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Fulde-Ferrell-Larkin-Ovchinnikov superconductors near a surface
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We show that the behavior of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductors near a surface
is considerably different from the usual case. The order parameter of the FF state is strongly deformed near the
surface, which leads to a number of unusual features in the linear magnetic response, such as “antiscreening” or
“overscreening” of the applied field. In a fully isotropic FF case, the Meissner effect is still present, despite the
vanishing of the transverse superfluid density in the bulk. We also calculate the surface critical field Hc3, which
exhibits a peculiar temperature dependence.
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I. INTRODUCTION

It was shown by Fulde and Ferrell [1] (FF) and Larkin and
Ovchinnikov [2] (LO) that by increasing the spin splitting
of the electron bands in a singlet superconductor one can
drive the system into a peculiar nonuniform superconducting
state, known as the FFLO state. Due to the Cooper pairs in
an FFLO superconductor having a nonzero center-of-mass
momentum, the order parameter is periodically modulated;
for instance, ψ (r ) ∝ eiqr , which corresponds to the FF state.
More complicated structures containing two or more plane
waves, such as the LO state with ψ (r ) ∝ cos qr , are also
possible.

Experimental realization of the FFLO superconductivity
has remained a challenge because it requires a weak orbital
pair breaking and a sufficiently clean sample. For these rea-
sons, the search for the FFLO state has focused on materials
with low effective dimensionality and unconventional pairing
(see Refs. [3,4]). Particularly strong evidence of the FFLO
state was recently found in quasi-two-dimensional (quasi-
2D) organic compounds, such as λ-(BETS)2FeCl4, where
BETS stands for bis(ethylenedithio)tetraselenafulvalene [5].
Other candidate systems include the heavy-fermion (CeCoIn5

[6]) and iron-based (KFe2As2 [7]) superconductors and also
superconductor-ferromagnet interfaces [8]. While proposed
originally in the context of solid-state superconductors, the
FFLO states are now recognized as a universal feature of
paired fermionic systems with mismatched Fermi surfaces,
ranging from “cold” Fermi gases [9] to color-superconducting
quark matter [10].

In this paper, we aim to resolve a long-standing puzzle
about the Meissner effect in the FF state. It has been known
since the seminal work of Fulde and Ferrell [1] that the
transverse (relative to q) components of the superfluid density
tensor, or the transverse phase stiffness, vanish in the isotropic
FF state, which seemingly implies the absence of magnetic
field expulsion from the superconductor in certain geometries.
It is important to realize, however, that the Meissner effect
measurements are done in finite samples: therefore, the con-
clusions based on the expressions for the superfluid density
tensor in the bulk are not necessarily valid in the presence of

a boundary. To properly calculate the magnetic response in a
realistic situation, we derive the boundary conditions for the
order parameter in a half-infinite FF superconductor and show
that the superconducting state is necessarily deformed near the
surface. As a result, the Meissner effect in the FF state is still
present, albeit in a much changed form.

Our second goal is the calculation of the surface critical
field in an FFLO superconductor. If an external magnetic field
H is applied parallel to a superconductor-insulator interface,
then in the usual (non-FFLO) case superconductivity first
nucleates at H = Hc3, which is higher than the upper critical
field Hc2 by a universal factor: Hc3(T ) � 1.695Hc2(T ) [11],
with both critical fields having a linear temperature depen-
dence. At Hc2 < H < Hc3, the order parameter is localized
near the surface. One can expect that in the FFLO supercon-
ductors this effect would be very different, if present at all,
just by looking at the temperature dependence of the FFLO
upper critical field. In contrast to the usual case, Hc2 exhibits
the Little-Parks oscillations due to the contribution of the
Cooper pairs in the higher Landau levels [12]. In quasi-2D
materials, the orbital pair-breaking effects can be probed by
tilting the external field out of the basal plane, which results
in the oscillations of the superconducting critical temperature
as a function of the tilt angle [13].

Regarding the methodology, it is convenient to study the
magnetic properties of the FFLO superconductors using a
modified Ginzburg-Landau (GL) formalism. If the coefficient
in front of the quadratic gradient term |∇ψ |2 in the GL free
energy is negative but the quartic gradient term |∇2ψ |2 is pos-
itive, then the preferred superconducting state is modulated
with a nonzero wave vector. Microscopic derivation in the
simplest model of a clean paramagnetically limited isotropic
superconductor shows that the quadratic gradient term indeed
changes sign in a sufficiently strong magnetic field, but it does
so simultaneously with the coefficient in front of the |ψ |4
term. Therefore, in order to ensure stability, one has to include
higher-order terms, such as |ψ |6, and others [14]. Then, the
stablest state corresponds to a nonlinear generalization of the
LO state, with the gap magnitude periodically modulated in
space. On the other hand, in the presence of disorder and
the pairing anisotropy, the |ψ |4 term can remain positive
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while the |∇ψ |2 term changes sign, thus stabilizing the simple
single-plane-wave FF state, which is separated from the nor-
mal state by a second-order phase transition [15,16].

This paper is organized as follows. In Sec. II, we introduce
the modified GL functional and discuss the issues with the
Meissner effect in the FF state. In Sec. III, we find the order
parameter texture and the magnetic field distribution in a
half-infinite FF superconductor. In Sec. IV, the surface critical
field is calculated. Section V concludes with a summary of our
results. Throughout the paper, e denotes the absolute value of
the electron charge.

