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Pairing in quantum critical systems: Transition temperature, pairing gap, and their ratio
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We compute the ratio of the pairing gap � at T = 0 and Tc for a set of quantum-critical models in
which the pairing interaction is mediated by a gapless boson with local susceptibility χ (�) ∝ 1/|�|γ (the γ

model). The limit γ = 0+ [χ (�) = log |�|] describes color superconductivity, and models with γ > 0 describe
superconductivity in a metal at the onset of charge or spin order. The ratio 2�/Tc has been recently computed
numerically for 0 < γ < 2 within Eliashberg theory and was found to increase with increasing γ [T.-H. Lee
et al., Phys. Rev. Lett. 121, 187003 (2018)]. We argue that the origin of the increase is the divergence of 2�/Tc

at γ = 3. We obtain an approximate analytical formula for 2�/Tc for γ � 3 and show that it agrees well with
the numerics. We also consider in detail the opposite limit of small γ . Here we obtain the explicit expressions
for Tc and �, including numerical prefactors. We show that these prefactors depend on fermionic self-energy in
a rather nontrivial way. The ratio 2�/Tc approaches the BCS value 3.53 at γ → 0.

DOI: 10.1103/PhysRevB.99.014502

I. INTRODUCTION

The BCS theory of superconductivity [1] is rightly con-
sidered to be one of the most elegant theoretical works of
the 20th century. It not only explains how to obtain the
energy gap in the fermionic spectrum, �, and the transition
temperature Tc as functions of material-dependent parameters,
but it also predicts that the ratio 2�/Tc = 3.53 is a material-
independent universal number. Measurements on ordinary
superconductors, like aluminum, did find 2�/Tc ratios con-
sistent with BCS theory [2]. However, in other materials,
including novel superconductors, 2�/Tc is higher. The two
obvious reasons, particularly applicable to the cuprates, are
non-s-wave superconductivity [3,4] and pseudogap physics
[5]. Another potential reason is the sensitivity of 2�/Tc to
strong coupling effects. They are often associated with Mott
physics [6]; however, a large 2�/Tc ∼ 8–13 (depending how
� is defined; see below) has been found in Eliashberg calcula-
tions of phonon-mediated s-wave superconductivity [2,7–10],
in the limit when Debye frequency ωD is vanishingly small
but electron-phonon interaction g is finite (in this limit, both
Tc and � scale with g; see Refs. [11]).

Phonon-mediated pairing at ωD → 0 is a specific realiza-
tion of a more generic situation when the pairing is mediated
by a massless boson with susceptibility χ (q,�), minimally
coupled to fermions. Other examples include pairing between
fermions at a half-filled Landau level, when a massless bo-
son is a gauge field with Landau overdamped propagator
χ (q,�) ∝ 1/(q2 + a|�|/q ) (e.g., Ref. [12]), and pairing in
a metal at the onset of an instability towards a charge or
a spin order either with q = 0 or with a finite lattice mo-
mentum [13–32]. The pairing problem in these systems is
often considered within a computational scheme similar (but
not identical) to the one originally used by Eliashberg in his
analysis of phonon-mediated superconductivity [33]. Namely,
the fully renormalized pairing vertex is obtained by summing

up series of ladder diagrams, like in BCS theory but with
dynamical bosonic propagator χ (q,�), and with fermionic
propagators, which include one-loop fermionic self-energy.
The latter comes from the same fermion-boson interaction and
is computed self-consistently with the pairing vertex. Higher-
order self-energy corrections and nonladder renormalizations
of the pairing vertex are assumed to be small (a necessary
condition is a requirement that a soft boson is a slow mode
compared to a fermion; i.e., for the same momentum, a typical
bosonic frequency must be smaller than a typical fermionic
frequency). Within this approximation [34], the momentum
integration in the Eliashberg equations can be performed
exactly for a given pairing symmetry [35], and the problem
reduces to the set of coupled one-dimensional (1D) integral
equations for frequency dependent pairing vertex �(ω) and
fermionic self-energy �(ω) [2,7,10,13,14]. For spin-singlet
pairing, which we consider here, the two equations are, in
Matsubara frequencies,

�(ωn) = πT
∑
m

�(ωm)√
[ωm + �(ωm)]2 + �(ωm)2

χL(ωn−ωm),

�(ωn) = πT
∑
m

ωm + �(ωm)√
[ωm + �(ωm)]2 + �(ωm)2

χL(ωn−ωm).

