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The search for and understanding of low-dimensional magnetic materials is essential for both fundamental
and technological purposes. Here we propose a combined experimental and theoretical investigation of such
a system, namely the monoclinic phase of SeCuO3. This low-dimensional spin- 1

2 antiferromagnet appears to
be based on two decoupled magnetic subsystems which respond differently to applied magnetic field in the
antiferromagnetic phase. From our results we are able to propose a zero-field magnetic structure as well as a
more exotic finite magnetic field structure, to be tested by future experiments. This finding is based on torque
magnetometry measurements on the one side, and the use of a refined phenomenological model and state-of-
the-art density functional theory calculations on the other. The existence of such systems opens a way to very
exciting physics with the possibility to control separately two magnetic subsystems in one material.
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I. INTRODUCTION

Low-dimensional spin systems represent a fertile ground
to study the influence of quantum effects on the formation
of exotic states of matter [1]. Zero-dimensional (0D) sys-
tems, in particular, are of significance since simple finite
lattices represent an interesting playground for theoretical
investigations, while at the same time, 0D magnetic lattices
can be found in real materials allowing the theory to be
tested.

The simplest example of a 0D system is a spin dimer
consisting of two spins coupled by the exchange energy J .
The two allowed states are singlet and triplet separated by
an energy gap J and the ground state is determined by the
sign of J (antiferromagnetic or ferromagnetic coupling). In
real materials small but finite interactions between the 0D
units result in cooperative behavior and most often lead to a
long-range magnetic ordering. Magnetic order combined with
the quantum effects of underlying 0D magnetic units results in
exotic phase diagrams where different phases can be obtained
by tuning the relative strength of the exchange couplings.
A well studied example with a rich phase diagram is the
Shastry-Sutherland model consisting of orthogonal dimers
coupled by frustrated interdimer interaction [2]. Both spin
singlets and long-range antiferromagnetic order can be found
as ground states, depending on the ratio between intradimer
and interdimer interaction [3].

Another example of a 0D system is a spin tetramer where
four spins Sa , Sb, Sc, and Sd interact forming a 0D magnetic
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unit with a slightly more complex excitation spectrum than
found in a spin dimer [4]. When the coupling between spins
Sa and Sb is equal to the coupling between spins Sc and Sd ,
the spin Hamiltonian can be written as

H = J12 (Sa · Sb + Sc · Sd ) + J11 (Sb · Sc ). (1)

An interesting limit for the spin tetramer occurs when the
coupling J11 between the two spins in the middle, Sb and
Sc, is antiferromagnetic (AFM) and much stronger than the
coupling J12 of spins in the middle, Sb and Sc, with spins
on the sides of the tetramer, Sa and Sd (see Fig. 1). In this
case Sb and Sc are expected to form a singlet state which
persists in the background of weakly connected paramagnetic
spins Sa and Sd . At low temperatures weak intertetramer
interactions can lead to a long-range magnetic order. When
this happens, the question arises as to whether singlet states
are broken or whether they persist as singlets in the back-
ground of long-range magnetically ordered spins Sa and Sd .
The latter scenario was proposed by Hase et al. for the spin
tetramer system CdCu2(BO3)2, based on high-field magne-
tization measurements [5], and it was recently confirmed by
nuclear magnetic resonance (NMR) and zero-field muon spin
relaxation (ZF-μSR) [6]. This opens up a possibility to study
new types of quantum spin systems where exotic behavior
may be tuned by the ratio of intratetramer and intertetramer
interactions. In order to better understand how this type of
ordering emerges it is important to find and study new systems
which might host such exotic behavior. SeCuO3, studied in
this work, is in many aspects similar to CdCu2(BO3)2 and
thus represents an ideal candidate to study site-selective spin
correlations [7], especially since, unlike for the latter, high-
quality single crystals are available.
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FIG. 1. Two magnetically inequivalent tetramers in SeCuO3 as
proposed in Ref. [7]. Cu1 atoms are shown in orange color, Cu2 in
blue, and O atoms in red. Se atoms are not shown for simplicity.

SeCuO3 crystals belong to the monoclinic space group
P 21/n with unit cell parameters a = 7.712 Å, b = 8.238 Å,
c = 8.498 Å, and β = 99.124◦ [8]. Two crystallographically
inequivalent copper sites, Cu1 and Cu2, are present in the
monoclinic phase of SeCuO3, each surrounded by six oxygen
ligands forming a Jahn-Teller distorted elongated CuO6 octa-
hedron [8]. This ligand configuration suggests a dx2−y2 orbital
state for the unpaired copper spin S = 1

2 . Taking into account
the local environment of the magnetic ion Cu2+, it was pro-
posed in Ref. [7] that quasi-isolated linear spin tetramers Cu2-
Cu1-Cu1-Cu2 are present in SeCuO3 (see Fig. 1). The tem-
perature dependence of the magnetic susceptibility, however,
does not seem to support the simple tetramer model [7,9,10].
The temperature dependence of the electron g tensor accom-
panied by the rotation of the macroscopic magnetic axes in
a paramagnetic state [7,10] was attributed to site-selective
spin correlations. The nuclear spin-spin relaxation rate 1/T2

obtained from NMR unveiled the development of site-specific
spin correlations [11]. A recent nuclear quadrupole resonance
(NQR) study proposed that Cu1 spins are strongly coupled
forming a spin singlet state at temperatures T < J11 ≈ 200 K
[12].

Below TN = 8 K, SeCuO3 exhibits a long-range AFM
order [7,10–12]. Temperature dependence of the magnetic
susceptibility anisotropy below TN , in low magnetic field,
is typical for uniaxial antiferromagnets [7,10]. A spin-flop
transition is observed around HSF ≈ 1.8 T at T = 2 K when
the magnetic field is applied along the easy axis [7]. The
high-field magnetization measurements show the existence of
a half-step magnetization plateau [11], similar to what was
found in the previously mentioned CdCu2(BO3)2 compound
where the plateau emerges from the polarization of weakly
coupled Cu2 spins while Cu1 dimers remain in the singlet
state [5]. The 77Se NMR measurements reveal a different
temperature dependence of the Cu1 and Cu2 spin-spin relax-
ation rate 1/T2 in the AFM state of SeCuO3 which could be
the signature of two subsystems, one consisting of strongly
coupled Cu1 dimers and another of weakly coupled Cu2
spins [11]. The difference of Cu1 and Cu2 magnetic sites is
also observed in neutron powder diffraction measurements
which give mCu1 ≈ 0.35 μB and mCu2 < 0.8 μB at 1.5 K
with a smaller value for the Cu1 site confirmed by NQR
[12]. Magnetic structure from neutron powder diffraction was

found to be noncollinear [12]. All these observations confirm
that SeCuO3 has an unconventional AFM ground state and
thus represents an ideal new host to study exotic magnetic
behavior influenced by quantum phenomena.

In this work we experimentally probe the magnetic
anisotropy of the AFM state in SeCuO3 using torque mag-
netometry measurements in magnetic fields H � 5 T which
are significantly higher than the spin-flop field HSF ≈ 1.8 T.
This allows us to determine the magnetocrystalline anisotropy
energy (MAE) of SeCuO3 as well as to observe field-
induced spin reorientation. We complete the description of the
MAE by a theoretical investigation based on first-principles
calculations.

This paper is organized as follows. In Secs. II A and II B
we give a brief overview of the experimental and theoret-
ical methods used in this work. In Sec. III A the results
of torque measurements are presented. An analysis of the
torque data using a phenomenological model is presented
in Sec. III B, and the density functional theory results are
given in Sec. III C. The obtained experimental and theoretical
results are discussed in Sec. IV. Finally, Sec. V is dedicated to
concluding remarks.

II. METHODS

A. Experimental

Single crystals of monoclinic SeCuO3 have been grown by
a standard chemical vapor phase method, as described in the
literature [7].

