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Intertwined superfluidity and density wave order in a p-orbital Bose condensate
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We study a continuum model of the weakly interacting Bose gas in the presence of an external field with
minima forming a triangular lattice. The second lowest band of the single-particle spectrum (p band) has three
minima at nonzero momenta. We consider a metastable Bose condensate at these momenta and find that, in
the presence of interactions that vary slowly over the lattice spacing, the order parameter space is isomorphic
to S5. We show that the enlarged symmetry leads to the loss of topologically stable vortices, as well as two extra
gapless modes with quadratic dispersion. The former feature implies that this non-Abelian condensate is a “failed
superfluid” that does not undergo a Berezinskii-Kosterlitz-Thouless (BKT) transition. Order-by-disorder splitting
appears suppressed, implying that signatures of the S5 manifold ought to be observable at low temperatures.
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I. INTRODUCTION

The search for novel quantum states of matter continues
to be a central theme in condensed matter physics. The con-
ventional Bose superfluid spontaneously breaks a continuous
U(1) symmetry in the global phase of the condensate wave
function, giving rise to quantized vortices as a signature of
the system. Motivated by recent experiments on two com-
pletely different platforms, we investigate the possibility of
intertwining superfluid order with density wave order as a
result of additional degeneracies in the spatial structure of a
Bose-Einstein condensate (BEC). In this paper, we present
a simple theory of an intertwined state that has a superfluid
stiffness, but has a non-Abelian order parameter manifold
that lacks the topological protection to support superflow at
nonzero temperatures.

Our first experimental motivation comes from torsional
oscillator experiments on 4He bilayers on graphite suggesting
that a two-dimensional (2D) superfluid in a periodic potential
may exhibit an unconventional quantum phase [1], notably
characterized by the lack of a Berezinskii-Kosterlitz-Thouless
(BKT) transition [2] and a linear temperature dependence of
the normal fraction (cf. cubic behavior in the conventional
superfluid). The system is close to an incommensurate solid
phase. An order parameter was postulated [1] with intertwined
superfluidity and crystallinity such that the global phase and
translational degrees of freedom are no longer independent.
This order parameter exists on an enlarged symmetry man-
ifold. The BKT transition would be eliminated since global
phase vortices would not be topologically protected, while
unconventional Goldstone modes could be the source of an
enhanced normal fraction.

Second, there has also been a series of remarkable ex-
periments [3] that succeeded in creating a spatially modu-
lated atomic BEC in an optical lattice that arose from the
spontaneous occupation of photon cavity modes in two inter-
secting cavities. A new U(1) Goldstone mode was observed

associated with a degenerate set of density wave patterns. This
again raises the tantalizing possibility of intertwined density
wave order and superfluidity.

This paper is organized as follows. In Sec. II, we introduce
a model bosonic Hamiltonian with long-range interactions. In
Sec. III, we examine its band structure in the noninteracting
limit and focus on the second lowest band, where bosons can
condense into three degenerate single-particle states at zero
temperature, which can be described as a coherent state. In
Sec. IV, we argue that the coherent state exists on an S5

manifold, in contrast to the conventional U(1) manifold where
condensation only occurs in one single-particle state. Using
general arguments, we argue that we do not expect the system
to be a superfluid at nonzero temperatures in the absence
of topological protection of the vortices on an S5 manifold.
We then proceed to support this conjecture by calculating the
excitation spectra of the system at zero temperature (Sec. V)
and then using this to verify that both the condensate depletion
and normal fluid density diverge in the thermodynamic limit
at nonzero temperatures. In Secs. VII and VIII, we discuss the
validity of our conclusions when the S5 symmetry is weakly
broken. Finally, we discuss the implications of our work in
Sec. IX.

II. THE MODEL

In this paper, we study a simple bosonic Hamiltonian
to understand such an intertwined quantum state. We will
see that two ingredients are required. We need degenerate
single-particle states with different spatial structures to form
an enlarged order parameter space. To preserve this degen-
eracy, the interaction between particles has to be smooth
and long-ranged. We consider bosons in 2D with mass m in
an external potential: U (r) = 2U

∑3
j=1 sin2(Gj · r/2) where

Gj = G(cos θj , sin θj ) with θj = π (j − 1)/3 (j = 1, . . . , 6)
are the reciprocal lattice vectors. We take U > 0 which gives
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potential minima on a triangular lattice with lattice constant
a = 4π/

√
3G. The Hamiltonian is

H =
∑

k

(εk − μ)b†kbk − U

2

∑
j,k

(b†k+Gj
bk + H.c.)

+ 1

2L2

∑
k,k′,q

Vqb
†
k−qb

†
k′+qbk′bk, (1)

where εk = h̄2k2/2m, μ is the chemical potential, Vq is the
Fourier transform of the interaction potential, L is the linear
size of the system and bk is the bosonic annihilation operator.

For the degeneracy requirement, we exploit the p-band of
this system which has degenerate minima in the first Brillouin
zone (see below). We note that p-band BECs can be realized
experimentally with ultracold atoms [4,5] with novel features
due to symmetries from “internal” degrees of freedom, e.g.,
orbitals or spins [6,7]. Our proposal is different in that we
make use of degeneracies in spatial structure rather than
internal symmetries.

We will now discuss the requirement on the form of the
interactions. Theoretical studies of ultracold atoms typically
employ a zero-range contact interaction to model s-wave
scattering because the range of the interaction is short com-
pared to the wavelength of the condensate. In this work,
we are interested in a condensate with spatial modulation
commensurate with a wave vector of magnitude G/2. We will
study interactions Vq that are smooth over a length scale R

that is long compared to 1/G, such that there are momentum
transfers of the order of G are suppressed. Smooth interactions
can be realized in dipolar atoms/molecules [8] by tuning a
Feshbach resonance so that the contact repulsion is canceled
by the dipolar attraction at short range (see the Appendix).
The cooling of dipolar atoms is challenging but an Er BEC
in an optical lattice has been achieved recently [9–11]. For
our calculations below, we use the simple mathematical form,
Vq = V0 exp(−q2R2) with GR � 1, for the convenience of
a model with only a single parameter GR to control the
smoothness of the interaction. We will focus on results that
are insensitive to the precise form of the interaction.