(1)

Here χL(�m) is the effective, local, dimensionless bosonic
susceptibility [it is equal to g2χ (q,�m) integrated over the
Fermi surface with form factors for a given pairing channel
s, p, d, etc.). For the electron-phonon problem at vanishing
Debye frequency, χL(�) = g2/|�m|2. We consider a generic
model with χL(�) = gγ /|�m|γ : the γ model. For nematic
and Ising-ferromagnetic critical points, γ = 1 − D/3, where
D is a spatial dimension; for the antiferromagnetic critical
point, γ = (3 − D)/2; models with other values of γ have
also been identified [15,16,36–38]. A similar set of equations
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for the frequency dependent pairing vertex and fermionic self-
energy emerges in the dynamical mean-field theory (DMFT)
approach. It was argued that DMFT analysis of a Hund
metal within the three-band Hubbard model for Fe-based
superconductors yields χl (�) ∝ 1/|�|1.2 in a wide range of
frequencies [39,40]. As an additional complication, the form
of χL(�) may by itself depend on � due to feedback from
superconductivity on the bosonic propagator [41,42]. This can
be incorporated by treating γ below Tc as a temperature-
dependent parameter.

The goal of our study is to extract some new physics from
the analysis of 2�/Tc in the γ model. The pairing gap �(ωn)
is related to the pairing vertex as �(ωn) = �(ωn)/(1 +
�(ωn)/ωn), and the Eliashberg equation for �(ωn) is

�(ωn) = πT
∑
m

�(ωm) − ωm

ωn
�(ωn)√

ω2
m + �(ωm)2

gγ

|ωn − ωm|γ . (2)

Tc is obtained as the highest temperature at which Eq. (2) has
a solution. Note that the term with m = n in the right-hand
side (r.h.s.) of (2) (the self-action term) can be neglected due
to the vanishing numerator. To see this more clearly, one has
to add a small mass term M to the interaction and take the
limit M → 0 only at the end of calculations. The numerator
in (2) vanishes at m = n for any M . This vanishing is the
consequence of the cancellation between the contributions
to the gap equation from the renormalization of the pairing
vertex and the self-energy [43–45], and it has the same
physics origin as the Anderson theorem: the independence
of Tc on nonmagnetic impurities [46]. Indeed, the term with
m = n describes the scattering with zero frequency transfer,
averaged over finite momentum transfers; i.e., its role in the
gap equation is equivalent to that of elastic scattering by
nonmagnetic impurities. We remind in this regard that we
consider spin-singlet pairing. For spin-triplet pairing, the r.h.s.
of the equation for the pairing vertex contains the extra overall
factor −1/3, and the term with m = n does not vanish, in
analogy with the case when impurities are magnetic [47].

For the gap � at T = 0 we will use �0 = �(πT ) at the
lowest temperature. One can show that �0 = �(ω = 0) on the
real axis. An alternative is to associate � with the frequency
at which the density of states has a maximum, �DOS. In
BCS theory �0 = �DOS and 2�0/Tc = 3.53, but in the γ

model, �DOS > �0 (this is probably true for all Eliashberg
calculations, not necessary at a quantum critical point).

In a phonon superconductor with ωD = 0, �DOS ≈
(π/2)�0. This accounts for the discrepancy in the re-
ported 2�/Tc ratio: 2�0/Tc ∼ 8.3, while 2�DOS/Tc ∼ 12.9
(Refs. [2,7]).

The ratio of 2�/Tc in the γ model was recently analyzed
numerically for 0 < γ � 2 and was found to increase rapidly
with increasing γ [40]. We obtained the same result (see
Fig. 3) and also found that the increase of 2�/Tc accelerates
at larger γ . The goal of our work is to provide an explanation
for the increase. We argue that 2�/Tc actually diverges at
γ → 3. The divergence is the direct consequence of the fact
that at T = 0, when Matsubara frequencies become contin-
uous variables, the integral in the r.h.s. of the gap equation
(2) becomes singular at ωm ≈ ωn (

∫
dx x2/|x|γ diverges at

γ � 3). We obtain analytical formulas for Tc and � near γ = 3
and argue that they remain valid in a wide range of γ < 3.