II. GINZBURG-LANDAU DESCRIPTION OF THE FF STATE

We consider a quasi-2D spin-singlet superconductor with
the xy plane being the basal plane and the order parameter
depending only on r = (x, y). In order to split the electron
bands and drive the system into the FFLO regime at low
temperatures, we apply a sufficiently strong uniform magnetic
field H‖ parallel to the plane. The orbital effects, in particular,
the Meissner effect and the surface critical field, are probed
by tilting the magnetic field out of the plane, so that Hz �= 0
and Bz(x, y) = ∇xAy − ∇yAx �= 0. Here A = (Ax,Ay ) is
the “orbital” vector potential, and we use the gauge ∇ · A =
0. Below the “zero-field” limit always refers to the situation
when the orbital effects are absent, i.e., Hz = Bz = 0 and
Ax = Ay = 0 but H‖ �= 0.

Formation of a nonuniform superconducting state of the
FF type can be described phenomenologically by a modified
GL functional in two dimensions, F = ∫

Fd2r , with the free-
energy density given by

F = α|ψ |2 + β

2
|ψ |4 + K|Dψ |2 + K̃|D2ψ |2

+ εK̃
(|D2

xψ |2 + |D2
yψ |2). (1)

Here D = ∇ + i(2e/h̄c)A is the covariant derivative, and
α = a(T − Tc,0), with Tc,0 being the critical temperature of
the transition into a uniform superconducting state. In order
for the instability with a finite wave vector to occur, we
put K < 0 but K̃ > 0. According to the discussion in the
Introduction, we assume that the fourth-order term in Eq. (1)
is positive, i.e., β > 0; therefore, the bulk equilibrium state
is of the FF form (see Appendix A), and the superconductor-
normal transition is of the second order.

The additional gradient terms, with ε > −1 being a dimen-
sionless parameter, are included to describe the effects of the
in-plane crystal anisotropy, appropriate for a 2D square lattice
[17]. If −1 < ε < 0, then the bulk superconducting state in
zero field is modulated along one of the principal axes, for
instance,

ψ (r ) = �0e
±iq0x, (2)

where

q0 =
√

|K|
2(1 + ε)K̃

(3)

and �0 = √
a(Tc − T )/β. This solution exists below the crit-

ical temperature

Tc = Tc,0 + K2

4a(1 + ε)K̃
, (4)

which is higher than that of a uniform state. If ε > 0, then
at zero field the bulk FF state is modulated along one of the
diagonals of the square lattice, i.e., ψ (r ) ∝ eiqr , with q2

x =
q2

y = |K|/2(2 + ε)K̃ .
In order to highlight the issues with the Meissner effect in

the FF state, let us consider the isotropic case, i.e., put ε = 0
in Eq. (1). At zero field, we obtain from Eq. (1) the nonlinear
GL equation

αψ + β|ψ |2ψ − K∇2ψ + K̃∇4ψ = 0, (5)

which has an isotropically degenerate solution of the form

ψ (r ) = �0e
iqr , (6)

where the optimal wave vector is given by |q| = q0 =√
|K|/2K̃ . The supercurrent j s = −c(δF/δ A) can be ex-

panded in powers of the vector potential: j s = j (0)
s + j (1)

s +
O(A2), where

j (0)
s = −4e

h̄
Im {Kψ∗∇ψ + K̃[(∇ψ )∗∇2ψ − ψ∗∇∇2ψ]}

(7)

is the spontaneous supercurrent, while the linear response to
A is given by

j
(1)
s,i = − 8e2

h̄2c
Re {K|ψ |2Ai − 2K̃[(ψ∗∇2ψ )Ai

+∇i (ψ
∗ A∇ψ ) − 2(∇iψ

∗)A∇ψ]}. (8)

Note the difference in Eqs. (7) and (8) from the textbook
expressions [18]. The presence of the higher-order gradient
terms and the fact that K < 0 dramatically changes the way
the FF superconductors conduct electric current, compared to
the usual case [19].

It is easy to see from Eqs. (7) and (8) that the FF state
(6) carries no spontaneous current and its response to a weak
external field is given by

j (1)
s = −32e2

h̄2c
K̃�2

0q(q A). (9)

Thus, we have reproduced the well-known observation [1] that
there is no linear response of the FF state in a fully isotropic
system to a vector potential which is transverse to q (see also
Ref. [20]). This remarkable property actually holds beyond
the GL model. Indeed, since the total free energy of the
isotropic FF state depends only on |q|, the gauge invariance
dictates that a uniform vector potential enters F only via
|q − A|. The supercurrent can be written as j

(1)
s,i = −QijAj ,

where

Qij =c
∂2F (|q− A|)

∂Ai∂Aj

∣∣∣∣
A=0

= cF ′′(q )q̂i q̂j+cF ′(q )
δij − q̂i q̂j

q

(q̂ = q/q). The second term here vanishes because the equi-
librium FF state with q = |q| = q0 corresponds to the mini-
mum of the free energy, and one obtains Qij ∝ q̂i q̂j , i.e., a
purely longitudinal response.
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We would like to stress that the result (9) should not
be taken as proof of the absence of the transverse current
response and the Meissner effect in a realistic FF supercon-
ductor. The point is that the Meissner effect is measured in a
finite sample and the applicability of Eq. (9) in the presence
of a surface is questionable. In fact, we will show below that
the simple single-plane-wave solution of the form (6) does not
satisfy the boundary conditions for the GL equations, leading
to a considerable modification of the FF state near a surface
and the restoration of the Meissner effect.