The magnetic torque was measured by a home-built cali-
brated torque apparatus based on the torsion of a thin quartz
fiber. The magnetic field was supplied by a Cryogenic Con-
sultants 5 T split-coil superconducting magnet with a room-
temperature bore. The quartz sample holder is placed in a
separate cryostat which is mounted in the room-temperature
bore of a magnet cryostat. The monitoring and control of the
sample temperature were performed using a Lakeshore 336
temperature controller. For magnetic torque measurements a
single crystal of mass (246 ± 8) μg was used with the b axis
parallel to the longest crystal axis and with the two crystal
planes, (1 0 1) and (1 0 1), easily distinguishable.

B. Theory

The present calculations are based on the spin-polarized
density functional theory as implemented in the WIEN2k
package [13] using a full potential linear augmented plane
wave method. The Perdew-Burke-Ernzerhof approximation
(PBE) [14] is considered for the exchange and correlation
part. A Hubbard effective term within the Anisimov approach
[15] was used to describe the Cu 3d orbitals more properly,
allowing us to obtain magnetic moments for the copper sites
close to 0.73 μB . We also checked our calculations consid-
ering the on-site PBE0 hybrid functional [16], giving similar
results. The RMT muffin-tin radii for Se, Cu, and O atoms were
set to 1.65, 1.96, and 1.49 bohrs and the RKmax to 6. The
separation between valence and core states was set to −6 Ry,
except for the calculations including zinc atoms (set to −8 Ry,
with RMT = 1.96 bohrs). The Brillouin zone sampling was
done using a 5 × 4 × 4 k mesh [17].
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III. RESULTS

A. Experimental results

For a simple collinear uniaxial antiferromagnet in low
magnetic field H � HSF, the magnetization is linearly de-
pendent on the magnetic field. Consequently, the angular
dependence of the measured component of magnetic torque
τz is then described by the expression

τz = τ0 sin(2ϕ − 2ϕ0), (2)

where amplitude τ0 is given by

τ0 = m

2Mmol
�χxyH

2. (3)

m is the mass of the sample, Mmol is the molar mass, and H is
the magnitude of the applied magnetic field. �χxy = χx − χy

is the magnetic susceptibility anisotropy in the xy plane in
which the magnetic field rotates. x and y are, respectively, the
directions of the maximal and minimal susceptibility compo-
nents in the plane of measurement. ϕ is the goniometer angle
and ϕ0 is the angle at which the field is parallel to x. Equations
(2) and (3) show that, in the case of a linear response, the
magnetic torque is proportional to H 2 and �χ and the angular
dependence of the torque is a sine curve with a period of 180◦.
The previously published low-field (H � 0.2 T) torque data
[10] in both paramagnetic and antiferromagnetic states are
well described by Eqs. (2) and (3).

The magnetic torque was measured in the AFM state at
T = 4.2 K by rotating the magnetic field in three crystal
planes: the ac plane, the plane spanned by the b and [1 0 1]∗
axes, and the plane spanned by the b and [1 0 1]∗ axes. The
angular dependence of the torque for these three planes is
shown in Fig. 2. It can be readily observed that the measured
torques for the ac plane and the plane spanned by the b and
[1 0 1]∗ axes [Figs. 2(a) and 2(c), respectively] are not regular
sine curves and cannot be described by Eq. (2). The deviation
of the torque curves from Eq. (2) is the most pronounced in
the ac plane for H = 2 T, which is close to the spin-flop field
HSF ≈ 1.8 T [7]; see Fig. 2(a). Moreover, the amplitude of
torque for these two planes does not increase linearly with
H 2, which is shown for the ac plane in Fig. 2(b). The low-field
behavior is well represented by the dashed line with the slope
given by (m/2)Mmol�χxy [see Eq. (3)] with �χ obtained
from the low-field measurements [10]. The deviation from the
low-field behavior is observed already for H � 1.5 T. The H 2

dependence is restored for H � 2 T, but with a much smaller
slope which, according to Eq. (3), corresponds to a weaker
susceptibility anisotropy �χ . Finally, Fig. 2(d) shows the
torque data multiplied by 2Mmol/(mH 2) for the plane spanned
by the b and [1 0 1]∗ axes. For this plane, all the curves
are superimposed upon one another, as predicted by Eqs. (2)
and (3).

The observed deviation of the torque curves from Eq. (2)
is a signature of the spin reorientation (i.e., reorientation of
the Néel vector) which appears when the applied magnetic
field is comparable to or greater than the spin-flop field
HSF. In the plane spanned by the b and [1 0 1]∗ axes [see
Fig. 2(d)] measured curves follow Eq. (2), so we can conclude
that the reorientation seems to be confined to the ac plane
and the plane spanned by the b and [1 0 1]∗ axes. The spin

 

τ
τ

FIG. 2. Angular dependence of torque τ measured in three crys-
tal planes in different magnetic fields. (a) The torque measured in
the ac plane. (b) Full symbols: The dependence of torque ampli-
tude τ0 on H 2 in the ac plane [see (a)]. Solid line is fit to the
experimental data for H > HSF. Dashed line represents expected
H 2 dependence of the torque amplitude for an antiferromagnet with
no reorientation (extrapolation of H � HSF data using Eq. (3) and
low-field anisotropy data [10]). Empty symbols represent simulation
(see Sec. III B). (c) Angular dependence of torque measured in the
plane spanned by b and [1 0 1]∗ axes, and (d) the plane spanned by
b and [1 0 1]∗ axes. In (d) the torque is multiplied by 2Mmol/(mH 2)
resulting in practically the same curve for all applied fields. This is
consistent with no reorientation of spins in this plane [see Eq. (2)].
The angles corresponding to the specific crystal directions are
pointed by arrows.

reorientation in the antiferromagnet can be easily simulated
using phenomenological magnetocrystalline anisotropy en-
ergy, as we will show in Sec. III B. However, this simple
model cannot reproduce the finite slope of the torque am-
plitude observed in Fig. 2(d) but rather predicts a field-
independent amplitude [open squares in Fig. 2(d)]. We will
show that in order to reproduce the measured curves, it is
necessary to assume two decoupled subsystems and a site-
specific spin reorientation in SeCuO3, which is the main result
of our work.

B. Phenomenological model of spin reorientation in SeCuO3

The spin reorientation in a collinear antiferromagnet in a
finite applied magnetic field was first proposed by Néel in
1936 [18,19], who observed that the competition between
the orientation of spins, defined by the magnetocrystalline
anisotropy energy (MAE), and the orientation preferred by the
Zeeman energy results in a reorientation of spins, i.e., the Néel
vector which minimizes the total energy.

The MAE determines the spin orientation in the absence
of a magnetic field (easy axis direction), while Zeeman
energy for an antiferromagnet is minimal when spins are
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perpendicular to the applied magnetic field. Depending on
the magnitude and direction of the applied field, spins will
be oriented in such a way to minimize the total energy while
still maintaining an almost collinear AFM structure since
the superexchange energy is much larger than the anisotropy
energy. When magnetic field is applied along the easy axis,
the spins reorient perpendicularly to the magnetic field when
the field reaches a critical value HSF, called the spin-flop
field. The magnitude of the spin-flop field depends on the
magnitude of the MAE, as well as the magnetic susceptibility
anisotropy [20]. Spin-flop transitions were observed in many
antiferromagnets and studied in detail in the literature (see,
e.g., Ref. [21] and references therein).

A simple phenomenological approach can be used to study
field-induced spin reorientation in antiferromagnets with dif-
ferent symmetries. Specifically, torque magnetometry mea-
surements can be employed to determine the MAE shape and
also to study the spin axis reorientation in a finite magnetic
field for uniaxial antiferromagnets [22], as well as antiferro-
magnets with higher symmetries and multiple antiferromag-
netic domains [23,24]. The same approach is used in this work
to determine the MAE shape and the spin reorientation in
finite magnetic fields in the AFM state of SeCuO3.