Another goal of our study is to analyze the opposite limit of
small γ . Here we explore the fact that for any γ > 0, χL(�) =
(g/|�|)γ is a decreasing function of �, in which case the r.h.s.
of the gap equation is ultraviolet convergent, and there is no
need to impose an upper cutoff in the frequency summation
in (2). We obtain the explicit expressions for Tc and � in
the small γ limit. We show that Tc = QT ω0 and � = Q�ω0,
where ω0 = g(1.4458γ )1/γ and QT and Q� are are numerical
factors of order 1. The scale ω0 has been identified before
[25]. To obtain it, one can neglect fermionic self-energy,
i.e., treat fermions as free quasiparticles, as in BCS theory.
However, to obtain the factors QT and Q� one needs to
include the subleading terms in γ , and these additional terms
do depend on the non-Fermi-liquid self-energy �(ω) ∝ ω

1−γ
m .

We show that the self-energy contributions to QT and Q�

are rather nontrivial, and the result is very different from the
one in a weakly coupled Fermi liquid, where the self-energy
changes the exponential factor e−1/λ into e−(1+λ)/λ = e−1/λ/e

[37,48,49]. Still, we show that self-energy equally affects Tc

and �, such that 2Q�/QT = 3.53, as in BCS theory. We
computed Tc and � numerically at small γ , and found good
agreement with our analytical results.

The structure of the paper is as follows. In Sec. II we briefly
review how � and Tc are obtained in BCS theory. In Sec. III
we study the case when γ is small and obtain explicit formulas
for both Tc and �. The prefactors QT and QD are calculated
both analytically and numerically. In Sec. IV we show the
divergence of � when γ → 3.

II. BCS THEORY

To set the stage for our calculations, we briefly outline
how 2�/Tc is obtained in BCS theory. Here, χL(�) = λ is
frequency independent, and �(ωn) = �. The frequency sum
in the gap equation diverges at large ωm and one has to set the
upper cutoff �. We then have

1 = λ

�
2πTc∑
m=0

1

m + 1/2
= Li

(
3

2
+ �

2πTc

)
− Li

(
1

2

)
,

1 = λ

∫ �

0

dω√
ω2 + �2

= λ log
2�

�
, T = 0, (3)

where Li(z) = ∫ z

0 dx/ log x is a logarithmic integral.
Using Li[3/2 + �/(2πT )] − Li(1/2) = log 2eC�/(πT ),
where C = 0.577216 is Euler’s constant, we immediately
obtain Tc = (2eC�/π )e−1/λ, � = (2�)e−1/λ, and
2�/Tc = 2π/eC = 3.52775. In Eliashberg theory with
χL = λ one also has to include the self-energy � = λω,
Eq. (1), and then Tc = (2eC−1�/π )e−1/λ, � = (2�/e)e−1/λ.
The ratio 2�/Tc still remains 3.53.

III. SMALL γ

We first consider the case when χL(�) = (g/|�|)γ with
small but finite γ . As we said, for any finite γ , the pairing
kernel χL(ωn − ωm)/|ωm| decreases faster than 1/|ωm|; i.e.,
frequency summation over m in the r.h.s. of the gap equation
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(2) converges. This eliminates the need to introduce an upper
frequency cutoff �; that is, Tc and � remain finite even when
� is infinite.

The small γ limit has been considered before. Previous
studies analyzed the pairing susceptibility at T = 0 and iden-
tified the large scale ω0 = g(1.4458γ )−1/γ � g, at which
this susceptibility diverges. We obtain Tc ∼ ω0 explicitly by
solving the linearized gap equation at a finite T and the
nonlinear gap equation at T = 0, and find the proportionality
factors.

A. Calculation of Tc

Consider first the linearized gap equation (the limit �m →
0). Neglecting the term with m = n in the r.h.s. of (2), one can
reexpress (2) as

�n

(
1 + �̃n

n + 1/2

)
= KT

2

∑
m�=n

�m

|m + 1/2|
1

|n − m|γ ,

�̃n = KT

2

∑
m�=n

sign(m + 1/2)

|n − m|γ , (4)

where �̃n is the self-energy without the “self-action” term,
and KT = ( g

2πT
)γ . For n = 0,−1, �̃0 = �̃−1 = 0; for n � 1,

�̃n = KT

∑n
1

1
mγ ; and for n < 0, �̃−n−1 = −�̃n [44,50].

We will see below that it will be sufficient to analyze
Eq. (4) for large Matsubara number n; however, we will need
all internal m. At large n, �̃n ≈ KT n1−γ . Substituting this into
(4), we obtain

�n

(
1+KT

1

(n + 1/2)γ

)
= KT

2

∑
m�=n

�m

|m + 1/2|
1

|n − m|γ .