III. MEISSNER EFFECT IN THE FF STATE

In this section, we consider a half-infinite superconductor
with a straight surface at x = 0. The GL free energy has the
general anisotropic form given by Eq. (1). We assume that
−1 < ε � 0 and that the zero-field order parameter depends
only on x: ψ (r ) = ψ (x). The response of a given order
parameter texture to a weak external field perpendicular to the
plane is obtained by solving the Maxwell equation

∇2 A = −4π

c
j s , (10)

where the supercurrent is calculated in the linear approxima-
tion in the vector potential. The field is assumed to be smaller
than the lower critical field Hc1, which puts the system in
the Meissner phase without vortices. In the Landau gauge,
A = A(x) ŷ, the orbital magnetic induction is given by Bz =
B(x) = dA/dx. It follows from Eq. (1) that the spontaneous
supercurrent has the form

j (0)
s,x = 4e

h̄
Im

[|K|ψ∗∇xψ + (1 + ε)K̃
(
ψ∗∇3

xψ

−∇xψ
∗∇2

xψ
)]

, (11)

while j (0)
s,y = 0. For the linear response term we obtain

j (1)
s,y = 8e2

h̄2c
Re

(|K||ψ |2 + 2K̃ψ∗∇2
xψ

)
A (12)

and j (1)
s,x = 0.

A. Order parameter texture

In order to find the zero-field order parameter of the FF
state in a half-infinite sample one has to solve the GL equation

αψ + β|ψ |2ψ + |K|∇2
xψ + (1 + ε)K̃∇4

xψ = 0, (13)

supplemented by some boundary conditions for the order
parameter at x = 0. The above equation is a fourth-order
differential equation, which requires more boundary condi-
tions than in the usual case. One boundary condition, which
is obvious on the physical grounds, is that the perpendicular
component of the supercurrent should vanish at the surface:

js,x

∣∣
x=0 = 0. (14)

We additionally require that

∇xψ |x=0 = 0. (15)

Note that, in contrast to the usual case (see Ref. [11]), the con-
dition (15) does not lead to the vanishing of the supercurrent
due to the presence of higher-order gradient terms in Eq. (11).

A more formal justification of the boundary conditions (14)
and (15) is presented in Appendix B.

To solve the nonlinear equation (13), it is convenient to use
the amplitude-phase representation of the order parameter:
ψ (x) = �(x)eiθ (x). We obtain

α�+β�3+|K|(∇x + ivs )2�+(1+ε)K̃ (∇x + ivs )4�=0,

(16)

where vs = ∇xθ can be called the superfluid velocity by
analogy with its non-FFLO counterpart [18]. The real and
imaginary parts of the last equation are given by

α� + β�3 + |K|R̂1� + (1 + ε)K̃
(
R̂2

1 − R̂2
2

)
� = 0 (17)

and

|K|R̂2� + (1 + ε)K̃{R̂1, R̂2}� = 0, (18)

respectively. Here R̂1 = ∇2
x − v2

s , R̂2 = {∇x, vs}, and the
curly brackets denote the anticommutator of two operators.
It follows from Eq. (11) that the supercurrent is given by
j (0)
s,x = (4e/h̄)I , where

I = |K|�2vs + (1 + ε)K̃
[
�2∇2

xvs − 2�2v3
s + 4�

(∇2
x�

)
vs

+ 2�(∇x�)(∇xvs ) − 2(∇x�)2vs

]
. (19)

It is straightforward to check that ∇xI is equal to the left-
hand side of Eq. (18) multiplied by �, which yields the current
conservation condition:

I (x) = const

at all x. In the absence of an external current injected into the
system, we have I = 0.

In an infinite system, Eq. (17) supplemented by the
condition I = 0 has a trivial solution �(x) = �0, v2

s (x) =
|K|/2(1 + ε)K̃ = q2

0 [see Eq. (3)], which corresponds to the
single-plane-wave FF state (2). However, it is easy to see that
although this state carries zero current, it does not satisfy
the boundary condition (15) and therefore will be inevitably
modified near the surface.

We have to find a solution, �(x) and vs (x), of two coupled
nonlinear differential equations, Eq. (17) and I = 0, where I

is given by Eq. (19), subject to the boundary conditions

∇x�|x=0 = 0, vs |x=0 = 0,

which follow from Eq. (15). We seek an approximate solution
with �(x) = �0 at all x > 0. Then, the condition I = 0 takes
the following form:

d2vs

dx2
+ |K|

(1 + ε)K̃
vs − 2v3

s = 0,

whose solution vanishing at the boundary is

vs (x) = q0 tanh(q0x), (20)

where q0 is given by Eq. (3). This distribution of the order
parameter, shown in Fig. 1, corresponds to one half of the
superconducting domain wall found previously in Ref. [19].
We see that, in order to satisfy the boundary conditions, the
phase gradient of the order parameter is strongly deformed
near the surface. In the bulk of the sample, at x 
 q−1

0 , we
have vs → q0, so that a pure FF state is restored. Substituting
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q0 x

q0

vs

FIG. 1. The order parameter phase texture near the boundary [see
Eq. (20)], q0 is the FF modulation wave vector in the bulk.

expression (20) in Eq. (17), one can show that the leading cor-
rection to the order parameter magnitude is given by δ�(x) �
(K2/4βK̃�0)f (q0x), where f (z) = (1 − 4 sinh2 z)/ cosh4 z.
Therefore, the constant-magnitude approximation is quantita-
tively applicable if K2/βK̃�2

0 � 1.