III. SINGLE-PARTICLE STRUCTURE
AND THE S5 MANIFOLD

Let us examine now the single-particle band structure
(Vq = 0) of this system. The lowest band has the lowest
energy at the � point. We will focus on the next lowest band,
which corresponds in the tight-binding limit to Bloch states
formed by px and py orbitals in each well of the external
potential. This p band has three degenerate local minima (due
to rotational symmetry) with energy εM and crystal momenta
Qi ≡ Gi/2 (i = 1, 2, 3) at the three M points (M1,2,3) of the
first Brillouin zone of the triangular lattice [Fig. 1(c)]. The
annihilation operators for these Bloch states, B1,2,3, can be
written as a superposition of plane-wave states connected
by reciprocal lattice vectors G = p1G1 + p2G2 for integer
p1,2: Bi = ∑

G dG,ibQi+G. From these three states, we can
construct a degenerate set of single-particle states,

(c1B
†
1 + c2B

†
2 + c3B

†
3 )|vac〉, |c1|2 + |c2|2 + |c3|2 = 1, (2)

(a) (b)

1 10

3 2

2 3

FIG. 1. (a) The density profile for (c1, c2, c3) = (1, 1, 1)/
√

3
has the point-group symmetry of a honeycomb lattice. States with
equivalent densities (up to a translation) can be constructed by
changing the sign of one of the amplitudes, leading to a Z4 symmetry.
(b) The density profile of (c1, c2, c3) = (1, i, 0)/

√
2 has a C2v point

group. Black dots: potential minima. (c) Brillouin zone of the ex-
ternal potential (red) with reciprocal lattice vectors Gi . The p-band
minima occur at three inequivalent M points at Qi = Gi/2. Upon
condensation at the M points, the spatial periodicity of the system
doubles, and excitations have a reduced Brillouin zone (blue).

each of which can be represented as a point on the S5 surface
in R6. Depending on the magnitude and phases of the ci’s,
these degenerate states have quite different density profiles,
generically breaking completely the point-group symmetries
of the external potential. We will study the condensation of
bosons into these states. Two of the more symmetric cases are
plotted in Fig. 1.

We now turn to the effect of interactions. One would expect
short-ranged interactions to select Bose condensation into a
unique member of this manifold [12]. In this work, we aim
to explore the novel properties of a Bose-condensed system
where the single-particle degeneracy is preserved even in the
presence of interactions, by using an interaction that is smooth
on the scale of the lattice spacing a. To be more precise, we
consider the system in a coherent state of the form [1,13–15]:

|�〉 = e−N/2 exp

(√
N

3∑
i=1

ciB
†
i

)
|vac〉, (3)

where N is the total number of particles in the system set by
the chemical potential μ. By construction, this minimizes the
single-particle energy in the p-band. The mean field energy
for this ansatz is of the form 〈�|H |�〉 = NuMF:

uMF = Ṽ0n̄

2
+ Ṽ2n̄

4

3∑
i=1

|ci |4 + Ṽ1n̄

4

3∑
i=1

[
2|ci |2|ci+1|2

+ (
c∗2
i c2

i+1 + c.c.
)]

, (4)

where the addition in the i index is modulo 3 and n̄ = N/L2 is
the average boson number. Ṽ1 controls intervalley scattering
of particles from one M point to another (Fig. 2 left) and is the
only term allowed by the conservation of crystal momentum.
In the case of QR � 1 (or U 	 εQ), the interaction strengths

FIG. 2. Direct exchange (left) and superexchange (right) be-
tween condensed particles at momenta Mi and Mj . Direct exchange
is absent if VQ = 0.

014504-2



INTERTWINED SUPERFLUIDITY AND DENSITY WAVE … PHYSICAL REVIEW B 99, 014504 (2019)

can be approximated by Ṽ0 
 V0, Ṽ1 
 VQ + V√
3Q, and

Ṽ2 
 V2Q.
If there are strong interactions commensurate with the

wave vector Q, the system could become insulating with
a checkerboard pattern of site occupation if the chemical
potential is appropriately chosen to give a commensurate
particle density. This is analogous to the Mott insulator for
short-ranged interactions. This regime occurs if Ṽ1,2 becomes
negative and larger than the bandwidth of the p band. We will
not study this regime. Instead we will focus on weak values
of Ṽ1,2. In this case, we expect the system to condense into a
coherent state, and the key issue arising from the interactions
is then as follows. Generically, the interactions terms (Ṽ1,2) in
uMF will be minimized for a particular choice of the relative
weights and phases for the amplitudes ci in the coherent state
(3). This leads to a reduction of the degenerate manifold
from S5 to the conventional U(1) manifold. Indeed, for Ṽ1 �
Ṽ2 > 0, Liu and Wu [7,12] showed that the system favors
c1 = ±ic2, c3 = 0 (and permutations), which has a U(1)
symmetry in the global phase as well as discrete symmetries
Z2 for time reversal and Z3 for the choice of the empty state
[Fig. 1(b)].

In the spirit of preserving the degeneracy of the S5 mani-
fold (3), we specialize to a spatially smooth interaction such
that Vq�Q = 0, i.e., Ṽ1 = Ṽ2 = 0. The intervalley processes
are absent and the degeneracy on the S5 manifold is not
lifted by interactions (at the mean field level). The mean field
energy also does not depend on the relative phases of the
amplitudes ci due to separate number conservation at each M

point at this level. In other words, ansatz (3) minimizes both
the single-particle and interaction terms in uMF for any choice
of ci as long as |c1|2 + |c2|2 + |c3|2 = 1.