(5)

For internal |m| < |n|, the r.h.s. of (5) scales as 1/|n|γ .
Substituting this dependence back into the r.h.s. of (5), we
find that the summation over m converges and yields O(1/γ ).
Matching 1/|n|γ dependence on both sides of Eq. (5), we find
KT ∼ γ , i.e., Tc ∝ g(1/γ )1/γ .

In order to find the prefactor in Tc ∝ g(1/γ )1/γ we need to
compute KT to the second order γ . For this we search for the
solution in the form

�n = 1

|n + 1/2|γ
∞∑

p=0

ap

|n + 1/2|γp
. (6)

Without loss of generality we set a0 = 1, as the linear equation
does not fix the overall magnitude of �n. Substituting this �n

into (5) and matching the prefactors for 1/|n + 1/2|pγ with
p = 1, 2, 3, . . . , we obtain recursive relations for ap,

ap = −Zap−1

(
1

p!(p + 1)!
+ γ

)
, (7)

and the self-consistent condition on Z [which determines
Tc(γ )],

1

Z
=

∞∑
p=0

ap

(
1

p + 1
+ γ log 4eC

)
. (8)

Here Z = KT /γ . The terms O(γ ) in the r.h.s. of Eq. (7) are
due to the self-energy, which mixes 1/|n|pγ and 1/|n|(p+1)γ

gap components in Eq. (5); the O(γ ) term in the r.h.s. of
Eq. (8) comes from the summation over Matsubara frequen-
cies with m = O(1).

Solving Eq. (7) we obtain

ap = (−Z)p
(

1

p!(p + 1)!
+ γ

p + 2

3p!(p − 1)!

)
, p � 1,

(9)

and we remind that a0 = 1. Substituting the expressions for
ap into (8), we find that it reduces to

1 = −
∞∑

p=1

(−Z)p

(p!)2
− γ log 4eC

∞∑
p=1

(−Z)p

p!(p − 1)!

− γ

3

∞∑
p=2

(−Z)p(p + 1)

p!(p − 2)!
. (10)

The sums are expressed in terms of Bessel functions, and
Eq. (10) becomes

J0(2
√

Z) = γ log 4eC
√

ZJ1(2
√

Z)

− γ

3
(Z3/2J1(2

√
Z) + ZJ2(2

√
Z)). (11)

Without O(γ ) terms in the r.h.s, the condition on Tc is
J0(2

√
Z) = 0. This equation has multiple solutions, which is

fundamentally important for the understanding of the phase
diagram of the γ model [51,52]. For our current purposes,
however, it is sufficient to consider only the solution with
the highest Tc, i.e., with the smallest Z. The first zero of
J0(2

√
Z) is at Z = Z0 = 1.4458. This yields (g/2πT )γ =

1.4458γ [1 + O(γ )], i.e., Tc = QT ω0, where, we remind,
ω0 = (1.4458γ )−1/γ is the characteristic scale extracted from
the analysis of the pairing susceptibility at T = 0 [25] and QT

is the prefactor O(1), which we determine below. The large n

asymptotics of the corresponding eigenfunction �n is

�n = 1

|n|γ
(

1 − 2Z

(2!)2|n|γ + 3Z2

(3!)2|n|2γ
+ · · ·

)

= 1

|n|γ
∞∑

m=0

(
Z

|n|γ
)m (−1)m

m!(m + 1)!

= 1

(Z|n|γ )1/2
J1(2

√
Z/|n|γ ). (12)

To obtain the prefactor QT , we need to include terms
of order γ because (1 + αγ )1/γ = eα[1 + O(γ )]. For this
we expand near Z = Z0 using J0(2

√
Z) = J0(2

√
Z0) − (Z −

Z0)J1(2
√

Z0)/
√

Z0. Substituting this expansion into (11), we
obtain

Z = Z0

[
1 − γ

(
log

4eC

2.25978

)]
(13)

Using Z = KT /γ = [g/(2πT )]γ /γ and Z0 = 1.4458, we
obtain from Eq. (13)

Tc = QT ω0 = QT g(1.4458γ )−1/γ [1 + O(γ )], (14)
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FIG. 1. Numerical results of Tc in units of g for different γ . The
inset shows our numerical data for small γ and the red curve is the
fitting curve based on (14) with a prefactor QT = 0.4934.

where

QT = 1

2π

(
4eC

2.25978

)
= 0.5018. (15)

In QT , the term 4eC comes from the summation over Mat-
subara frequencies m = O(1), and the factor 2.25978 comes
from the self-energy. The 4eC term is the same as in BCS
theory, but the self-energy contribution 2.25978 is different
from e = 2.71828 in BCS theory. This is because even for
the smallest γ , Tc is determined by large Matsubara numbers,
for which �̃n/ωn = KT /|n|γ cannot be approximated by a
constant.