B. Magnetic field screening

The magnetic response of the FF state in a half-infinite
sample can be found by substituting ψ (x) = �0e

iθ (x), where
∇xθ is given by Eq. (20), into the supercurrent (12). In this
way we obtain j (1)

s,y (x) = −Q(x)A(x), where

Q(x) = − 8e2

h̄2c

|K|�2
0

1 + ε

[
1

cosh2(q0x)
+ ε

]
. (21)

The Maxwell equation (10) takes the form

d2A

dx2
= −32πe2

h̄2c2

|K|�2
0

1 + ε

[
1

cosh2(q0x)
+ ε

]
A, (22)

which has to be solved subject to the matching condition at
the surface:

dA

dx

∣∣∣∣
x=0

= Hz. (23)

Note that in the isotropic case (ε = 0), we have Q(x →
∞) → 0; that is, the transverse current response kernel van-
ishes in the bulk, in agreement with the discussion in Sec. II.

By making a change in variables ξ = tanh(q0x), Eq. (22)
can be brought to the following form:

d

dξ

[
(1 − ξ 2)

dA

dξ

]
+

[
ν(ν + 1) − μ2

1 − ξ 2

]
A = 0, (24)

where

ν = 1

2

√
1 + 256πe2

h̄2c2
K̃�2

0 − 1

2
, μ2 = 64πe2

h̄2c2
K̃�2

0|ε|.

The differential equation (24) is known as the associated
Legendre equation. Its general solution appropriate for −1 <

ξ < 1 is given by

A(ξ ) = c1P
μ
ν (ξ ) + c2P

−μ
ν (ξ ), (25)

where P μ
ν (ξ ) is the Ferrers function of the first kind [21].

For a solution which is nonsingular in the whole interval

−1 < ξ < 1, the parameters μ (known as the order) and ν

(the degree) have to be non-negative integers, and the Fer-
rers functions become the associated Legendre polynomials.
However, since in our case the variable ξ ranges only between
0 (which corresponds to x = 0) and 1 (which corresponds to
x → +∞), μ and ν can be any real positive numbers, related
to each other through μ2 = |ε|ν(ν + 1). In the GL regime, �0

is small, which justifies the assumption that 0 � μ, ν � 1 for
the physically relevant values of the parameters.

The magnetic induction has the form B(ξ ) = q0(1 −
ξ 2)(dA/dξ ), and the physical solution is obtained by requir-
ing that the induction does not diverge at x → +∞. Using the
asymptotic formula [21]

P μ
ν (ξ )

∣∣
ξ→1− ∼ 1

�(1 − μ)

(
2

1 − ξ

)μ/2

, (26)

where �(z) is the gamma function, it is easy to show that c1 =
0. The remaining coefficient c2 is found from the boundary
condition B(ξ = 0) = Hz [see Eq. (23)]. Since the derivative
of the Ferrers function is given by

(1 − ξ 2)
dP μ

ν (ξ )

dξ
= (μ − ν − 1)P μ

ν+1(ξ ) + (ν + 1)ξP μ
ν (ξ ),

we obtain

A(ξ ) = − Hz

q0(μ + ν + 1)P −μ
ν+1(0)

P −μ
ν (ξ ) (27)

and

B(ξ ) = Hz

P
−μ
ν+1(0)

[
P

−μ
ν+1(ξ ) − ν + 1

μ + ν + 1
ξP −μ

ν (ξ )

]
. (28)

We can also calculate the supercurrent js (x) ≡ j (1)
s,y (x) =

−Q(x)A(x). It follows from Eqs. (21) and (27) that

js (ξ ) = −j0
1

(μ + ν + 1)P −μ
ν+1(0)

(1 − |ε| − ξ 2)P −μ
ν (ξ ),

(29)

where

j0 = 8e2

h̄2c

|K|�2
0

q0(1 − |ε|)Hz.

We see that, in contrast to the usual case, the x dependence of
the induction and the supercurrent is not exponential, although
an exponential asymptotics is recovered far from the surface
(see below).

The expressions for A, B, and js all contain

P
−μ
ν+1(0) = 2−μ

√
π

�
(

μ+ν+3
2

)
�

(
μ−ν

2

) (30)

(see Ref. [21]), which reveals an interesting feature of the
magnetic response of the FF state. At μ − ν = −2n, where
n is a non-negative integer, Eq. (30) passes through zero,
indicating a singularity in A(ξ ) and a change in the behavior
of B(ξ ). Focusing, as explained above, on sufficiently small
values of μ and ν (μ, ν � 1), we can put n = 0; therefore, the
singularity occurs when μ = ν, i.e., at ν = νc, where

νc = |ε|
1 − |ε| . (31)
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-40

-30

-20

-10
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10

20

υ = 0.05
ε = -0.1

FIG. 2. The Meissner effect in a weakly anisotropic FF case in
the antiscreening regime (ν < νc � 0.11). The solid red line is the
dimensionless magnetic induction B(x )/Hz, and the dashed blue line
is the dimensionless supercurrent density js (x )/j0.

At ν = νc, the linear response approximation fails, and the
singularity is expected to be cut off by the higher-order terms
in the supercurrent expansion in powers of A. Since the
nonlinear effects are relevant only at some exceptional values
of the parameters, we leave their investigation outside the
scope of the present work and consider only ν �= νc.