Henceforth, we will focus on this degenerate scenario
where the coherent state manifold (3) represents states
of minimal energy in the p band. We should point out
that a similar situation applies to the spontaneous opti-
cal lattice experiments [3] where the additional U(1) sym-
metry is only approximate in the presence of s-wave
scattering.

We discuss now the emergent SU(3) symmetry arising
from the degeneracy of the S5 manifold (3). The state (c1B

†
1 +

c2B
†
2 + c3B

†
3 )|vac〉 is a Schwinger boson formulation of the

fundamental representation of SU(3). The unitary transfor-
mation that connects any two states in the manifold can
be written as an SU(3) transformation with the generators
given by �a = ∑

i,j=1,2,3 B
†
i λ

a
i,jBj/2, where λa are the eight

Gell-Mann matrices as defined in [16]. This manifold may be
parametrized via an SU(3) rotation on the highest-weight state
using the generators according to

|�〉 ∝ exp

[
i

8∑
a=4

θa�
a

]
exp[

√
NB

†
3]|vac〉. (5)

Note that rotations involving the generators �1,2,3 on the
highest-weight state leave it invariant, and therefore the entire
manifold may be parametrized parsimoniously using only
five generators, �4,...,8, i.e., rotations involving the generators
which form an SU(2) subgroup do not alter the highest-weight
state. The manifold is isomorphic to SU(3)/SU(2) ∼S5 [17].

IV. LACK OF BKT TRANSITION ON THE S5 MANIFOLD

A non-Abelian symmetry manifold is interesting in
the context of superfluid BECs in two dimensions. To
understand this, let us first review the conventional
theory.

Conventional superfluids with condensation into one
single-particle state have a complex scalar as an order pa-
rameter. The global gauge symmetry of this order param-
eter means that the coherent states span a U(1) manifold.
In two dimensions, the Mermin-Wagner-Hohenberg theorem
[18] forbids spontaneous breaking of the U(1) symmetry, i.e.,
no condensate with infinitely long ranged phase coherence,
at any nonzero temperatures for a system in the thermo-
dynamic limit. However, the loss of condensation does not
necessarily lead to the loss of superfluidity. The destruc-
tion of superfluidity in the U(1) superfluid requires freely
propagating vortices inducing phase slips across the system.
Berezinskii, Kosterlitz, and Thouless [2] showed that vortices
are bound in vortex-antivortex pairs below a nonzero critical
temperature TBKT. The motion of these pairs do not cause
phase slips. Thus, the system remains in a superfluid phase
up to TBKT. Above this critical temperature, the vortices
and antivortex unbind and the system loses its superfluid
response.

The BKT theory relies on the topological protection of
the vortices in the form of quantized circulation. Since the
BKT superfluid is the only known superfluid without conden-
sation at nonzero temperatures, this leads us to ask whether
our non-Abelian condensate possesses topologically protected
defects which can protect it from phase slip events. The first
homotopy group for our S5 manifold is trivial: π1(S5) = 0,
meaning that any closed loop in the manifold of S5 may be
continuously shrunk to a point. This means that phase vortices
are not topologically stable. Explicitly, we can destroy the
phase of the amplitude at Mi by a trajectory on the S5

manifold that takes the coherent state through a region where
ci = 0. In addition, π2(S5) is also trivial and so there are
no topologically stable defects for our coherent states in two
dimensions.

In the absence of topological defects, we expect that our
system is not protected from thermally induced phase slips
and so is not a superfluid in the thermodynamic limit. Thus,
the 2D S5-degenerate condensate we study here is a rare
example of an interacting Bose system without superfluidity
in the thermodynamic limit at any nonzero temperature. In this
sense, a condensate with non-Abelian symmetry generators
may be viewed as a “failed superfluid” in two dimensions, the
failure being the lack of topological protection when the order
parameter exists on an S5 manifold.

We should stress that the loss of condensate in two di-
mensions only applies to the thermodynamic limit. Bose
condensation is possible in a finite system whose size is
smaller than the correlation length of the order parameter.
We will see explicitly how a system loses condensation and
superfluidity as we increase the system size or raise the
temperature in Sec. VI. In order to perform that stability
analysis, we need to understand the low-energy excitations
of the system at zero temperature. This is studied in the next
section.
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V. EXCITATION SPECTRA

In Sec. III, we have an ansatz for the S5 condensate at zero
temperature. In this section, we will compute the excitation
spectrum at zero temperature. This is needed for us to examine
the stability of the condensate as we raise the temperature
from absolute zero in Sec. VI. This stability calculation will
support our claims in Sec. IV.

We outline two methods to study the excitation spectrum.
The first method applies the Bogoliubov approximation to
the full Hamiltonian and obtains numerical results for the
excitations for multiple bands in the whole Brillouin zone.
The second method describes an effective theory for long-
wavelength fluctuations in the p band of the system. This is
useful in understanding the Goldstone modes of the system
and the stability analysis in Sec. VI.

A. Numerical Bogoliubov calculation

Consider first noninteracting bosons in the triangular po-
tential U (r) [see (1)] consisting of Fourier components at the
reciprocal lattice vectors ±G1,2,3. For our numerical work,
we work in the plane-wave (Fourier) basis. The eigenstates
are Bloch states. A Bloch state in the band γ is created by the
creation operator (

B (γ )
q

)† =
∑

G

d
(γ )
G,qb

†
G+q, (6)

where G = p1G1 + p2G2 with integer p1,2 are the reciprocal
lattice vectors, b

†
p creates a plane-wave state at wave vector p,

and q is restricted to the first Brillouin zone of the noninter-
acting problem [red hexagon in Fig. 1(c)]. In other words, it
is a superposition of plane waves with wave vectors separated
by reciprocal lattice vectors G. There are two p bands, the
lower one of which has energy minima at the M1,2,3 points
of the Brillouin zone corresponding to q = Q1,2,3 = G1,2,3/2.
We will from now on refer to this lower band as “the p band.”