Our numerical results for Tc(γ ) are shown in Fig. 1. The
calculation requires care because for small γ the solution of
(2) still depends on the number of Matsubara points N even
when N ∼ 104. We obtained Tc by solving the gap equation
on mesh of N = m × 103 points, with m ranging between 4
and 16, and then extrapolating to N → ∞ (see the Appendix
for details). We see from Fig. 1 that the numerical results for
Tc/g are well described by (1.4458γ )−1/γ dependence in a
surprisingly broad range of γ (roughly up to γ ≈ 0.5). The
numerical prefactor QT , extracted from the data at small g,
is 0.4934, very close to QT = 0.5018 in (15). We went even
further and computed the next terms in the expansion in γ . We
found (see Appendix B for details) that the O(γ 2) correction
to Z is quite small even for γ � 1, due to small prefactor. We
believe this is the reason why, even for γ = 1, the analytical
Tc = 0.35g is reasonably close to the numerical value Tc =
0.26g.

B. Calculation of the gap at T = 0

We next consider the non-linear ap equation at T = 0. We
follow the same line of reasoning as above and search for the
solution for the gap at high frequencies in the form

�(ω) = �f
( ω

�

)
. (16)

Substituting into the gap equation, rescaling ω/� = ω̄, and
introducing K̄ = (g/�)γ , we obtain from (5)

f (ω̄)

(
1 + K̄

|ω̄|
)

= K̄

2

∫
dω̄′f (ω̄′)√

(ω̄′)2 + f 2(ω̄′)

1

|ω − ω′|γ .

(17)

As before, we search for f (ω̄) in the form

f (x) = 1

xγ

(
1 + a

xγ
+ b

x2γ
+ · · ·

)
(18)

For each component of f (x) we represent∫
dω̄′

|ω̄′|pγ
1√

(ω̄′ )2+f 2(ω̄′ )
1

|ω−ω′|γ as Ā + B̄, where

Ā =
∫

dω̄′

|ω̄′|pγ

1√
(ω̄′)2 + f 2(ω̄′)

1

|ω − ω′|γ

−
∫ ∞

1

dω̄′

|ω̄′|1+pγ

(
1

|ω − ω′|γ + 1

|ω + ω′|γ
)

,

B̄ =
∫ ∞

1

dω̄′

|ω̄′|1+pγ

(
1

|ω − ω′|γ + 1

|ω + ω′|γ
)

. (19)

In Ā, the contribution from large ω̄′ cancels out, and the
remaining integral reduces to Ā = 2C̄/|ω|γ , where

C̄ =
∫

dω̄′

|ω̄′|pγ

1√
(ω̄′)2 + f 2(ω̄′)

−
∫ ∞

1

dω̄′

|ω̄′|1+pγ
.

(20)

The integral does not contain 1/γ , and its leading,
γ -independent piece can be computed right at γ = 0,
where f (ω̄′) = 1. This piece is C̄ = ∫ ∞

0 dx/
√

x2 + 1 −∫ ∞
1 dx/x = log 2.

For the term B̄, we obtain to order O(γ )

B̄ = 2

|ω̄|γ
∫ ω̄

1

dω̄′

|ω̄′|1+pγ
+ 2

∫ ∞

ω̄

dω̄′

|ω̄′|1+(p+1)γ
(21)

Evaluating the integrals and matching the prefactors for
1/|ω̄|pγ in the r.h.s. and the l.h.s. of the gap equation, we
obtain

� = Q�ω0 = Q�g(1.4458γ )−1/γ ,

Q� =
(

2

2.25978

)
= 0.885. (22)

Combining (14) and (22), we obtain 2�/Tc = 2QD/QT =
2π/eC = 3.53, as in BCS theory. In the inset of Fig. 2 we
show our numerical results for � at γ < 0.5. The numerical
�(γ ) indeed scales with ω0. The prefactor Q�, extracted
from numerical data, is 0.87, very close to the analytical
Q� = 0.885. The ratio 2�/Tc is plotted in Fig. 3. It clearly
approaches the BCS value when γ → 0.