The total phenomenological energy Ftot of the sample in a
finite magnetic field is the sum of MAE Fa (θ, φ) and Zeeman
term FZ (ψ, ξ, θ, φ):

Ftot (θ, φ,ψ, ξ ) = Fa (θ, φ) + FZ (ψ, ξ, θ, φ). (4)

In the following we use the coordinate system spanned by
the magnetic eigenaxes in the AFM state below ≈ 6 K,
([1 0 1]∗, [1 0 1], b), determined previously [10] and con-
firmed in this work. Coordinates θ and ψ represent polar and
φ and ξ azimuthal angles in a spherical coordinate system
defined with respect to the ([1 0 1]∗, [1 0 1], b) coordinate
system. The simplest expression for MAE in the chosen
coordinate system is [25]

Fa (θ, φ) = K0 + K1 sin2 θ sin2 φ

+K2[(1 + cos2 φ) sin2 θ − 1], (5)

where θ and φ are the polar and azimuthal angles (see Fig. 3),
and K1 and K2 are the anisotropy constants expressed in units
of erg/mol. Second-order terms to the anisotropy energy Fa ,
written in Eq. (5), are sufficient to study the reorientation of
the spin axis in a finite magnetic field, as long as we do not try
to describe the critical behavior in magnetic fields very close
to HSF [21].

Equation (5) describes the amount of energy needed to
rotate the spin axis away from the easy axis direction. De-
pending on the value and sign of the anisotropy constants K1

and K2, the anisotropy energy (5) can have several different
shapes allowed by symmetry. Our previous as well as current
results show that the b axis is the hard axis, while [1 0 1]∗
and [1 0 1] are the easy and intermediate axes, respectively.
This puts the following constraints on the MAE (5) constants:
K2 < 0 and K2 < K1. The resulting experimental MAE found
in this work is shown in Fig. 3.

The Zeeman energy in Eq. (4) is given by

FZ (ψ, ξ ) = − 1
2 H(ψ, ξ ) · χ̂ · H(ψ, ξ ), (6)

FIG. 3. The MAE shape in SeCuO3 obtained from the torque
measurements in this work. Red lines represent the magnetic axes
which are also extrema of the anisotropy energy. Easy axis direction
(a global minimum) is along the 〈1 0 1〉∗

axis. Polar and azimuthal
angles θ and φ used in the spherical coordinate system throughout
the paper are also shown, as well as the ψ and ξ defining the direction
of magnetic field H .

where H(ψ, ξ ) is the applied magnetic field and here χ̂ is the
magnetic susceptibility tensor of the sample expressed in the
same coordinate system as the MAE (5). ψ and ξ are polar and
azimuthal angles representing the direction of the magnetic
field H = H (cos ξ sin ψ, sin ξ sin ψ, cos ψ ) and are defined
as shown in Fig. 3.

In zero and very low magnetic fields the susceptibility
tensor χ̂ in the chosen coordinate system spanned by magnetic
eigenaxes is given by

χ̂0 =
⎡
⎣χ[1 0 1]∗ 0 0

0 χ[1 0 1] 0
0 0 χb

⎤
⎦. (7)

In finite magnetic field, the spin axis, i.e., the Néel vector, will
in general start to rotate away from the direction of the easy
axis in order to minimize the total energy (4). We describe this
rotation by allowing the susceptibility tensor to rotate:

χ̂ (θ, φ) = R(θ, φ) · χ̂0 · RT (θ, φ), (8)

where χ̂0 is the low-field (H � HSF) susceptibility tensor
given by expression (7) and R(θ, φ) is the rotation matrix. Our
torque measurements were performed at T = 4.2 K where
χ[1 0 1]∗ = 4 × 10−4 emu/mol, χ[1 0 1] = 3.5 × 10−3 emu/mol,
and χb = 3.8 × 10−3 emu/mol [7,10].

Having defined all the ingredients of the total energy
(4), we can proceed to simulate our experimental results.
For an anisotropic antiferromagnetic sample placed in finite
magnetic field H(ψ, ξ ), the new direction of the spin axis,
i.e., the Néel vector, is obtained numerically by minimizing
the total energy Ftot with respect to θ and φ. To simulate
the experimental results we start by finding K1 and K2

values which satisfy the above mentioned requirements for
the MAE extrema. A correct choice of values must repro-
duce the experimental HSF value of approximately 1.8 T at
T = 2 K when the magnetic field is applied along the easy
axis. In the present case, the spin-flop field is given by
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FIG. 4. A simulation of the magnetization dependence on mag-
netic field when H is parallel to the easy axis compared to the
experimental result at T = 2 K published in Ref. [7] (empty blue
squares). Inset: The dependence of the spin axis direction on applied
magnetic field obtained from simulation. Simulation 1 allows all
spins to rotate simultaneously. Simulation 2 allows only a fraction
of the spins to rotate, as described in the main text. Solid red line
(2a) represents the result for H ‖ easy axis, while dashed line (2b)
simulates a misorientation of the sample by 10◦, to mimic probable
misorientation in our experiment.

HSF = [2(K1 − K2)/(χ[101] −χ[101]∗ )]1/2 [21,26]. The choice
which gives K2 − K1 = −6.35 × 105 erg/mol gives HSF =
1.87 T for values of the susceptibility tensor measured at
T = 2 K [10], well within the experimental margin of error.

Next we proceed by applying magnetic field H(ψ0, ξ0)
in the direction defined by (ψ0, ξ0) and find the values of
(θ0, φ0) which minimize the total energy (4). This allows us
to calculate a rotated susceptibility tensor (8) and finally the
magnetization from M = χ̂ (θ0, φ0) · H(ψ0, ξ0).

To test our approach we first simulate the experimental
magnetization curve for field applied along the easy axis
direction. The resulting curve (simulation 1), shown by the
solid black line in Fig. 4, is compared to the measured values
from Ref. [7] represented by empty blue squares in Fig. 4.
The spin-flop transition is clearly observed at HSF = 1.87 T
in the calculated curve. From our simulation we obtain the
accompanying direction of the spin axis, i.e., the Néel vector
which is shown in the inset of Fig. 4. The spins flop from
the easy axis direction for H < HSF to the intermediate axis
direction H > HSF. However, for H > HSF, the calculated
magnetization values (solid black line in Fig. 4) are somewhat
larger than the measured ones (empty blue squares) and in fact
fall on values obtained for magnetization measured along the
intermediate and the hard axes (empty green triangles and red
circles in Fig. 4). This points to the anomalous behavior of
spin reorientation in SeCuO3, a point to which we will return.

Next, we simulate the measured torque curves in a similar
manner, by rotating the magnetic field, as in experiment,
while repeating the minimization procedure. The torque is
calculated from the obtained magnetization and applied field
for each value and direction of magnetic field using τ =

FIG. 5. The torque measured in the ac plane in different mag-
netic fields compared to two different simulations, as described in
the main text. (a) A simulation with reorientation of all spins. (b)
A simulation allowing the site-specific reorientation. Bottom right
panel: The angle-dependent reorientation of the spin axis obtained
from the simulation shown in the laboratory coordinate system.
Double-headed arrow represents the direction of the spin axis, i.e.,
the Néel vector. In the case of partial spin reorientation (see text) the
plotted arrows correspond to subsystem 2 while for subsystem 1 the
spin axis remains in the easy axis direction. The plane of rotation of
the magnetic field is shown as a dark square in the accompanying
coordinate system. The angle is measured with respect to the [1 0 1]∗

axis, while in other panels a goniometer angle is shown.

(m/Mmol)M × H, where m is the mass and Mmol the molar
mass of the sample. The torque experiment was performed at
4.2 K. The experimental value of HSF is the same at T = 4.2 K
as at 2 K, within the experimental uncertainty [7]. Since
the susceptibility tensor components are slightly different at
4.2 K, we need to take K1 − K2 = 5.42 × 105 erg/mol in
order to reproduce HSF ≈ 1.87 T at T = 4.2 K.