The magnetic field distribution inside the sample turns
out to be qualitatively different for ν < νc and ν > νc. In
Figs. 2, 3, 4, and 5, this is illustrated by plotting the induction
B(x), Eq. (28), as well as the screening supercurrent js (x),
Eq. (29), in the cases of a weak (ε = −0.1) and strong
(ε = −0.4) anisotropy. We see that, although the Meissner
effect is present in the FF superconductor, i.e., the magnetic
field is expelled from the bulk, it looks very different from
the usual case. The most prominent novel features are the
field enhancement (“antiscreening”) and the field inversion
(“overscreening”). At ν < νc, the magnetic induction initially
increases near the surface, then has a maximum, and eventu-
ally decreases to zero at x → ∞. In contrast, at ν > νc, the

0 2 4 6 8 10q0 x
-1

0

1

2

3

υ = 0.5
ε = -0.1

FIG. 3. The Meissner effect in a weakly anisotropic FF case in
the overscreening regime (ν > νc � 0.11). The solid red line is the
dimensionless magnetic induction B(x )/Hz, and the dashed blue line
is the dimensionless supercurrent density js (x )/j0.

0 2 4 6 8 10q0 x
-6

-4

-2

0

2

4

υ = 0.4
ε = -0.4

FIG. 4. The Meissner effect in a strongly anisotropic FF case in
the antiscreening regime (ν < νc � 0.67). The solid red line is the
dimensionless magnetic induction B(x )/Hz, and the dashed blue line
is the dimensionless supercurrent density js (x )/j0.

screening is so strong that the induction changes sign before
decaying to zero at infinity. Since ν depends on temperature
through �0, the transition between the two regimes should oc-
cur at some temperature T̃ below Tc, which can be estimated
as follows:

T̃ (ε) = Tc − h̄2c2β

64πe2aK̃

|ε|
(1 − |ε|)2

if the nonlinear effects are neglected. The magnetic field is
antiscreened at T̃ < T < Tc and overscreened at T < T̃ .

These unusual features of the Meissner response can be
verified analytically by calculating the initial slope of B(x) at
the surface and also its asymptotics at x → ∞. Substituting
Eq. (29) into the Maxwell equation ∇xB = −4πjs/c and

0 2 4 6 8 10q0 x
-6

-4

-2

0

2

4

6

8

υ = 0.8
ε = -0.4

FIG. 5. The Meissner effect in a strongly anisotropic FF case in
the overscreening regime (ν > νc � 0.67). The solid red line is the
dimensionless magnetic induction B(x )/Hz, and the dashed blue line
is the dimensionless supercurrent density js (x )/j0.
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using expression (30), we obtain

dB

dx

∣∣∣∣
x=0

= 32πe2

h̄2c2

|K|�2
0Hz

(μ + ν + 1)q0

�
(

μ+ν+3
2

)
�

(
μ−ν

2

)
�

(
μ+ν+2

2

)
�

(
μ−ν+1

2

) .

(32)

On the other hand, Eqs. (28) and (26) yield

B(ξ → 1−)

∼ Hz

P
−μ
ν+1(0)

(1 − ξ )μ/2 [μ + (ν + 1)(1 − ξ )]|ξ→1− .

(33)

In the general anisotropic case we have μ �= 0; therefore,

B(x → ∞)

Hz

∼ μ�

(
μ − ν

2

)
e−μq0x, (34)

where we again used Eq. (30). Note that the same gamma
function �[(μ − ν)/2] appears in both the small and large x

asymptotics of the magnetic induction. At ν < νc, we have
μ > ν, and therefore, B ′(0) > 0 and B(+∞) = 0+; that is,
the field is initially enhanced and then decays without chang-
ing sign. At ν > νc, we have μ < ν, and therefore B ′(0) < 0
and B(+∞) = 0−; that is, the field decreases so fast that it
reverses its direction at some point.

To examine the transition from a weakly anisotropic to the
fully isotropic case, one can keep the parameter ν fixed while
reducing the value of |ε|. According to Eq. (31), the system
will eventually enter the overscreening regime with ν > νc.
One can show that as ε → 0−, the point at which the magnetic
induction changes sign moves to infinity; therefore, no field
inversion is expected to occur in the isotropic limit. This is
confirmed by an explicit calculation in the next section.

C. Isotropic case

The isotropic case is recovered from Eqs. (28) and (29) by
taking the limit μ → 0, in which the Ferrers functions become
the Legendre functions:

P 0
ν (ξ ) = Pν (ξ ) = F

(
ν + 1,−ν; 1;

1 − ξ

2

)
,

where F (a, b; c; z) is the hypergeometric function [21]. The
magnetic induction and the screening supercurrent take the
following forms:

B(ξ ) = Hz

�
(

ν+3
2

)
�

( − ν
2

)
√

π
[Pν+1(ξ ) − ξPν (ξ )] (35)

and

js (ξ ) = −j0
�

(
ν+3

2

)
�

( − ν
2

)
√

π (ν + 1)
(1 − ξ 2)Pν (ξ ), (36)

respectively.
It follows from Eq. (35) that the magnetic field is expelled

from the superconducting bulk, with an exponential asymp-
totics far from the surface: B(ξ → 1−) ∼ Hz(1 − ξ ) [see also
Eq. (33)]; therefore,

B(x → ∞)

Hz

∼ e−2q0x. (37)

0 1 2 3q0 x
0

2

4

6

8

10

υ = 0.1
ε = 0

FIG. 6. The Meissner effect in the isotropic FF case for a small ν.
The solid red line is the dimensionless magnetic induction B(x )/Hz,
and the dashed blue line is the dimensionless supercurrent density
js (x )/j0.