IV. Tc AND � IN THE γ MODEL WITH γ � 3

We now consider the γ model with exponent γ > 1. We
show that the ratio 2�/Tc increases with γ and diverges at
γ = 3. We argue that this divergence is the primary reason
why earlier works [2,7,9,10] found a very large (but finite)
2�/Tc by solving Eliashberg equations for a phonon super-
conductor with effective phonon-mediated pairing interaction
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FIG. 2. Numerical results for � (in units of g) for different γ .
The inset shows numerical data for small γ , and the red curve is
the fitting based on (22). The prefactor Q�, extracted from the fit, is
Q� = 0.87.

g2/(�2 + ω2
D ) in the limit when the Debye frequency van-

ishes, but the coupling g remains finite (this corresponds to
γ = 2 in our notations).

A. Calculation of Tc

The onset temperature of the pairing at large γ was earlier
analyzed by the two of us and collaborators [44]. Tc decreases
with increasing γ and saturates at Tc = g/(2π ) in the formal
limit γ → ∞. At large γ , the gap equation becomes local
in the sense that the largest contribution to the r.h.s. of
the gap equation (5) for a given n comes from m = n ± 1,
i.e., �n is predominantly coupled to �n−1 and �n+1. This
local pairing problem can be solved exactly, and the result
is K ≡ [g/(2πTc )]γ = 1/s, where s = 1.1843 is the solu-
tion of J3/2+1/s/J1/2+1/s = s − 1. Then Tc = s1/γ g/(2π ) =
g

2π
(1 + 1

γ
log s + · · · ). The dots stand for O(1/γ 2) terms,

which cannot be obtained within a local approach. Tc,

FIG. 3. Numerical results for 2�

Tc
for different γ .

obtained numerically (Fig. 1), indeed saturates at g/(2π ) at
large γ and is actually rather close to this value for all γ > 1.

B. Calculation of � at T = 0

It is convenient to write the gap equation at T = 0 as

�(ω)ω = gγ

2

∫
dω′√

(ω′)2 + �2(ω′)

�(ω′)ω − �(ω)ω′

|ω − ω′|γ

= gγ

2

∫
dω′ �(ω′)√

(ω′)2 + �2(ω′)

sign(ω − ω′)
|ω − ω′|γ

+gγ

2

∫
dω′ ω′√

(ω′)2 + �2(ω′)

�(ω′) − �(ω)

|ω − ω′|γ .

(23)

The first contribution to the r.h.s. of (23) can be re-expressed
by shifting the integration variable as

gγ

2

∫ ∞

0

dx

xγ−1

⎛
⎝ 1√

1 + (
x−ω

�(x−ω)

)2
− 1√

1 + (
x+ω

�(x+ω)

)2

⎞
⎠.

(24)

The second contribution can be reexpressed by collecting the
terms with positive and negative ω′ as

gγ

2

∫ ∞

0

dω′ω′√
(ω′)2 + �2(ω′)

[�(ω′) − �(ω)]

×
(

1

|ω − ω′|γ + 1

|ω + ω′|γ
)

. (25)

Both contributions have infrared divergencies
∫

dx/xγ−2 at
γ > 3, as one can easily verify. However, the integral in
(24), diverges already if we approximate the gap �(ω) as a
constant � at low frequencies, while in the second contribu-
tion, Eq. (25), the divergent piece contains ∂2�(ω)/∂ω2. We
assume that this second contribution is smaller and focus on
the first one. We set external ω in (23) and approximate its
l.h.s. as �ω, where � = �(ω = 0). The equation on � is
then obtained by expanding in Eq. (24) to linear order in ω.
Neglecting again the derivatives of �(ω) we obtain

� =
∫ ∞

0

dx

xγ−2

�(x)(
�2

x + x2
)3/2 . (26)

For γ close to 3 the integral is determined by small x, and we
can approximate �(x) by �. The remaining integration over
x can be carried out exactly, and we obtain

� = g

(
�

(
γ

2

)
�

( 3−γ

2

)
√

π

) 1
γ

. (27)

When γ approaches 3, � diverges as (1/(3 − γ ))1/3. For γ =
2, Eq. (27) yields � = g. We note in passing that � given
by (27) also diverges as (1/γ )1/γ at small γ ; however, the
assumption that the integral in (24) is determined by small x

obviously does not work there.
As independent verification, we computed �(πT ) at a

finite temperature for γ > 3 and indeed found that it di-
verges as T → 0. We show the results in Fig. 4 along with
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FIG. 4. The behavior of �(πT ) vs T for γ = 3.5 and γ = 4. The red dots are numerical results and the blue lines are the scaling forms

� ∼ ( 1
T

)
γ−3

3 .