The angular dependence of the torque in the ac plane
obtained by simulation is compared to experimental results in
Fig. 5. The simulations agree very well with the measurements
for H � 2 T. However, at higher magnetic fields the calcu-
lated curves have smaller amplitude than the experimental
curves, and the discrepancy increases as the field increases.
One possible reason for the observed discrepancy could be
lowering of the symmetry which would allow a different MAE
shape. This, however, is not supported by our experiment (see
tensor (7) in agreement with symmetry requirements [27]) nor
by neutron diffraction experiment [12]. Large misorientation
of the sample could account for the observed deviations;
however it was not realized in experiment.
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In Fig. 2(b) we already compared the experimental and
calculated results for torque amplitude. Independence of the
torque amplitude from magnetic field for H � HSF, obtained
from our calculation, is also observed in the torque experiment
for conventional spin reorientation in uniaxial collinear anti-
ferromagnets [26,28] and is in agreement with the results of
Néel [18,19]. In our experiment τ0 ∝ H 2 both in low magnetic
field and for H � 2 T [see Fig. 2(b)], but the slope is much
smaller in higher field. This can be interpreted as if only a
fraction of spins reorient in applied magnetic field, while the
rest continue to exhibit the low-field behavior. The slope of
linear curves in Fig. 2(b) is proportional to the susceptibility
anisotropy �χ in the plane of measurement [see Eq. (3)].
Taking this into account we obtain for the ratio of the high-
field and low-field amplitudes �χHF/�χLF = 0.22.

Following the assumption that only part of the spins re-
orient in finite magnetic field we attempt to obtain a better
agreement between experiment and simulation by dividing the
susceptibility tensor into two parts,

χ̂ = χ̂1 + χ̂2. (9)

In experiment only the macroscopic total tensor χ̂ is mea-
sured, so we make an assumption that there are two subsys-
tems which both participate in the long-range AFM order and
we construct their susceptibility tensors from χ̂0:

χ̂1 = n χ̂0, χ̂2 = (1 − n) χ̂0, (10)

where χ̂0 is given by Eq. (7). Following the result of Ref. [12]
which claims that the magnetic moments on different Cu
sites are different, we allow different weights for χ̂1 and
χ̂2. The expression (10) is written under the assumption
that both tensors share the same magnetic eigenaxes. The
parameter n describes the contribution of χ̂1 to χ̂0, i.e., the
induced magnetization of subsystem 1 to the total induced
magnetization M = M1 + M2 = (χ̂1 + χ̂2) · H. The spins of
subsystem 1 do not reorient in finite magnetic field, while
those of subsystem 2 do, so the rotation matrix in Eq. (8) acts
only on χ̂2 and HSF = [2 (K1 − K2)/�χ2]1/2, where �χ2

represents the susceptibility anisotropy of subsystem 2 [see
Eq. (10)]. To reproduce HSF = 1.87 T at T = 2 K we set
K1 − K2 = 4.95 × 105 erg/mol and n = 0.22. The resulting
simulated magnetization for these parameters is shown in
Fig. 4 (simulation 2a). The spin-flop transition is sharp, as
expected for a perfect orientation of the sample. Furthermore,
our calculation now reproduces the measured magnetization
values in all applied fields. Including a possible misorientation
in the simulation (less than 10◦) we obtain the dashed red
curve (simulation 2b) in Fig. 4, in perfect agreement with
experiment.

Torque curves calculated using assumption (10) for sep-
arate subsystems are shown by solid lines in Fig. 5.
Curves were obtained using the following set of parameters:
K1 = −0.6 × 105 erg/mol and K2 = −4.83 × 105 erg/mol
at 4.2 K [29] and n = 0.22. The value of n agrees perfectly
with the ratio of high and low field susceptibility anisotropies
�χHF/�χLF we obtained from analysis of torque amplitudes
for H below and above the spin-flop field [see Fig. 2(b)]. The
corresponding magnetocrystalline anisotropy energy is shown
in Fig. 3.

In Fig. 6 we compare the torque measurements for a
magnetic field rotating in the plane spanned by b and [1 0 1]∗

FIG. 6. The torque measured in the plane spanned by b and
[1 0 1]∗ axes compared to the results of simulation, as described in
the main text. Dotted lines represent a perfect orientation (2a), and
solid lines simulate a slightly misoriented sample (2b). Only site-
specific simulation is shown. Bottom right panel: Angle-dependent
spin axis reorientation for perfect orientation of the sample shown in
the laboratory coordinate system. Double-headed arrow represents
the direction of the spin axis, i.e., the Néel vector. In the case of
partial spin reorientation (see text) plotted arrows correspond to
subsystem 2 while for subsystem 1 the spin axis remains in the easy
axis direction. The plane of rotation of the magnetic field is shown
as a dark square in the accompanying coordinate system. The angle
is measured with respect to the b axis, while in other panels the
goniometer angle is shown.

axes with the simulation in the plane spanned by easy and hard
axes. Sharp transitions are expected in the case of a perfect
orientation (dashed curves) while a simulation with a small
misorientation (solid lines) gives a better agreement with the
experiment. In the bottom right panel of both Fig. 5 and Fig. 6
we plot the reorientation of the spin axis corresponding to
the torque curves obtained from our simulation for different
fields. Finally, in Fig. 7 we see an excellent agreement be-
tween experimental and simulated data for the plane spanned
by the b and [1 0 1]∗ axes.

C. Magnetic properties estimated from density
functional theory

In parallel with our experimental investigations of the mag-
netic anisotropy of SeCuO3, we have carried out density func-
tional theory (DFT) calculations including spin-orbit coupling
(SOC), using a similar strategy to the one we considered for
the low-dimensional magnetic compound CuO [30]. Indeed,
we demonstrated that the estimation of the MAE of CuO,
considering its antiferromagnetic ground state, allows us to
properly predict its easy axis of magnetization. In contrast to
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FIG. 7. The torque measured in the plane spanned by b and
[1 0 1]∗ axes compared to the results of the site-specific simulation
(sim.), as described in the main text.

CuO, spin fluctuations seem to play a major role in SeCuO3

magnetic properties. Živković et al. have already pointed
out the possibility to observe these quantum fluctuations in
SeCuO3, and evoked a possible difference of the magnetic
moment values between the Cu1 and Cu2 sites [7]. More
recently, Lee et al. mentioned that the site-specific spin corre-
lation may be explained by considering two subsystems based
on strongly coupled Cu1 dimers and weakly interacting Cu2
spins [11]. They conclude that such a scheme will lead to
smaller ordered magnetic moments for Cu1 than for Cu2 due
to singlet fluctuations. Also, the reduced ordered magnetic
moment of Cu1 sites has been confirmed based on the neutron
powder diffraction and NQR measurements [12]. However,
none of the magnetic models proposed so far explain all the
experimental measurements. It is thus essential to provide a
theoretical basis to clarify the present picture.

Our previous investigation, based on magnetic susceptibil-
ity measurements, leads to the conclusion that the Cu2-Cu1-
Cu1-Cu2 tetramer is based on two antiferromagnetic cou-
plings, namely J11 = 225 K and J12 = 160 K [7]. The mag-
netic anisotropy energy (MAE) has then been estimated for
the AF1 ground-state magnetic structure [shown in Fig. 8(a)],

FIG. 8. (a) Antiferromagnetic order considered in our DFT cal-
culations. The Cu2+ sites are depicted as filled and empty circles,
representing up-spin and down-spin, respectively. (b) Orbital mo-
ment of one tetramer. Red and blue colors show the maximum and
minimum of the orbital moment, respectively. The arrow on the right
side shows the vector sum of orbital moments represented by brown
and blue vectors on Cu1 and Cu2 sites, respectively.