Similarly, the screening current decays exponentially, as
js (x → ∞)/j0 ∼ e−2q0x . We have plotted B(x) and js (x) in
Figs. 6 and 7. We see that the isotropic FF state does exhibit
the Meissner effect, which originates from the order parameter
deformation near the surface. The decay of both the magnetic
induction and the supercurrent can be characterized by an
effective penetration depth λFF = (2q0)−1, which is of the
order of the FF modulation wavelength.

IV. SURFACE CRITICAL FIELD

It is well known that if a half-infinite non-FFLO supercon-
ductor is placed in a magnetic field parallel to the surface, then
superconductivity first appears in the field equal to the surface
critical field Hc3 [11]. In this section, we calculate the surface
critical field in the FFLO case. We consider only the isotropic
system (ε = 0), in which case an exact analytical solution is
possible.

0 1 2 3q0 x
0

0.5

1

1.5

υ = 0.5
ε = 0

FIG. 7. The Meissner effect in the isotropic FF case for a large ν.
The solid red line is the dimensionless magnetic induction B(x )/Hz,
and the dashed blue line is the dimensionless supercurrent density
js (x )/j0.
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Assuming that the phase transition is of the second order,
the surface superconducting instability can be studied by solv-
ing the linearized GL equation, supplemented by the bound-
ary conditions (14) and (15), with an additional requirement
that the order parameter is localized near the surface, i.e.,
ψ |x→∞ = 0. From Eq. (1) we obtain

αψ + |K|(D2
x + D2

y

)
ψ + K̃

(
D2

x + D2
y

)2
ψ = 0. (38)

Using the Landau gauge, A = Hzx ŷ (recall that the orbital
pair breaking is due to the component of H perpendicular to
the basal plane), the solution can be written as

ψ (r ) = eikyyf (x), (39)

where the function f satisfies the following equation:

αf − |K|L̂f + K̃L̂2f = 0. (40)

The notations here are as follows:

L̂ = − d2

dx2
+ h2(x − x0)2,

h = 2πHz/�0, x0 = −ky/h, and �0 = πh̄c/e is the mag-
netic flux quantum. Without loss of generality, we assume that
Hz > 0. From Eq. (40) we find that the critical temperature as
a function of the applied orbital field is given by

Tc(Hz) = Tc(0) − 1

a
�min(Hz), (41)

where Tc(0) = Tc,0 + K2/4aK̃ is the critical temperature of
the zero-field FFLO transition, �min is the lowest eigenvalue
of the operator

�̂ = −|K|L̂ + K̃L̂2 + K2

4K̃
= K̃

(
L̂ − q2

0

)2
,

and q0 =
√

|K|/2K̃ .
First, let us calculate the upper critical field Hc2 by solving

Eq. (40) in an infinite sample. Due to translational invariance
one can set x0 = 0. The common eigenfunctions of the op-
erators L̂ and �̂ are the harmonic oscillator wave functions
fn(x) ∝ e−hx2/2Hn(

√
hx), where n = 0, 1, 2, . . . and Hn(z)

are the Hermite polynomials. The eigenvalues of L̂ are given
by the Landau levels (2n + 1)h, and those of �̂ are �n =
K̃[(2n + 1)h − q2

0 ]
2
. Therefore, for the critical temperature in

the bulk we obtain

Tc(Hz) = Tc(0) −
(

2π

�0

)2
K̃

a
min

n

[
(2n + 1)Hz − �0|K|

4πK̃

]2

.

(42)

As the out-of-plane magnetic field changes, the ground state
of �̂ switches between different Landau levels, and the critical
temperature shows the Little-Parks oscillations (see Ref. [12]
and Fig. 8). The critical temperature reaches its maximum
value, equal to Tc(0), at Hz = Hn, where

Hn = 1

2n + 1

�0|K|
4πK̃

. (43)

Switching from the nth Landau level to the (n + 1)th Landau
level occurs at Hz = H̃n = �0|K|/8(n + 1)πK̃ , which satis-
fies Hn+1 < H̃n < Hn.

Tc (0)
T

H0

H1

Hz

FIG. 8. The upper critical field Hc2(T ) of an isotropic quasi-2D
FFLO superconductor, after Ref. [12].

Now let us look at the surface superconductivity in a
half-infinite sample. The boundary condition (14) is satisfied
automatically for the order parameter (39) with a real f . We
further require that

f ′(0) = 0, (44)

according to Eq. (15), and also that f (∞) = 0, corresponding
to a superconducting nucleus localized near the surface. The
eigenfunctions of the operator L̂ are given by

fν (x) ∝ e−h(x−x0 )2/2Hν[
√

h(x − x0)], (45)

where Hν (z) is the Hermite function [22] and L̂fν = (2ν +
1)hfν . In contrast to the bulk case, we require that the eigen-
functions vanish only at x → +∞; therefore, the index ν does
not have to be an integer (for non-negative integer values of
ν, the Hermite functions become the Hermite polynomials).
Substituting Eq. (45) into the boundary condition (44) and us-
ing the property H ′

ν (z) = 2νHν−1(z), we obtain the following
equation for ν:

2νHν−1(−r ) = −rHν (−r ), (46)

where r = √
hx0. The roots of this last equation determine the

eigenvalues of the operator �̂ at given r:

�ν = K̃
[
(2ν + 1)h − q2

0

]2
. (47)

The lowest four solutions of Eq. (46) are plotted in Fig. 9.
Note that at r → ∞, the bulk solution with ν = n =
0, 1, 2, . . . is recovered. One can show that the absolute
minimum of ν(r ) is achieved at r = r∗ � 0.768 and is given
by

ν∗ � −0.205.

From this we obtain the well-known expression for the surface
critical field in the non-FFLO case: Hc3 = Hc2/(2ν∗ + 1) �
1.695Hc2 [11].