We are concerned with the excitation spectrum after the
particles have Bose-condensed into the Bloch states at the
three M points. The spatial modulation of the condensate
has Fourier components at integer multiples of Q1,2,3. This
means that the Brillouin zone for the excitations is halved in
each direction [Fig. 1(c)]. So, it is more convenient to label
states in four reduced Brillouin zones [m = 0, 1, 2, 3, shown
in Fig. 1(c)]. Let us also divide all the plane-wave states into
reduced Brillouin zones centered at Qm = p1Q1 + p2Q2 for
some integers p1,2. (The numerical calculation cuts off the
basis at m = mc.) Let us denote the creation operator for a
free particle with wave vector Qm + k and energy h̄2(Qm +
k)2/2m as b

†
m,k ≡ b

†
Qm+k, where k is restricted to the first

Brillouin zone [central m = 0 blue hexagon in Fig. 1(c)] of
the reduced Brillouin zones. In this work, we will focus on
condensation into the p band, which has energy minima at the
M1,2,3 points [Fig. 1(c)]. The condensate creation operator can
be written as

c1B
†
1,k=0 + c2B

†
2,k=0 + c3B

†
3,k=0 =

∑
m

αmb
†
m,k=0, (7)

where B
†
j,k creates a Bloch state with crystal momentum k

near the Mj point. (For each j , B
†
j,k=0 superposes a set of

Γ M ′ K ′ ΓΓ M ′ K ′ Γ

0.05

0.10

E
(k

)/
ε Q

FIG. 3. The eight lowest, positive-energy modes in the Bo-
goliubov spectrum for the state (c1, c2, c3) = (1, 1, 1)/

√
3 (left)

(1, i, 0)/
√

2 (right) with 1/QR = 0.3, n̄V0 = εQ, U = 6εQ. The
spectrum converges using a mc = 271 plane-wave basis.

plane waves at wave vectors Gm + Qj = Gm + Gj /2. The
three sets of plane waves for the three different j ’s are disjoint
and they span the set of plane waves at all the reciprocal lattice
vectors of the reduced Brillouin zone, Qm.)

To construct the Bogoliubov Hamiltonian, HBog, we make
the shift in the microscopic Hamiltonian (1) using bm,0 →√

Nαm. The Bogoliubov approximation keeps only terms
quadratic in αm. These terms are quadratic in the boson
operators and can be written in the Nambu form:

HBog = 1

2

∑
k∈BZ

b†
kHkbk − 1

2

∑
mk

εk+Qm
, (8)

where bk = (b0,k, . . . , bmc,k, b
†
0,−k, . . . , b

†
mc,−k )T . The

Nambu form contains kinetic energy terms of the form
bb† but the original Hamiltonian only has terms of the normal
ordered form b†b. The constant term above has been inserted
to subtract out an unwanted constant from this rearrangement.

The eigenenergies and eigenvectors of the Bogoliubov
quasiparticles are obtained by solving the equation Hkbk =
Ekσ3bk, where σ3 = diag(1, 1, 1, . . . ,−1,−1,−1, . . .) is a
diagonal 2mc × 2mc matrix. This is equivalent to a diagonal-
ization using the Bogoliubov transformation bk = Tkβk with

Tk =
(

uk vk

v∗
−k u∗

−k

)
, uku

†
k − vkv

†
k = 1, (9)

giving us a diagonal form of the quadratic Hamiltonian:

HBog =
∑
μk

Eμkβ
†
μkβμk + 1

2

∑
μk

(Eμk − εQμ+k ). (10)

Figure 3 shows the lowest, positive excitation energies for
fluctuations around two coherent states: the symmetric state
(c1, c2, c3) = (1, 1, 1)/

√
3 and the Liu-Wu state (1, i, 0)/

√
2.

For both states, we find a gapless mode with a linear disper-
sion. This corresponds to fluctuations in the overall density,
analogous to the usual U(1) superfluid Goldstone mode aris-
ing from global phase invariance. In the next section, we show
that the corresponding phase variable is δ� = √

n̄
∑

i |ci |2δθi ,
where δθi is the fluctuations in the phase of ci . This variable
is not quantized because 0 � |ci | � 1, consistent with the lack
of topological defects in the system.

There are also two quadratic modes, Eμ=2,3,k, which arise
directly as a consequence of the non-Abelian symmetry
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generators. Their k → 0 eigenvectors correspond to excita-
tions to p band states orthogonal to the condensed single-
particle state. Such excitations are analogous to “phasons”: a
continuous internal rearrangement of a crystal [19] sampling
various density configurations (Fig. 1). We note that spin
waves in ferromagnets are also quadratic modes and this
dispersion is associated with the order parameter being a
good quantum number of the Hamiltonian. The analogous
conservation law in our system (1) is the conservation of the
number of particles in the two single-particle states orthogonal
to the condensed state. More mathematically, by adapting the
analysis for the Watanabe-Brauner counting rules [20,21], we
can show1 that quadratic modes exist if the expectation values
of the commutators of the non-Abelian SU(3) generators,
{�a}, do not vanish for states within the manifold. This
connection with the enlarged symmetry of the manifold is
consistent with these modes acquiring energy gaps of (2Ṽ1 −
Ṽ2)n̄/4 and (Ṽ1Ṽ2/2)1/2n̄ if Ṽ1,2 �= 0 [for the (1, i, 0) state],
which we derive in the next section.

We also find Bogoliubov eigenstates with negative energies
corresponding to s-band states. Metastability against scatter-
ing into the s band has been addressed [6,7] and a metastable
p-band atomic BEC has been achieved [4,5].