FIG. 9. (a) Experimental MAE. (b) Contributions MAE1
(MAE2) to the total MAE (top) determined substituting Cu2 (Cu1)
by Zn atoms and considering a Ueff = 5 eV correction for Cu sites.

using the code WIEN2k with the GGA+U and PBE0 hy-
brid functionals and including the spin-orbit coupling. MAE
corresponds to an energy difference between two directions
of the magnetization density. Because the present compound
is monoclinic, the [010] direction is one of the magnetic
eigenaxes. It has thus been chosen as the reference of the
energies for the calculation of the MAE values:

MAE = E[uvw] − E[010]. (11)

E[uvw] is the energy deduced from the spin-orbit calcula-
tions with magnetization along the [uvw] crystallographic
direction. All our results have been crosschecked using the
GGA+U calculations within the VASP code. It leads to
exactly the same MAE values as the ones deduced from
the WIEN2k collinear calculations. We have also realized
noncollinear magnetic calculations in VASP which confirm
the so-obtained magnetic eigenaxes. Thus, we have generated
an antiferromagnetic order noted AF1 shown in Fig. 8(a)
respecting these conditions, which has been used to estimate
the MAE of SeCuO3 with the WIEN2k code.

SOC is included as a perturbation of the antiferromagnetic
collinear state, leading to an energy lowering given by

�ESOC = |〈i|ĤSOC|j 〉|2
|εi − εj | , (12)

which accounts for an interaction between an occupied state i

with an energy εi and an unoccupied state j with an energy
εj via the matrix element 〈i |ĤSOC|j 〉. The resulting MAE
is represented in Fig. 9(b), showing a uniaxial anisotropy
along the b direction, while the hard axis is in the ac plane.
A similar result is observed considering the on-site PBE0
hybrid functional. To be more quantitative, Table I gathers
the MAE values for the magnetic eigenaxes of the AFM state
(below T = 6 K), deduced from torque measurements and
highlighted in Fig. 3. The MAE values are expressed relatively
to the MAE in the [0 1 0] crystal direction.

First of all, we have tested two different functionals,
i.e., GGA+U and the on-site PBE0 hybrid. It appears that
GGA+U with Ueff = 5 eV leads to MAE values similar to
the ones obtained with PBE0. The difference between the
easy axis (along b) and the two other directions is about
10 μeV/f.u. If we consider a larger correction (Ueff = 9 eV),
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TABLE I. MAE values (μeV/f.u.) for the magnetic eigenaxes of
the AFM state, obtained with PBE0, GGA+U with Ueff = 9 and 5 eV
(noted 9 and 5, respectively), or by substituting zinc for copper (noted
Zn). Directions [1 0 1]

∗
and [1 0 1] represent easy and intermediate

axes obtained from experiment. MAE values are given considering
the [010] magnetization direction as the reference of the energies.

UCu1
eff /UCu2

eff [1 0 1] [1 0 1]
∗

9/9 4 5
9/Zn −2 −1
Zn/9 5 9
5/5 9 9
5/Zn −4 −2
Zn/5 11 19
PBE0/PBE0 11 14

as in Ref. [31] for SrCu2(BO3)2, the MAE values are reduced
by a factor of two, but the trend is conserved; i.e., b is
still predicted to be the easy axis in disagreement with the
experimental facts. To understand this discrepancy, we first
consider the Bruno relation [32]. According to this model,
which is based on the SOC perturbation expression of Eq. (12)
and ignoring spin-flip terms, the MAE is directly proportional
to the orbital moment anisotropy

MAE = Ehard − Eeasy = ξ

4
|〈Lz〉hard − 〈Lz〉easy|, (13)

where 〈Lz〉 is the orbital angular momentum. The 〈Lz〉 term
in Eq. (13) is shown in Fig. 8(b) for the four copper sites of
one tetramer. For clarity, arrows highlight the direction for
which the orbital momentum is maximum, pointing along the
normal of each CuO4 plaquette. Summing the orbital moment
of all copper sites leads to a total orbital moment which is
maximal along the b direction. Thus, arguments based on both
orbital moments and total energy lead to the same conclusion,
i.e., an easy axis along the b direction, in contradiction to the
experimental data. It should be noticed that as expected for a
spin- 1

2 system, the dipolar contribution is negligible, less than
0.7 μeV/f.u.

In addition, the present DFT calculations cannot reproduce
another experimental fact which is the different magnetic
moments at Cu1 and Cu2 sites, 0.46 and 0.73 μB , respec-
tively, from NPD [12]. Indeed, DFT gives similar magnetic
moments for Cu1 and Cu2, i.e., 0.84 and 0.75 μB considering
Ueff = 9 and 5 eV, respectively. While Ueff = 5 eV allows us
to properly describe the magnetic moment of Cu2, it cannot
explain the reduced value obtained from experiment for Cu1.
Such a feature appears to be related to the fact that, as
in CdCu2(BO3)2, Cu1 ions form strongly coupled singlets,
which are polarized by the staggered field of Cu2 spins, and
Cu1 and Cu2 magnetic subsystems are decoupled.

We have then estimated the contribution of each inequiva-
lent copper site to the MAE. MAE of Cu1 sites (noted MAE1)
was calculated by substituting zinc for copper on all Cu2 sites,
and MAE of Cu2 sites (noted MAE2) reversely [33]. Indeed,
Zn2+ and Cu2+ cations share nearly the same radii, 0.74
and 0.71 Å, respectively. In addition, Zn2+ is nonmagnetic
(d10 electronic configuration) allowing the suppression of the
magnetic response of Zn-substituted sites. A representation

of these partial MAEs is given in Fig. 9(b). In particular, the
easy magnetization axis is located in the ac plane and along
the b direction for MAE1 and MAE2, respectively. However,
MAE2 is larger in amplitude than MAE1, leading to a total
contribution to MAE dictated by MAE2, i.e., an easy axis
along the b.

Our calculations demonstrate the predominant role of the
Cu2 subsystem in the magnetic anisotropy of SeCuO3, but
remain incomplete because we do not reproduce the magnetic
moment reduction of Cu1. As already mentioned above, such
a feature is a consequence of (1) the formation of Cu1 dimers
which are in a singlet state at low temperature (T < 200 K),
(2) the spin fluctuations of Cu1 spins which are different
from the ones of Cu2, leading to the decoupling of the two
subsystems, and (3) the staggered field of the Cu2 subsystem
which polarizes the magnetic moments of Cu1, leading to a
strong decrease of its value [34].

From our point of view, all these experimental data con-
verge to one model for SeCuO3, consisting of nearly isolated
Cu1 dimers immersed in the staggered field of the AFM long-
range order of the Cu2 subsystem. One simple approach is
to reduce the Hubbard correction on the Cu1 site, and indeed
this leads to decrease of Cu1 magnetic moments from 0.84
to 0.75 and 0.60 μB , with Ueff = 9, 5, and 0 eV, respectively.
Reducing Ueff even more to negative values will lead to en-
tering an attractive electron-electron interaction regime. Such
an attractive Hubbard model has been previously used as an
effective description for systems involving strong electron-
phonon coupling [35]. Indeed, strong spin-lattice coupling in
the low-temperature state of SeCuO3 has been proposed by
Lee et al., based on the measurement of the nuclear spin-
lattice relaxation rate 1/T1 [11].