According to Eq. (41), we have to minimize the eigenval-
ues (47) with respect to r , subject to the constraint that ν > ν∗.
Since

∂�ν

∂r
∝ [

(2ν + 1)h − q2
0

]dν

dr
,
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-2 -1 1 2 3-3

r

1

2

3

4

5

6

7

8

υ

FIG. 9. The first four solutions of Eq. (46) as functions of r =√
hx0.

the minimum of �ν corresponds to either

ν = 1

2

(
q2

0

h
− 1

)
(48)

or dν/dr = 0, i.e.,

ν = ν∗. (49)

The first possibility leads to �min = 0; therefore, the criti-
cal temperature is not affected by the field: Tc(Hz) = Tc(0).
However, this can be realized only if ν > ν∗, i.e., at h < h∗ =
q2

0/(2ν∗ + 1). At higher fields, we have the second possibility,

with �min = K̃[(2ν∗ + 1)h − q2
0 ]

2
.

Collecting everything together, we finally arrive at the
following expression for the critical temperature of the FFLO
instability near the surface:

Tc(Hz) = Tc(0), if 0 � Hz < H ∗,

Tc(Hz) = Tc(0) − (2ν∗ + 1)2

(
2π

�0

)2
K̃

a

(
Hz − H ∗)2

,

if Hz > H ∗, (50)

Tc (0)
T

H*

H0

Hz

FIG. 10. The surface critical field Hc3(T ) of an isotropic quasi-
2D FFLO superconductor (the solid red line), with H ∗ � 1.695H0.
The blue dotted line shows Hc2(T ) for comparison.

which is plotted in Fig. 10. Here

H ∗ = 1

2ν∗ + 1

�0|K|
4πK̃

� 1.695H0,

and H0 is the field below which the bulk critical temperature
exhibits the Little-Parks oscillations [see Eq. (43)]. We would
like to mention the study of the FFLO state in a disk geometry
in Ref. [23], whose numerical results are qualitatively consis-
tent with our analytical calculation.

Regarding the shape of the superconducting nucleus near
the surface, it is given by Eq. (45) and characterized by two
field-dependent parameters, ν and r . For the index ν, we have
Eq. (49) at high fields (H > H ∗) and Eq. (48) at low fields
(H < H ∗), while r is found by solving Eq. (46). There is
only one solution r = r∗ at high fields, but in the low-field
case multiple solutions are possible, as is evident from Fig. 9.
In fact, the number of possible values of r goes to infinity
at H → 0 when ν → ∞ according to Eq. (48). This means
that the order parameter is represented by a superposition
of several solutions of the form (45), with the coefficients
determined by minimizing the full nonlinear GL free energy.
We leave further investigation of the order parameter profile
to a future work.

V. CONCLUSIONS

We studied the orbital magnetic properties of a half-infinite
quasi-2D FFLO superconductor, which can be probed by
tilting the applied field out of the basal plane. We used
the modified GL formalism, supplemented by the boundary
conditions at a superconductor-insulator interface. Due to the
presence of the higher-order gradient terms in the GL equa-
tions, the number of boundary conditions increases compared
to the usual case. We focused on two observable properties:
(i) the magnetic field screening (the Meissner effect) in the FF
state, which is a result of the linear response of a given order
parameter configuration to a weak external field, and (ii) the
surface critical field Hc3, in which case the order parameter is
small and the linearized modified GL equations are solved in
an arbitrary magnetic field.

It is well known [14,15] that the nonlinear GL functionals
appropriate for the FF and LO states have very different struc-
tures. The minimal GL model of the FF states includes just
one fourth-order term with β > 0 [see Eq. (1)]. In contrast, the
LO states can become energetically favorable only if β < 0,
in which case it is necessary to include additional higher-order
terms to stabilize the free energy. In this paper, we assumed
β > 0 (which can be realized in the presence of disorder and
the pairing anisotropy); therefore, the superconducting state
in an infinite system is of the FF form.

In order to satisfy the boundary conditions, the order
parameter near the surface deviates considerably from the
single-plane-wave FF state, showing a domain-wall-like phase
texture. In the isotropic case, this leads to the generation of the
screening currents and the expulsion of magnetic field from
the superconductor, despite the vanishing of the transverse
superfluid density in the bulk. Even in an anisotropic sys-
tem, when the bulk superfluid density is nonzero, the linear
magnetic response turns out to be very different from the
usual case. Depending on the temperature, the Meissner effect
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exhibits two different regimes. Near the critical temperature,
the field is antiscreened, with the magnetic induction near
the surface exceeding the applied field, passing through a
maximum and then decreasing to zero at x → ∞. At lower
temperatures, the field is overscreened, with the induction
changing sign inside the superconductor, before decaying to
zero.