B. Single band effective theory

Here, we outline a minimal effective theory to describe
the long-wavelength excitations of the p-band condensate.
This will be useful to make a number of analytical statements
concerning the Bogoliubov spectrum and the scaling of var-
ious thermodynamic quantities. We will use a number-phase
representation of the condensate which reveals the physical
content of these excitations. (We have set h̄ = kB = 1.)

Let B
†
i,k be the creation operator for a Bloch state with

crystal momentum Qi + k near the Mi point with energy
εik (i = 1, 2, 3). We will provide analytic results for the
simplified case when the dispersion relation is isotropic εik =
εk = h̄2k2/2m∗. This calculation is easily generalized to the
actual anisotropic dispersion but the analytic results are cum-
bersome.

We study fluctuations around the coherent state (2):

|�〉 = e−N/2 exp

[√
N

3∑
i=1

ciB
†
i,k=0

]
|vac〉. (11)

In the number-phase representation,

cj (r) = √
nj (r)eiθj (r), (12)

1The algorithm is as follows. Suppose we have n broken symmetry
generators P1, . . . , Pn. Define the matrix �ij = 〈�|[Pi, Pj ]|�〉. The
number of modes with even dispersion in k is given by neven =
rank(�)/2 and the number of odd modes is nodd = n − 2neven. The
broken symmetries of our coherent state are �4,...,8. We find that
nodd = 1, neven = 2, agreeing with our perturbative analysis and nu-
merical simulations.

this coherent state has a mean-field energy (3) density per unit
area of

n̄uMF = V0

2
(n1 + n2 + n3)2

+
3∑

j=1

[
Ṽ1

2
njnj+1[1 + cos(2θj − 2θj+1)] + Ṽ2

4
n2

j

]
,

(13)

where n̄ is the mean-field number density, and the addition in
the j index is modulo 3. We concentrate on long-wavelength
fluctuations (|k| 	 Q) in the amplitudes

√
Ncj →

√
Ncj (r) =

√
N

L2

k	Q∑
k

cj,ke
ik·r, (14)

where L2 is the area of the system. To be more precise, we
consider states of the form

|{cj (r)}〉 = e−N/2 exp

[√
N

∫
cj (r)ψ†

j (r) d2r
]
|vac〉

= exp

⎡
⎣√

N
∑
j,k

cjkB
†
j,k

⎤
⎦|vac〉,

cj (r) = 1

L

∑
j,k

cj,ke
ik·r, ψ

†
j (r) = 1

L

∑
k

B
†
j,ke

−ik·r,

(15)

where cj,k is not small only for k 	 Q and ψj (r) is the
field operator projected onto the Bloch states in the p band
around the Mj point. The Lagrangian density L for the long-
wavelength fluctuations can be written as

L = n̄

3∑
j=1

c∗
j (ih̄∂t − εj k̂ )cj − n̄uMF[{cj (r)}], (16)

where εj k̂ is obtained from the single-particle band energies
εjk by replacing k → k̂ = −ih̄∇.

For small fluctuations in the density and phase, nj (r) =
n̄j + δnj and θj = θ̄j + δθj , we write cj 
 √

n̄j exp(iθ̄j )(1 +
δnj/2n̄j + iδθj ), where

√
n̄j exp(iθ̄j ) is the mean field value

of cj that minimizes uMF. Then, we expand L and collect
the terms quadratic in δθj and δnj . Consider first the SU(3)
symmetric Hamiltonian with Ṽ1,2 = 0 with the S5 manifold
of degenerate coherent states described by any (c1, c2, c3)
with n̄ = n̄1 + n̄2 + n̄3 fixed. The quadratic fluctuations are
described by the Lagrangian density:

δLS5 =
3∑

i=1

[
− δni∂t δθi − V0

2
(δn1 + δn2 + δn3)2

− 1

2m∗

(
n̄i |∇δθi |2 + 1

4n̄i

|∇δni |2
)]

. (17)

Note that δni and δθi are canonically conjugate variables.
Three pairs of natural canonical conjugates for this problem
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are

νi =
∑

j

Pij

δnj√
n̄j

, φi =
∑

j

Pij

√
n̄j δθj ,

P =

⎛
⎜⎜⎜⎝

√
n̄1
n̄

√
n̄2
n̄

√
n̄3
n̄

−
√

n̄2
n̄−n̄3

√
n̄1

n̄−n̄3
0

−
√

n̄1n̄3
n̄(n̄−n̄3 ) −

√
n̄2n̄3

n̄(n̄−n̄3 )

√
n̄−n̄3

n̄

⎞
⎟⎟⎟⎠. (18)

Using these canonical variables, we can write

δLS5 =
3∑

i=1

[
−νi∂tφi − |∇φi |2

2m∗ + |∇νi |2
8m∗

]
− V0n̄

2
ν2

1 .

(19)

The spectrum for this system can be easily extracted by com-
paring this with the Langrangian for a simple harmonic os-
cillator with frequency ω: LSHO = pq̇ − p2/2m − mω2q2/2.
We find three gapless modes. Mode 1 has the dispersion
relation E1k = √

εk(εk + 2V0n̄) which is linear in the wave
vector k for small k. This corresponds to overall density fluc-
tuations δn = √

n̄ν1 = δn1 + δn2 + δn3. The conjugate phase
variable is δ� = φ1/

√
n̄ = n̄1δθ1 + n̄2δθ2 + n̄3δθ3. The two

other modes are degenerate and simply have the noninter-
acting dispersion E2k = E3k = εk. In second-quantized form,
the annihilation operators for the three modes are

ajk = ljkφjk − i

2ljk
νjk,

l2
1k =

(
εk

2V0n̄ + εk

)1/2

= εk

E1(k)
, l2/3,k = 1. (20)

For the j = 1 mode, which is linear at small k, we see that l2
1k

scales as k at small k.
We can show that the existence of a linear mode and two

quadratic modes is robust when we restore the anisotropy in
the band energies around the three M points. The quadratic
modes become nondegenerate and their energies do depend on
the interaction strength V0. Moreover, the spectrum becomes
dependent on the choice of the mean-field coherent state.