Here the idea is to simulate an extreme situation for which
the electron-phonon coupling involving the Cu1 dimers would
be enough to overcome the electron-electron Coulomb repul-
sion. It will correspond to the observation of attractive and
repulsive regimes at low and high energy scales, respectively
[35]. Interestingly, calculating the MAE with two sizable
different treatments for Cu1 and Cu2 subsystems reproduces
the experimental observation. More specifically, we have used
Ueff = 0 eV for Cu1 and Ueff = 5 eV for Cu2. This choice
allows us to reproduce, in an effective manner, the magnetic
moment of Cu2 and the reduction of magnetic moments of
Cu1. Such treatment leads to a 3D shape shown in Fig. 10(b),
for which the b direction is properly found as being the hard
axis and the easy axis lying in the ac plane. To be more
quantitative, we compare in Table II the MAE values for the
magnetic eigenaxes of the AFM state with respect to the b

axis. It now appears that, among these three directions, [0 1 0]
is systematically the hard one, and [1 0 1] the easy one. In
other words, by considering that Cu1 and Cu2 subsystems
are decoupled and by taking into account the reduction of
the magnetic moment of Cu1, we are able to reproduce the
experimental hard magnetization axis along the b direction.
The easy axis is found to be in the ac plane in agreement with
experimental refinements, but still not in the [101]

∗
direction

(see Fig. 10).
At this stage, it should be mentioned that Bousquet

et al. [36] have demonstrated that defining explicitly the
exchange-correction parameter J , in the LSDA/U treatment,
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FIG. 10. (a) Experimental MAE. (b) MAE considering Ueff =
0 eV for Cu1 and Ueff = 5 eV for Cu2. (c) Similar to previous, except
a U = 5 eV and J = 0.5 eV correction on Cu2. (d) A detailed com-
parison between the experimental MAE (solid lines) and theoretical
MAE shown in (c) (dotted lines) in the ac plane.

strongly affects the noncollinear magnetic ground state, and
more specifically the spin canting and the magnetocrystalline
anisotropy shape. This constitutes a really delicate issue
because it implies an adjustment of the amplitude of two
parameters, U and J . Our results for U = 5 eV and J =
0.5 eV are summarized in Table II. It should be noticed that
a similar trend of values is obtained using J = 1 eV, con-
firming that the more important aspect is to explicitly specify
the J value. Interestingly, the experimental MAE eigenaxes
are properly described as soon as J is explicitly defined
[see Fig. 10(c)]. More specifically, when both Cu1 and Cu2
are corrected, MAE values are 0, −7, and −20 μeV/f.u. for
the [0 1 0], [1 0 1], and [1 0 1]

∗
directions, respectively. When

the correction is added only on Cu2, the MAE values are 0,
−26, and −32 μeV/f.u. for the identical respective direc-
tions. Such results demonstrate a drastic change of the MAE,
mainly on the intermediate eigenaxes. In such a case, both
explicit J definition on Cu2 and reduced Hubbard correction
on Cu1 are necessary to properly orientate the theoretical easy
axis along the experimental one, as represented in Fig. 10(c).
In order to verify how the MAE2 behaves with such treatment,
we redo a chemical substitution by Zn atoms on Cu1 sites. As
expected, the MAE is strongly modified with respect to the
one determined using an Ueff treatment [Fig. 10(b)], i.e., with
easy, intermediate, and hard axes in good agreement with the
experimental ones, as can be witnessed from Figs. 10(a) and
10(c). Figure 10(d) shows that the deviation in the ac plane
between the experimental and theoretical MAE is reduced to
24◦. To summarize, the hard axis is well predicted to be along
the b axis and the easy and intermediate axes are found to
be in the ac plane. We still have a sizable deviation which is

TABLE II. MAE values (μeV/f.u.) for the magnetic eigenaxes
of the AFM state obtained with different GGA+U treatments for
copper atoms. We report values obtained for (i) Ueff = 5 eV, and
U = 5 eV and J = 0.5 eV. MAE values are given considering the
[010] magnetization direction as the reference of the energies.

Cu1 Ueff = 5 Ueff = 0 U = 5, J = 0.5 Ueff = 0
Cu2 Ueff = 5 Ueff = 5 U = 5, J = 0.5 U = 5, J = 0.5
[1 0 1] 9 −10 −7 −26
[1 0 1]

∗
9 −7 −20 −32

expected because of the mean-field treatment which has been
used to simulate the MAE. It should be noticed that the overall
shape of the MAE was unchanged when considering J = 0.5
and 1 eV for U = 5 eV.

IV. DISCUSSION

Torque magnetometry is a convenient method for studying
magnetocrystalline anisotropy and spin reorientation phenom-
ena in a finite magnetic field since the angular dependence
of torque is very sensitive to the orientation of the spin axis
in magnetically ordered materials. In this work we combine
torque magnetometry with a simple phenomenological ap-
proach to magnetic anisotropy in order to probe the spin re-
orientation in low-dimensional antiferromagnet SeCuO3. Our
analysis shows that under the assumption of spin reorientation
in a collinear antiferromagnet we are able to reproduce quali-
tatively the shape of the torque curves in SeCuO3 (dotted lines
in Fig. 5). However, the obtained independence of torque am-
plitude from magnetic field for H � HSF, which is also found
for other collinear antiferromagnets [26,28], is not observed
in SeCuO3 [see Fig. 2(b) and Fig. 5]. Contrary to expectations
and our simple model, torque amplitude increases linearly
with H 2 for H � HSF but with a much smaller slope than for
H � HSF [Fig. 2(b)]. We further show that the experimental
result is a consequence of the existence of two subsystems
in SeCuO3, where only one exhibits the spin reorientation in
applied magnetic fields.

The existence of two subsystems in SeCuO3 was already
proposed in Ref. [7] where it was suggested that the corre-
lations between Cu1 and Cu2 in SeCuO3 are site-selective
and strong coupling between Cu1 spins might form a singlet
state at higher temperatures, thus separating Cu1 and Cu2
spin sublattices. The scenario of two subsystems made of
the strongly coupled Cu1 dimers and the weakly coupled
Cu2 spins in the AFM state was recently proposed from
NMR measurements which witnessed different temperature
evolution of 1/T2 assigned to Cu1 and Cu2 spins in the AFM
state [11]. The NQR measurements showed that Cu1 dimers
indeed form singlets already at high temperatures T < 200 K,
while Cu2 spins are only weakly coupled to the central pair
[12]. The significantly reduced value of magnetic moment of
Cu1 compared to Cu2 [12] corroborates this picture.

The proposed two-subsystem scenario for SeCuO3 is very
similar to the case of the ordered AFM state in CdCu2(BO3)2

in which spins Sa and Sd are related to the Cu2 site, while
Sb and Sc to the Cu1 site. In this system, the spins of Cu1
atoms form strongly coupled singlets, but at TN � 9.8 K, an-
tiferromagnetic long-range order sets in due to much weaker
intertetramer interactions. Neutron powder diffraction (NPD)
measurements on this system reported a smaller magnetic
moment on the Cu1 than on the Cu2 site [37]. A theoretical
investigation of CdCu2(BO3)2 showed dominant coupling be-
tween Cu1 spins forming AFM dimers, while weaker intrate-
tramer and intertetramer interactions are responsible for the
low-temperature AFM long-range ordering of Cu2 spins [34].
The same study revealed that the polarization of Cu1 singlets
is possible because the field from Cu2 spins is staggered and
thus does not commute with the exchange interaction on the
dimer [34]. Janson et al. further showed that a significant
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magnetic moment can be induced on Cu1 spins by the stag-
gered field from Cu2 spins [34]. This picture, later confirmed
experimentally by NMR and ZF-μSR measurements [6], is
different from the usual long-range order which is induced
by the interactions between the spins. In CdCu2(BO3)2 the
magnetic interactions are responsible for the magnetic order
of the Cu2 site only, while Cu1 moments are polarized. The
decoupling of the Cu1 and Cu2 spins in the ordered state is
witnessed by a magnetic anomaly at T ∗ = 6.5 K observed in
NMR, which was attributed to the reorientation of Cu2 spins,
while Cu1 remains intact [6]. Based on the results published
on SeCuO3 so far, it seems that one can draw a parallel
between these two systems.