Similar to the usual case, the FFLO superconductivity
in an external orbital magnetic field preferentially nucleates
near the surface of the sample. However, the temperature
dependence of the surface critical field considerably differs
both from that in the usual case and also from the FFLO
upper critical field in the bulk. In contrast to the latter, Hc3(T )
does not show any Little-Parks oscillations. At low fields,
Hz < H ∗, the surface superconductivity appears at the same
temperature as at zero field, i.e., Tc(Hz) = Tc(Hz = 0), while
at higher fields, Hz > H ∗, the surface superconductivity is
suppressed, with Tc(Hz = 0) − Tc(Hz) ∝ (Hz − H ∗)2. Since
the surface superconducting instability calculation utilizes the
linearized GL equation, which is not sensitive to the sign of β,
our results for Hc3 are applicable in both the FF and LO cases,
as long as the transition remains of the second order.
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APPENDIX A: FF STATE VS LO STATE

The order parameter near the critical temperature of a
second-order FFLO transition in the absence of the orbital
effects (i.e., at A = 0) is found by solving the linearized GL
equation obtained from the free energy (1):

αψ − K∇2
xψ + K̃∇4

xψ = 0. (A1)

For simplicity, we set ε = 0 and assumed that the order pa-
rameter varies only along the x axis. The critical temperature
is maximized if the order parameter is spatially modulated,
for instance, ψ (x) ∝ eiqx , where |q| = q0 =

√
|K|/2K̃; then

Tc = Tc,0 + K2/4aK̃ .
The general solution of Eq. (A1) is a superposition of two

plane waves:

ψ (x) = �1e
iq0x + �2e

−iq0x. (A2)

The actual form of the order parameter below Tc, i.e., the val-
ues of �1 and �2, is determined by the higher-order terms in
the GL free energy. Using the parametrization �1 = � sin �,
�2 = �ei� cos � and substituting Eq. (A2) into Eq. (1), we
obtain

F = a(T − Tc )�2 + β

2

(
1 + 1

2
sin2 2�

)
�4

since the integrals of the oscillating terms vanish. If β > 0,
then the minimum of the free energy is achieved when � is
an integer multiple of π/2. Therefore, the most energetically
favorable bulk state at β > 0 has either �1 or �2 vanishing,
which corresponds to the single-plane-wave (FF) state with
a constant order parameter magnitude. In contrast, if β < 0,

then the free energy is unstable (F → −∞ at � → ∞), and
in order to restore stability, one has to include a number
of additional higher-order terms [14]. The minimum of the
resulting GL free energy is achieved in the states with a
periodic magnitude modulation, i.e., in the LO state and its
generalizations.

APPENDIX B: BOUNDARY CONDITIONS IN AN FFLO
SUPERCONDUCTOR

In this appendix, we derive the boundary conditions for
a modified GL equation using a variational analysis. The
GL free energy in a finite sample in the absence of external
magnetic field has the form F = Fbulk + Fsurf ace, where

Fbulk =
∫

dV

[
α|ψ |2 + β

2
|ψ |4 + K|∇ψ |2 + K̃|∇2ψ |2

]
(B1)

is the bulk contribution (here we put ε = 0 for simplicity). The
surface contribution, which phenomenologically describes the
modification of the conditions for superconductivity near the
surface, can be represented as [24]

Fsurf ace =
∮

dS σ |ψ |2, (B2)

where the integration goes over the surface of the sample and
σ is a real constant. The variation of the total free energy under
ψ∗ → ψ∗ + δψ∗ is given by

δF =
∫

dV δψ∗(αψ + β|ψ2|ψ − K∇2ψ + K̃∇4ψ )

+
∮

dS δψ∗[σψ + K (n∇)ψ − K̃ (n∇)∇2ψ]

+
∮

dS (n∇δψ∗)(K̃∇2ψ ),

where n is the outward normal to the surface. We will also
need the expression for the perpendicular component of the
supercurrent:

(n j s )|S = −4e

h̄
Im {ψ∗[K (n∇)ψ − K̃ (n∇)∇2ψ]

+K̃ (n∇ψ )∗∇2ψ}|S, (B3)

which follows from Eq. (7).
We require that δF = 0 produces, besides the GL equation

(5) in the bulk, two additional conditions at the surface:

δψ∗[σψ + K (n∇)ψ − K̃ (n∇)∇2ψ]|S = 0

and

δ(n∇ψ )∗(K̃∇2ψ )|S = 0.

From the first condition we obtain

[K (n∇)ψ − K̃ (n∇)∇2ψ]S = −σψ |S, (B4)

while the second condition is satisfied if one fixes the surface
gradient of the order parameter:

(n∇)ψ |S = 0. (B5)
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Substituting Eqs. (B4) and (B5) in the supercurrent (B3), we
have

(n j s )|S = 0. (B6)

The last two expressions produce the boundary conditions
(14) and (15). Note that the boundary conditions are not
sensitive to the structure of the higher-order terms in the
modified GL functional and thus are expected to be applicable
in both the FF and LO cases.

We would also like to compare our results to the standard
derivation of the boundary conditions for the GL equations in
the non-FFLO case. The latter can be obtained by setting K̃ =
0 and K > 0. Then, we have just one boundary condition,

K (n∇)ψ |S = −σψ |S, (B7)

which replaces Eq. (B4), while the extra constraint (B5)
is absent. The boundary condition (B7) guarantees that the
perpendicular component of the supercurrent vanishes at the

surface:

(n j s )|S = −4eK

h̄
Im [ψ∗(n∇)ψ]S = 0.

For a half-infinite superconductor occupying the x > 0 half-
space, we have n = −x̂, and Eq. (B7) can be written in the
form ∇xψ (0) = ψ (0)/b, where b = K/σ is the extrapolation
length (or the healing length; see Ref. [11]). In the FFLO
case the situation is different: due to the presence of higher-
order gradient terms, the minimization of the total free energy
produces not one but two independent boundary conditions,
Eqs. (B4) and (B5). In order to make sure that the perpendic-
ular component of the supercurrent vanishes, one has to use
both of them. Alternatively, one can impose the vanishing of
the supercurrent, Eq. (B6), as one boundary condition and use
either Eq. (B4) or (B5) as the other boundary condition.
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