The Ṽ1,2 interaction terms break the S5 symmetry. The
ground state is (c1, c2, c3) = (1,±i, 0)/

√
2 with a U(1) sym-

metry for the overall phase. Fluctuations around this state
can be described by the number and phase fluctuations at the
two condensed amplitudes c1,2 and a decoupled single-particle
Hamiltonian for fluctuations around c3 = 0:

δL2 = −
[
ν1∂tφ1 − φ1εk̂φ1 + ν1

8
(4V0n̄ + Ṽ2n̄ + 2εk̂ )ν1

]
−

[
ν2∂tφ2 + φ2(Ṽ1n̄ + εk̂ )φ2 + ν2

8
(Ṽ2n̄ + 2εk̂ )ν2

]
,

δL3 = n̄c∗
3

(
i∂t − εk̂ − Ṽ1n̄

2
+ μ − V0n̄

)
c3, (21)

with the chemical potential μ = 2n̄uMF = (V0 − Ṽ2/4)n̄.
Mode 1 for overall density fluctuations remains linear. The
quadratic modes from the SU(3)-symmetric case now have
energy gaps of (Ṽ1Ṽ2/2)1/2n̄ and (2Ṽ1 − Ṽ2)n̄/4.

VI. FINITE SIZE SCALING

We found in Sec. III that a coherent state of the form (3)
minimizes the energy in the p band of the single-particle
band structure. In this section, we use the excitation spectrum
derived in the previous section to perform a stability analysis
of this coherent state. By computing the condensate depletion
and the normal fluid density, we verify our assertion in Sec. IV
that, while the system is condensed at zero temperature, both
the condensate depletion and normal fluid density grows with
system size at any nonzero temperature. Thus, the system is
neither condensed nor superfluid in the thermodynamic limit
at any nonzero temperature.

Condensate depletion. The condensate depletion � is de-
fined as the fraction of particles with momenta different from
the ones in the coherent state (2):

� = 1

N

∑
j,k �=0

〈c†j,kcj,k〉. (22)

At the level of our approximation of small fluctuations,

� 
 1

N

∑
j,k �=0

〈(
νj,k

2
− iφj,k

)(
νj,−k

2
+ iφj,−k

)〉

= 1

2n̄

∑
j

∫
d2k

(2π )2

[
l2
jk + l−2

jk − 2

2
+ (

l2
jk + l−2

jk

)
Nj,k

]
,

(23)

where Nik = 1/(eEjk/T − 1) is the Bose occupation number
of the eigenstate with energy Ei,k. The first term is the deple-
tion at zero temperature. From the small-k behavior of quasi-
particle dispersion relations, we can see that the integrand of
the first term is dominated by the linear mode, as found in a
conventional U(1) superfluid. We can check that it is finite in
2D. This is consistent with the fact that Bose condensation is
possible at zero temperature in two dimensions. The second
term arises from the thermal excitation of quasiparticles. The
temperature scaling of this term depends also solely on the
form of the power law in the quasiparticle dispersion relations.
At any given low temperature T , the contribution from long-
wavelength fluctuations dominate the integrand. The tempera-
ture dependence can be obtained by noting that Nik 
 T/Eik
for Eik 	 T and summing only up to E ∼ T . It can be shown
that both linear and quadratic modes contribute terms of the
form T/k2 in the integrand. Thus, in two dimensions, the
thermal depletion scales as T ln(LT ) where L is the linear
size of the system. We note that this temperature scaling
depends solely on the form of the power law in the dispersion
relation of the different quasiparticle modes.

Superfluid density. The local current density is given
by J = N

∑
i c

∗
i ∇k̂εk̂ci . For an isotropic quadratic disper-

sion around the M points, this gives J = −iN
∑

i (c
∗
i ∇rci −

ci∇rc
∗
i )/2m∗. If we confine our attention to slow spatial

variations only, the current is given in the number-phase
representation by

J 
 1

m∗
∑

i

ni∇θi 
 1

m∗
∑

i

(n̄i∇δθi + δni∇δθi ). (24)
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The first term involves excitations of a single quasiparticle
while the latter involves two quasiparticles. The first is longi-
tudinal and therefore does not contribute to the normal fluid
response. The second term is diagonal in the index i and
remains so after the orthogonal basis transformation (18). Its
Fourier transform is

J⊥q 
 1

m∗
∑

i

∫
νi (∇φi )⊥qe

−iq·r d2r
L2

= i

m∗
∑
ik

k⊥q νi,q−kφik

= 1

2m∗
∑
ik

li,q−k

lik
k⊥q (aiq−k − a

†
ik−q)(aik + a

†
i−k ).

(25)

The normal fluid density is given by [22]

ρn = 2

L2Z
lim
q→0

∑
νν ′

e−Eν/T |〈ν ′|J⊥q|ν〉|2
Eν ′ − Eν

, (26)

where ν labels eigenstates with energies Eν of the gas of
Bogoliubov excitations with partition function Z and J⊥q
is the component of the current operator transverse to q.
Inserting the quasiparticle spectrum gives

ρn = 2

m∗2L2
lim
q→0

∑
ik

(
k⊥qli,q−k

lik

)2

×
[
Ni,q−k + Nik

Ei,q−k + Eik
− Ni,q−k − Nik

Ei,q−k − Eik

]


 4T

m∗2L2
lim
q→0

Eik<T∑
ik

(
k⊥q

Eik

)2

, (27)

using Nik 
 T/Eik and summing up to E ∼ T . Again, the
temperature scaling of this quantity depends solely on the
form of the power law in the dispersion relation of the dif-
ferent quasiparticle modes. The contribution from the linear
mode gives a dependence of T 3 while the quadratic mode
gives T ln(LT ). The first term is found in the conventional 2D
superfluid. The second term, which dominates at low temper-
atures, is a novel feature arising from the extra conservation
laws that gave rise to the quadratic modes, as discussed at the
end of Sec. V A. We should point that that this result does not
depend on the precise form of the interaction as long as we
can make the approximation that Ṽ1,2 is small compared to
the thermal energy.