The two decoupled subsystems in SeCuO3 that we propose
from our results correspond to Cu1 and Cu2 spins, respec-
tively. Since half of the spins in SeCuO3 are Cu1 spins and the
other half are Cu2 spins, we can now write for the suscepti-
bility of Cu1 χ1 = n χ0 = m · (0.5 · χ0). The contribution of
Cu1 spins to the total χ0 is reduced by m due to the decoupling
of the two sublattices. For n = 0.22 obtained in Sec. III B
we get m = 0.44. The induced magnetization on Cu1 spins
is only 44% of the value it would be if these spins were
equivalent to Cu2 spins. It is tempting to compare this to the
ratio of magnetic moments mCu1/mCu2 ≈ 0.35/0.8 = 0.44
obtained for magnetic moments on Cu1 and Cu2 from neutron
data [12]. However, this comparison may not be justified
if Cu1 and Cu2 belong to decoupled subsystems. The ratio
χ1/χ2 = n/(1 − n) = 0.282 confirms that the magnetization
induced on Cu2 spins is significantly larger than on Cu1 spins.
This picture corroborates that the dominant contribution to the
total MAE comes from the Cu2 site.

Having now established arguments for two decoupled sub-
systems we can construct a more rigorous model of the mag-
netic structure and spin reorientation in SeCuO3 by including
also the symmetry arguments. Our proposal of zero-field
and spin-flopped magnetic structures in SeCuO3 is shown in
Fig. 11. The previously published susceptibility anisotropy
in the AFM state strongly supports a picture of collinear or
very weakly canted AFM state in zero magnetic field [7,10]
which is why we propose the collinear zero-field structure
plotted in Figs. 11(a) and 11(c) for the AFM state of SeCuO3.
Our theoretical investigations based on a similar magnetic
ordering do not allow us to obtain a better picture of this
magnetic ordering with respect to the crystal axes. To pro-
pose a specific orientation of the spins shown in Figs. 11(a)
and 11(c), we rely on symmetry elements as well as results
from the literature which allow us to assume AFM coupling
between Cu1 spins [12] and AFM coupling between Cu1
and Cu2 spins on the tetramer [7]. In zero field all spins are
oriented along the 〈1 0 1〉∗ direction (Ref. [10] and this work).
Both Cu1 and Cu2 moments are confined to their respective
CuO4 plaquettes. Our result is in agreement with the recently
published NPD data which state that Cu2 spins lie within
the plaquette and NQR data which state that Cu1 spins lie
within their plaquette [12]. Strongly noncollinear magnetic
structure proposed by the same authors in their unpublished
work [38] is in disagreement with our result as well as pre-
viously published magnetic susceptibility anisotropy [7,10]
which only allows for collinear or very weakly canted spins,
as we mentioned above. Indeed, the magnetic susceptibility

H=0
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b b

b b

c c

c c
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(a) (b)

(c) (d)

H>H  SF

H>H  SF

 [101][101]*  [101][101]*

FIG. 11. The magnetic structure in AFM state in zero field (a)
and (c) and in field H � HSF applied along the easy axis (b) and (d)
obtained in this work. (a) and (b) show the ac plane to which the spins
are confined. In (a) and (b) the directions of the easy [1 0 1]

∗
and

intermediate [101] axes obtained from experiment are also shown.

measured along the easy axis in SeCuO3 goes practically to
zero as T → 0 [7]. Such a feature will not be observed in
strongly noncollinear magnetic structures. Furthermore, based
on our results where only one subsystem reorients in finite
magnetic field, we propose a structure shown in Figs. 11(b)
and 11(d) in applied magnetic field H � HSF where the spins
on Cu1 remain in the zero-field orientation, while the Cu2
spins flop to the 〈101〉 direction.

In order to confirm the present picture, we have realized
DFT+U+SOC calculations [14,39] using the VASP code
[40–42] to take into account the potential noncollinearity.
More specifically, we have used an energy cutoff of 550 eV,
a similar kmesh to the one in WIEN2k, and the convergency
criterion was fixed at 10−7 eV. Starting from a collinear
antiferromagnetic arrangement with all the spins oriented
along the 〈1 0 1〉∗, we obtained a small but significant non-
collinearity between Cu1 and Cu2 spins, with a canting angle
ranging from 0.2◦ to 1◦ depending on the U (from 5 to 7 eV)
and J (from 0 to 1 eV) values. This last result confirms
that SeCuO3 can be viewed as a slightly canted antiferro-
magnet, but the canting is too weak to produce an effect in
our macroscopic measurements. It also justifies the WIEN2k
calculations reported in the present paper, which have been
done using a collinear antiferromagnetic model. These cal-
culations have demonstrated that an explicit definition of the
exchange-correction term J in the GGA+U+SOC calcula-
tions is needed to properly describe the MAE eigenaxes.
Moreover, by taking into account, in an effective manner,
the different correlation regime of Cu1 and Cu2 subsystems,
we are able to reproduce the reduction of the Cu1 magnetic
moment and the relative amplitudes of MAE1 and MAE2.

A chemical interpretation of these results can be reached by
examining the projected densities of states (PDOSs). Indeed,
such analysis allows us to determine the most important
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interactions, which are the ones with the smallest energy
gap |εi − εj |, as defined in Eq. (12). More precisely, the
observed spin orientations of such Cu2+ S = 1

2 system can
be interpreted by the inspection of the PDOS and thus the
interactions involving the crystal-field split d states of each
magnetic Cu2+ ion, under the action of the spin-orbit cou-
pling. Figures 12(a) and 12(b) show the split of Cu1 and
Cu2 d states using GGA+U calculations, with Ueff = 5 eV.
It should be noted that the PDOSs obtained with and with-
out specifying explicitly the exchange-correction term J are
similar. Here, we defined the local coordinate system with
x and y inside the CuO4 plane, pointing towards oxygen
atoms, and z perpendicular to the CuO4 plaquette as shown
in Fig. 12(a). The overall features for the PDOSs of Cu1 and
Cu2 are the same, with an empty (x2 − y2) state. In such a
situation, the 〈dxy ↓|ĤSOC|dx2−y2 ↓〉, 〈dxz ↓|ĤSOC|dx2−y2 ↓〉,
and 〈dyz ↓|ĤSOC|dx2−y2 ↓〉 interactions will be nonzero and
mainly active because closer to the Fermi level. Spins with
orientation inside the plaquette (‖ xy spin orientation) will
be favored if dxz ↓ or dyz ↓ states are closer to the empty
dx2−y2 ↓ states. In contrast, if dxy ↓ states are closer, spins
with orientation perpendicular to the CuO4 plaquette (⊥ xy

spin orientation) will be favored. In the present case, the
interpretation is not straightforward due to the significant
distortion of Cu1 and Cu2 sites, which are far from regular
CuO4 plaquettes. Only Cu1 PDOSs show relevant features,
which can be interpreted. Indeed, the inset of Fig. 12(b) shows
that the states which are mainly contributing on the top of
the valence band are dxz and dyz, which leads to favoring
the ‖ xy spin orientation, as witnessed in our DFT+U+SOC
calculations when considering only the Cu1 subsystem, i.e.,
MAE1, which shows an easy magnetization axis in the ac

plane. In contrast, the Cu2 PDOS does allow us to deter-
mine which d state is mainly contributing to the top of the
valence band. Indeed, while such an analysis is relevant for
systems exhibiting regular environments, it should be used
with care for distorted environments, because the choice of
the local axes for the PDOS is not anymore unique and may
influence the results. Figure 12(c) shows the PDOS of Cu1
when considering no Hubbard correction (Ueff = 0 eV). The
main consequence is a significant band gap reduction and an
increase of the dxz and dyz characters on the top of the valence
band. Both modifications lead to an increase of the spin-orbit
coupling which mixes the dxz and dyz occupied states with
the dx2−y2 unoccupied state. Such treatment leads to having
a larger contribution of MAE1 to the total MAE, which then
develops an easy axis in the ac plane and hard axis along the
b crystallographic direction.