�(πT ) ∝ (1/T )
γ−3

3 obtained by a straightforward scaling
analysis. We see from Fig. 4 that numerical results reproduce
this behavior quite well.

Combining Tc ≈ g/(2π ) and Eq. (27) we obtain, for γ � 3,

2�

Tc

= 4π

(
�

(
γ

2

)
�

( 3−γ

2

)
√

π

) 1
γ

. (28)

Near γ = 3,

2�

Tc

≈ 4π

(
1

3 − γ

)1/3

. (29)

In Figs. 1, 2, and 3 we show the numerical results for 2�/Tc

in the full range of γ . We see that Tc monotonically decreases
with increasing γ and saturates at Tc = g/(2π ) at large γ ,
while � is nonmonotonic: it diverges at γ → 0 and γ → 3
and has a minimum at γ ≈ 1. The ratio 2�/Tc monotonically
increases with increasing γ and diverges at γ = 3. At γ = 2,
2�/Tc = 8.3, is already quite large, consistent with earlier
works [2,7,9,10]. We see that the large 2�/Tc for γ = 2
reflects the fact that, at this γ , 2�/Tc already accelerates
towards the divergence at γ = 3. If we substitute γ = 2 into
our analytical formula for γ � 3, Eq. (28), we find 2�/T c ∼
12.5, which is larger than the numerical result, but not too far
from it.

V. CONCLUSIONS

In this paper we analyzed the superconducting Tc and the
2�/Tc ratio in a metal at the verge of an instability towards
a spin or a charge order. Near the instability, the dominant
interaction between fermions is the exchange of soft bosonic
fluctuations of spin or charge order parameter. In spatial
dimension D � 3 this interaction gives rise to a non-Fermi-
liquid behavior either on a whole Fermi surface or in hot
regions, but also provides a strong attraction in at least one
pairing channel. We considered a subset of such systems, in
which soft bosons can be regarded as slow modes compared to
electrons, and the pairing can be treated within Eliashberg the-
ory with an effective local interaction χL(�m) = (g/|�m|)γ
(the γ model). The same effective theory emerges for the

pairing between fermions at the half-filled Landau level and
in models studied within DMFT.

The γ model with γ = 2 describes electron-phonon su-
perconductivity in the special limit when Debye frequency
vanishes but fermion-boson coupling g remains finite, i.e.,
the boson-mediated interaction is (g/|�|)2. This problem has
been extensively studied in the past [2,7,9–11]. It was well
established that Tc ≈ 0.18g and �(0) ≈ 0.75g remain finite,
but their ratio 2�/Tc ≈ 8.3 is much larger than in BCS theory.
T.-H. Lee et al. recently analyzed numerically 2�/Tc in the γ

model for γ < 2 [40] and found that the ratio monotonically
increases with increasing γ .

One goal of our work was to provide an explanation for this
increase. We considered a larger range of γ � 3 and found
that 2�(0)/Tc diverges at γ → 3 (Tc remains finite in this
limit, but �0 diverges). We obtained analytical formulas for
Tc and � near γ = 3 and argued that they remain valid in
a relatively wide range of γ < 3. We also computed Tc and
� numerically and found good agreement between analytical
and numerical results.

Another goal of our work was to analyze the opposite
limit of small γ . Here we obtained the exact expressions
for Tc and � with numerical prefactors. We emphasize that,
for any nonzero γ , the normal state self-energy has a non-
Fermi-liquid form at small frequencies, and non-Fermi-liquid
behavior does affect the values of Tc and �.

We offer some words of caution: In our analysis we fo-
cused on the solution of the linearized gap equation with the
highest Tc and on the “conventional” solution of the nonlinear
equation at T = 0, for which �(ωm) is a regular function of
frequency with no sign changes. There exist other solutions
of the gap equation, for which �(ωm) oscillates. For γ < 2,
there is little doubt that the conventional solution with no-
nodal �(ωm) has the largest condensation energy. However,
for γ > 2, it is possible that the largest condensation energy
is for an unconventional solution with oscillating �(ωm).
This would affect the ratio of 2�/Tc. Still, even if this is
the case, our analysis is applicable to γ � 2, and it explains
why 2�/Tc increases with γ . Also, Tc in our analysis is the
onset temperature for the pairing instability. In the absence
of fluctuations it coincides with the actual superconducting
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FIG. 5. Extrapolation procedure for Tc and � (in units of g) for γ = 0.15, 0.2, and 0.25. By extrapolating to N → ∞, we obtained
Tc = 10 500, 243, and 29, respectively, and � = 18 620, 440, and 54.6 respectively. The red lines for �(1/N ) are double exponential fits
(a1e

−α1/N + a2e
−α2/N ).