When the anisotropy of the dispersion around the M points
is included in the calculation, these temperature dependences
are robust. There is also a reduction of the superfluid frac-
tion from unity at zero temperature, as expected on general
grounds due to the loss of Galilean invariance.

In summary, we have computed the finite-size scaling
behaviour of our S5 condensate. Both the condensate de-
pletion and the normal fluid density scales as T ln(T L).
At any nonzero temperature, these quantities diverge as the
system size L grows. On the other hand these quantities
vanishes at T = 0. This means that the condensate is stable
at zero temperature against quantum fluctuations. However,

thermal fluctuations destroy condensation (Mermin-Wagner-
Hohenberg theorem) and superfluidity in the thermodynamic
limit due to the thermal excitation of gapless quasiparticles.

VII. ORDER-BY-DISORDER SPLITTING

The S5 symmetry is emergent, meaning that the genera-
tors described above do not commute with the Hamiltonian
except in the expectation value of the macroscopic coherent
state. Such emergent symmetries are typically broken by the
“order-by-disorder” mechanism [23–25], which reduces the
symmetry by picking the state that minimizes the quantum
zero-point energy Ezp = 1

2

∑
μk(Eμk − E

(0)
μk ), where E

(0)
μk are

the noninteracting band energies. In systems where order-by-
disorder is typically important, this quantity is on the order
of εQ [25]. We have evaluated the zero-point energy for
the parameters considered in Fig. 3. We find that the order-
by-disorder mechanism favors the symmetrically condensed
state, (c1, c2, c3) ∝ (1, 1, 1) and its three other degenerate
counterparts: (−1, 1, 1) and permutations. In other words, this
reduces the degeneracy on the S5 manifold to a U(1) ⊗ Z4

symmetry. These states have a zero-point energy per particle
of Ezp/N 
 4 × 10−2εQ/ncell, where ncell = √

3n̄a2/2 is the
number of particles per unit cell. (The p band has a bandwidth
of ∼10−1εQ for these parameters.) However, the range of
zero-point energies over the whole manifold is only 1% of
this quantity: �Ezp/N ∼ 10−4εQ/ncell, with the (1, i, 0) state
having the highest zero-point energy. We believe that this
surprisingly small range can be related to the small matrix
elements for the intervalley superexchange contribution to the
zero-point energy (Fig. 2 right). This involves intermediate
states produced by momentum transfers of the order of Q/2
from a condensed wave vector M , and we see numerically
that the splitting scales approximately as V 2

Q/2/V0 for V0 �
VQ/2 (= 6 × 10−2V0 in Fig. 3). Such small energy differences
between the coherent states in the S5 manifold means that they
should all be accessible at low temperatures.

VIII. SUPPRESSION OF THE BKT TRANSITION

We return now to the issue of the small energy gap due to a
small VQ: Eg 
 10−5εQ for parameters in Fig. 3. This reflects
the anisotropy on the S5 manifold of coherent states, reducing
the symmetry to U(1). We estimate the temperature scale at
which the breaking of the symmetry of the S5 degenerate
manifold due to a small nonzero interaction VQ which couples
bosons at two M points by a momentum transfer of Q. This
reduces the symmetry of the degenerate manifold to U(1).

We borrow from Nelson and Pelcovits [26] and Fellows
et al. [27] and consider the O(M + 2) nonlinear sigma model
with a small anisotropic term, defined by the (M + 2) ×
(M + 2) matrix D, that breaks the symmetry to an O(2)
model. This is described by the energy density:

H = J

2
(∇n)2 + J⊥

2a2
nTDn, (28)

where n is a unit vector on the SM+1 sphere, J⊥ is a di-
mensionless measure of the anisotropy, and a = 2π/

√
3Q

is the lattice spacing. In the absence of the anisotropy, the
Mermin-Wagner theorem states that the system is disordered
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in the thermodynamic limit in two dimensions at any nonzero
temperature. For a nonzero J⊥ 	 1, a BKT transition occurs
at a critical temperature Tc 
 J/ ln(J/J⊥). In the opposite
limit of large J⊥, this is equivalent to the O(2) model, which
has a critical temperature of TBKT 
 πJ/2.

We should also note that the anisotropy gives rise to topo-
logically stable vortices. The sizes of these vortices diverge as
ξ ∼ a/

√
J/J⊥ as J⊥ → 0.

Our system cannot be mapped directly onto an O(M +
2) model. However, we believe that we can use these re-
sults to estimate the effect of anisotropy. We estimate that
J ∼ h̄2n̄/2m∗, where m∗ is the effective mass of the single-
particle dispersion relation around the M points. Since the
anisotropy arises from intervalley exchange, the anisotropy
energy per unit area is controlled by n̄2Ṽ1 ∼ n̄Eg. We es-
timate J⊥/a2 ∼ n̄Eg. This gives J⊥/J ∼ 8π2m∗Eg/h̄

2 =
(4π2/3)(m∗/m)(Eg/εQ).

For Fig. 3, where U = 6εQ, V0 = n̄εQ, and Ṽ1 
 10−5V0,
we find m∗/m ∼ 0.2; this gives J⊥/J ∼ 10−5. So, the
BKT transition temperature is suppressed by a factor of
1/ ln(J⊥/J ) ∼ 10−1 for an infinite system. This will be ob-
servable for systems larger than the vortex size ξ ∼ 300a.
This leaves us scope to explore the non-Abelian condensate
as a failed superfluid.

