωt ′′ + e−iωt ′′ )dt ′′.

(A5)

Now we insert the complete basis of energy states and
compute the conductance using the Lehmann spectral repre-
sentation. We finally arrive at

Gjk (ω) = e2

2h̄
[σjk (ω) + σjk (−ω)] (A6)

with

σjk (ω) = 1

Z

∑
m,n

En − Em + ω − iη

(En − Em + ω)2 + η2
(e−βEm − e−βEn )

×〈m|Nk|n〉〈n|Ṅj |m〉. (A7)

During the NRG simulation, we compute the imaginary
part of σjk (ω). The real part can be obtained afterward by
performing a Kramers-Kronig transformation. The quantity
Gjk (ω) we show in the figures is

Gjk (ω) = Im Gjk (ω) = e2

h
π [Im σjk (ω) + Im σjk (−ω)].

(A8)

The advantage of the method presented above is apparent
when one calculates the dc conductance as a limit ω → 0. The
usual approach is to compute

Gjkdc = −2π lim
ω→0

Im K (ω)

ω
, (A9)

where

K (ω) = − i

h̄

∫ ∞

0
ei(ω+iη)t 〈[Ṅj , Ṅk (t )]〉dt. (A10)

This approach involves calculation of a limit of a ratio of
two very small quantities, which may prove to be unreliable
numerically. The tradeoff of the method we used is that it
requires computation of global operators Nj , which depend
not only on the impurity, but also on the sites of the Wilson
chains [88].

APPENDIX B: ADDITIONAL MAJORANA
ISLAND NRG RESULTS

In this Appendix, we present additional NRG simulation
results for the Majorana island. We begin with the details
of the model to which we are comparing our results. The
model describes the topological superconductor island in the
Coulomb valley regime. The Hamiltonian in this case is [57]

Ĥ = Ĥleads + t1√
2

(σ+ψ
†
0ψ1 + σ−ψ

†
1ψ0)

+ t2√
2

(σ+ψ
†
−1ψ0 + σ−ψ

†
0ψ−1)

+ t3σz(ψ†
1ψ1 − ψ

†
−1ψ−1), (B1)

where ψj are annihilation operators at the ends of the three
spinless leads, and σ are the spin operators of the impu-
rity formed on the island. The Hamiltonian is obtained by
considering virtual transitions between leads in second-order
perturbation theory. This results in a much stronger crossover
energy scale dependence on the tunnel couplings and is one
of the reasons for the many orders of magnitude difference

FIG. 9. (a) Entropy of the island’s impurity Simp(T ) for temperatures expressed in units of lead bandwidth D for several tunneling coupling
strengths. Entropy flows from Simp(T ) = ln(4) for high temperatures to the non-Fermi-liquid fixed point with Simp(T ) = ln(

√
3). (b) G13(ω)

conductance matrix element in the fully anisotropic case t1 = 0.095D, t2 = 0.105D, and t3 from the interval [0.125t1, 4t1] with each curve
increasing t3 by a factor of 2. (c) G13dc(t3) dc conductance slightly away from the charge degeneracy point (�g = 0.0035) as a function of
tunnel coupling of the third lead for several temperatures. The conductance has a nonmonotonic dependence, peaked at t3 ≈ 0.05D = t1 = t2.
As the system is cooled down, the value at the peak increases until it reaches 2/3 e2/h. Further lowering the temperature develops a plateau at
this value.
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FIG. 10. Conductance matrix element (a) G12(ω) and (b) G13(ω) when a Majorana hybridization term is added to the Hamiltonian with
Kx = Ky = 0, Kz �= 0. (c) G12(ω) conductance matrix element when a Majorana hybridization term is added to the Hamiltonian with Kx =
Ky = Kz = K . In this case, G12(ω) = G13(ω).

between the transition temperature at the charge degeneracy
point and in the topological Kondo regime.

In Fig. 9(a) we show the entropy Simp(T ) curves with
temperature expressed in units of the lead bandwidth D,
before collapsing all of them onto one curve as shown in
the main text. In Fig. 9(b) we show the conductance matrix
element G13(ω) for several values of the tunnel coupling of
the third lead t3 [complementary plot to Fig. 5(c) from the
main text]. In this case, one can also observe the transition
to two-terminal teleportation: for t3 < t1, t2, the conductance
reaches the fractional quantized value of 2/3 e2/h only for
very low frequencies and analogously very low temperatures.
For higher temperatures, the conductance is essentially 0 [in
the same regime G12(ω) is close to 1 e2/h]. In Fig. 9(c)
we show the dc conductance G13dc(t3) for several different
temperatures [complementary plot to Fig. 6(a) from the main
text]. In this case, the conductance forms a peak with the

maximum for t3 close to the isotropic case. When the tem-
perature is decreased, at first the height of the peak increases,
but when it reaches 2/3 e2/h the increase stops and instead a
plateau is developed. This can also serve as an experimental
signature of multiterminal electron teleportation.

In Figs. 10(a) and 10(b) we present the results of cal-
culations with a hybridization term that includes only the z

component of 	K . Since Kzσz ∼ iγ1γ2, this term connects Ma-
jorana states coupled to leads 1 and 2, effectively decoupling
the third lead. This in turn gives 1 e2/h conductance at very
low temperatures, the same as in the case of the two-terminal
electron teleportation. At the same time, conductance G13(ω)
drops to 0 as a result of this decoupling. When the components
of 	K are all equal, the conductance is the same in the case of
both G12(ω) and G13(ω) and is similarly equal to 2/3 e2/h

before decreasing to some nonuniversal value between 0 and
2/3.
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