Tc, but when fluctuations are present the actual Tc,act likely
gets smaller, while our mean-field Tc marks the onset of
pseudogap behavior. Our 2�/Tc should then be understood
as the ratio of the gap at T = 0 to the onset temperature for
pseudogap behavior. And, finally, in our analysis we neglected
the feedback from the gap opening on the form of χL(�) (e.g.,
the development of the resonant peak in the spin-fluctuation
propagator due to the opening of a d-wave or s+− gap). Within
the γ model this last effect can be dured by allowing γ to vary
with T below Tc towards a smaller value.
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APPENDIX

1. Details of numerical calculations at small γ

The results of numerical calculations of Tc and � at small
γ are presented in the insets in Figs. 1 and 2. The analysis
requires care, as at small γ the numerical results depend on the
number of Matsubara points N , and to obtain reliable results
one should properly extrapolate to N = ∞. We solved the lin-
earized gap equation on sets of N = 4000, 8000, and 16 000,
identified Tc with the temperature when the largest eigenvalue
crosses 1, and extrapolated the results to N = ∞. We show
the extrapolation procedure in Fig. 5(a). In our calculation
of �(πT ) as the solution of the nonlinear gap equation, we
used the fact that � rather quickly saturates below Tc, set
the temperature to be 0.3Tc, computed �(πT ) for N = 4000,
8000, 16 000, 20 000, and 30 000 Matubara points, and then

extrapolated to N = ∞. We show the extrapolation procedure
in Fig. 5(b).

2. The calculation of Tc at small γ to order O(γ 2 )

In this subsection we extend our analysis from Sec. III A to
include terms of next order in γ . The specific goal here is to
understand whether corrections there are small for γ = 0.2,
which is the smallest γ for which the comparison between
analytic and numerical data is possible.

The calculations follow the same path as the ones we re-
ported in Sec. III A in the main text, i.e., we write � as the sum
of partial components �n = (1/|n + 1/2|γ )

∑∞
p=0 ap/|n +

1/2|γp, as in Eq. (7), obtain recursive relations for ap, and
obtain Tc from a self-consistent equation on Z = KT /γ =
[g/(2πT )]γ /γ . However, now at each step we extend the
analysis to next order in γ . We skip the details of the cal-
culations and report the results. The recursive relations are

ap = −Zap−1

(
1

p!(p + 1)!
+ γ ∗

)
, (A1)

where γ ∗ = γ (1 + 0.165γ ). The self-consistent condition on
Z is

1

Z
=

∞∑
p=0

ap

(
1

p + 1
+ γ log 4eC + 1.353γ 2(p + 1)

)
. (A2)

The solution of the recursive relation (A1) to order γ 2 is

ap = (−Z)p
(

1

p!(p + 1)!
+ γ ∗ p + 2

3p!(p − 1)!

+ γ 2 bp

90(p + 1)!(p − 2)!

)
, (A3)
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where

bp = 6 + 31p + 16p2 + 26p3 + 5p4. (A4)

The last term in the self-consistency equation (A2) is already
of order γ 2, and it can be computed using the leading, γ -
independent terms in ap. The corresponding sum over p

reduces to
∞∑

p=0

(−Z)p

(p!)2
= J0(2

√
Z). (A5)

At T = Tc, J0(2
√

Z) is by itself of order γ , hence this term
is actually of order γ 3 and can be neglected. Evaluating the

remaining sums analytically and numerically,

J0(2
√

Z) = γ log 4eC
√

ZJ1(2
√

Z)

− γ

3
(Z3/2J1(2

√
Z)+ZJ2(2

√
Z))−0.30246γ 2.

(A6)

The solution of (A6) to order γ 2 is

Z = Z0(1 − γ log 3.15265 + 0.036γ 2), (A7)

where we remind that Z0 = 1.4458 is the smallest solution
of J0(2

√
Z) = 0. We see that the γ 2 term has a very small

prefactor. Hence the critical value of KT is only weakly
affected by the O(γ )2 term.
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