IX. CONCLUSIONS AND OUTLOOK

In this work, we have proposed a non-Abelian condensate
with spatial density modulations in two dimensions. We have
demonstrated that this is a local minimum of the energy at zero
temperature. We argued that the loss of topological vortices
means that we do not expect superfluidity in the system at
nonzero temperatures. This is verified by a calculation of
how condensation and superfluidity is lost as the system is
increased at nonzero temperatures.

Can this non-Abelian condensate be a candidate for a “su-
persolid” phase that spontaneously breaks both translational
and global gauge symmetries? The condensation at nonzero
momenta may be induced by certain two-body interaction
potentials with negative Fourier components at the ordering
wave vector. Such condensation may occur even in the ab-
sence of an applied field by creating a roton instability [13,14].
Such a system is generically an Abelian condensate with
decoupled Bogoliubov and phonon modes. [In the context of
our S5 manifold, the interactions creating the roton instability
will generically determine all the relative weights and phases
of the amplitudes ci , other than the ones responsible for these
U(1) modes.] Therefore, one expects to see a BKT transition
in contrast to [1]. Nevertheless, we can show that non-Abelian
condensates can be local minima in mean-field theory for
special fine-tuned Hamiltonians. These states, however, ap-
pear to be dynamically unstable in general, as evidenced by
imaginary eigenvalues in their Bogoliubov spectra. A notable
exception arises if the single-particle spectrum deviates from
the typical quadratic kinetic energy dispersion (e.g., due to
band structure, or internal degrees of freedom) where we have
found a condensate with SU(2) symmetry in addition to the
U(1) translational symmetries. Such a setup will be the focus
of future studies.

In summary, we have proposed a scenario for a condensate
with non-Abelian features, such as a lack of a BKT transition
and additional gapless “phason” modes. We believe this is
the first example of such a condensate that exploits spatial
structure instead of additional internal degrees of freedom. By
leveraging the single-particle degeneracy of the p band, we
study an interaction that does not spoil the SU(3) symmetry
of the system at the mean-field level. We find a “failed super-
fluid” in two dimensions. Our scenario is not confined to a
triangular lattice and is anticipated to generalize to degenerate
higher band condensates in, e.g., square or hexagonal lattices
and in three dimensions. Intriguingly, our failed superfluid
shares similar low-temperature behavior and a lack of a BKT
transition with the 4He bilayer on graphite [1]. Nevertheless,
a complete theory for this helium system that motivated our
story remains elusive.

Note added. Recently, an SO(3) generalization of the spon-
taneous optical lattice experiment was proposed [28].
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APPENDIX: DIPOLAR INTERACTIONS

In this section, we review the work of Fischer [8], which
demonstrated how a finite-range interaction can be realized
for dipolar bosons confined to a cloud in the xy plane.

Consider dipolar bosons of mass m with dipole moment
de, polarized by a strong electric field in the z direction.
The interaction between two bosons at a (three-dimensional)
displacement of r consists of two components. First, there
is a contact interaction parametrized by an s-wave scatter-
ing length as or an interaction strength g3D = 4πh̄2as/m.
There is also a dipole-dipole interaction of the form Vdd (r) =
(3gd/4πr3)(1 − 3z2/r2) with gd = d2

e /3ε0. This is repulsive
when x2 + y2 � z2 and attractive when x2 + y2 	 z2 (when
the dipoles are nearly collinear in the z direction).

When these bosons are confined by harmonic trap to a
Gaussian wave packet of width dz in the z direction, the
Fourier transform of the effective interaction in the 2D plane
can be written as

Vq = gd

dz

[
1 + g3D/2gd√

π/2
− 3

2
qdzw

(
qdz√

2

)]

with w(x) = ex2
erfc(x), (A1)

where q is the 2D wave vector of the Fourier transform. Fis-
cher [8] proposed that the contact interaction strength g3D can
be tuned to be equal to gd so that Vq → 0 as q → ∞. Thus,
the short-range contributions from the dipolar interaction and
contact interaction cancel each other, producing an interaction
with length scale dz. For this study, we want this length scale
to be large compared to the wavelength ∼1/Q of the density
modulations of our coherent state (3). This corresponds to
the condition that confinement in the z direction must be
larger than

√
3a, where a is the length of the triangular lattice
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Γ M ′ K ′ Γ

0.05

0.10
E

(k
)/

ε Q

Γ M ′ K ′ Γ

FIG. 4. The eight lowest, positive-energy modes in the
Bogoliubov spectrum for the state c1 = c2 = c3 (left) and
c1 = 1, c2 = c3 = 0 (right). Parameters: gd = g3D, dz = 7.5/Q,
3
√

2/π gd n̄/2dz = εQ, U = 6εQ.

vector. This suppresses intervalley processes that break the S5

symmetry.

In summary, we impose two conditions on the interaction
to observe the S5 symmetry

gd = g3D, dz >
√

3a, (A2)

which can be achieved by using a Feshbach resonance and by
adjusting the out-of-plane confinement of the trap. We plot the
resulting Bogoliubov spectrum in Fig. 4.

We should recall that the bosons are regarded as quasi-
2D because they are condensed in the ground state of the
confinement potential in the z-direction. The next lowest state
is higher in energy by h̄2/md2

z . We should not allow dz to
be so large that h̄2/md2

z becomes smaller than the bandwidth
of the p band for motion in the xy plane. This can be
achieved without violating the condition (A2) in a deep optical
lattice where the bandwidth is only a fraction of εQ. For
instance, U = 6εQ (used in Fig. 3), gives a bandwidth of the
order of 0.05εQ. Thus, there is a window of dz where the
system remains quasi-two-dimensional while the interparticle
interaction is smooth over the lattice spacing.
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