To summarize, there is an agreement between the structure
from Ref. [12] and our proposal shown in Figs. 11(a) and
11(c). Magnetic moments on Cu1 and Cu2 almost lie within
their respective CuO4 plaquettes and our model also supports
a much smaller magnetic moment on Cu1 than on Cu2. More
detailed comparison with NPD is not possible since there were
difficulties in interpreting the existing NPD and single-crystal
data in Ref. [12]. Our results state that Cu1 moments should
be collinear or almost collinear to Cu2 moments, in agreement
with the susceptibility, magnetization, and torque data. Future
investigation of magnetic structure by neutron diffraction on
single crystals would resolve this issue.

FIG. 12. Projected density of states (PDOS) on (a) Cu2 and (b)
Cu1 sites considering a Ueff = 5 eV, and on (c) Cu1 only at the
GGA level. Projection axes for each Cu site are represented on the
scheme in (a). Insets zoom in on the spin minority states over the
range of 2 eV below the Fermi energy. Pink stars correspond to first
excitations allowed with the excited states.

The decoupling of Cu1 and Cu2 subsystems is compara-
ble to the observations in Cu2Cd(BO3)2 [6]. The question
in SeCuO3 is, are the Cu1 spins polarized singlets in the
underlying AFM state formed by interactions between Cu2
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spins, or do both Cu1 and Cu2 spins interact mutually to form
the AFM state? If Cu1 spins indeed form singlet states even in
the AFM state then χ1 and MAE1 should be much smaller
than χ2 and MAE2. In fact, if a true singlet state persists
in the AFM state, for an intradimer interaction J ≈ 200 K
between Cu1 spins we should expect χ1 and MAE1 to be zero
at low temperatures [43]. A finite slope of torque amplitude
for the nonflopped spins (see Fig. 2) suggests Cu1 spins
contribute with finite susceptibility anisotropy. Also, χ1/χ2 =
0.282 obtained from our simulations is small but finite. From
our data we cannot distinguish whether Cu1 spins in the AFM
state form polarized singlets or contribute to the AFM order
with a much smaller magnetic moment than Cu2 spins. The
site-specific spin reorientation we observe favors the former
picture, but further experiments are needed to confirm this.

If Cu1 spins are in fact polarized singlets we would have
a similar scenario to CdCu2(BO3)2. In this system neutron
diffraction gave a sizable magnetic moment on Cu1 sites [37],
while theoretical and experimental data showed that the Cu1-
Cu1 dimer forms a singlet in the AFM state [6,34]. A similar
scenario appears to apply to SeCuO3, and indeed our DFT
calculations which mimic the reduction of the Cu1 magnetic
moment reproduce properly the experimental MAE. Magnetic
order in CdCu2(BO3)2 is almost collinear with very small
canting, similar to what we propose for SeCuO3. One way
to check our proposed magnetic structure in zero and finite
field rigorously is to perform single-crystal neutron diffraction
experiments in zero and finite applied magnetic field.

V. CONCLUSION

The present paper proposes a combined experimental and
theoretical investigation of the magnetic properties of a low-
dimensional spin- 1

2 system, which appears to be based on
two decoupled magnetic subsystems. This finding, based
on measurements on high-quality single crystals and

state-of-the-art density functional calculations, opens a way to
very exciting physics, with the possibility to control separately
two magnetic subsystems in one material. SeCuO3 was previ-
ously proposed as a candidate for a system with site-selective
spin correlations where Cu1 copper atoms form strongly
coupled AFM dimers, while the coupling including Cu2 spins
results in a long-range AFM order at low temperatures. Our
torque magnetometry results demonstrate site-specific spin
reorientation in an applied magnetic field in the AFM state of
SeCuO3. Using an ab initio approach we show that Cu1 and
Cu2 contribute differently to the magnetic anisotropy energy.
These results strongly suggest that Cu1 and Cu2 spin systems
are decoupled in SeCuO3. Combining our experimental and
theoretical findings we propose an antiferromagnetic structure
of SeCuO3 in zero field, as well as in field H � HSF, to be
verified by future experiments on this system.
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[39] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B
52, R5467(R) (1995).

[40] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[41] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[42] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[43] B. Bleaney and K. D. Bowers, Proc. R. Soc. London A 214, 451

(1952).
[44] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

014434-13

https://doi.org/10.1103/PhysRevB.48.16929
https://doi.org/10.1103/PhysRevB.48.16929
https://doi.org/10.1103/PhysRevB.48.16929
https://doi.org/10.1103/PhysRevB.48.16929
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1051/anphys/193611050232
https://doi.org/10.1051/anphys/193611050232
https://doi.org/10.1051/anphys/193611050232
https://doi.org/10.1051/anphys/193611050232
https://doi.org/10.1088/0370-1298/65/11/301
https://doi.org/10.1088/0370-1298/65/11/301
https://doi.org/10.1088/0370-1298/65/11/301
https://doi.org/10.1088/0370-1298/65/11/301
https://doi.org/10.1063/1.1657515
https://doi.org/10.1063/1.1657515
https://doi.org/10.1063/1.1657515
https://doi.org/10.1063/1.1657515
https://doi.org/10.1103/PhysRevB.75.094425
https://doi.org/10.1103/PhysRevB.75.094425
https://doi.org/10.1103/PhysRevB.75.094425
https://doi.org/10.1103/PhysRevB.75.094425
https://doi.org/10.1103/PhysRevB.91.174436
https://doi.org/10.1103/PhysRevB.91.174436
https://doi.org/10.1103/PhysRevB.91.174436
https://doi.org/10.1103/PhysRevB.91.174436
https://doi.org/10.1088/0953-8984/22/2/026006
https://doi.org/10.1088/0953-8984/22/2/026006
https://doi.org/10.1088/0953-8984/22/2/026006
https://doi.org/10.1088/0953-8984/22/2/026006
https://doi.org/10.1016/j.ssc.2011.07.024
https://doi.org/10.1016/j.ssc.2011.07.024
https://doi.org/10.1016/j.ssc.2011.07.024
https://doi.org/10.1016/j.ssc.2011.07.024
https://doi.org/10.1143/JPSJ.69.2759
https://doi.org/10.1143/JPSJ.69.2759
https://doi.org/10.1143/JPSJ.69.2759
https://doi.org/10.1143/JPSJ.69.2759
https://doi.org/10.1016/j.poly.2005.03.171
https://doi.org/10.1016/j.poly.2005.03.171
https://doi.org/10.1016/j.poly.2005.03.171
https://doi.org/10.1016/j.poly.2005.03.171
https://doi.org/10.1038/ncomms3511
https://doi.org/10.1038/ncomms3511
https://doi.org/10.1038/ncomms3511
https://doi.org/10.1038/ncomms3511
https://doi.org/10.1073/pnas.1421414112
https://doi.org/10.1073/pnas.1421414112
https://doi.org/10.1073/pnas.1421414112
https://doi.org/10.1073/pnas.1421414112
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.39.865
https://doi.org/10.1103/PhysRevB.86.094413
https://doi.org/10.1103/PhysRevB.86.094413
https://doi.org/10.1103/PhysRevB.86.094413
https://doi.org/10.1103/PhysRevB.86.094413
https://doi.org/10.1103/PhysRevB.85.064404
https://doi.org/10.1103/PhysRevB.85.064404
https://doi.org/10.1103/PhysRevB.85.064404
https://doi.org/10.1103/PhysRevB.85.064404
https://doi.org/10.1103/PhysRevB.91.155111
https://doi.org/10.1103/PhysRevB.91.155111
https://doi.org/10.1103/PhysRevB.91.155111
https://doi.org/10.1103/PhysRevB.91.155111
https://doi.org/10.1103/PhysRevB.82.220402
https://doi.org/10.1103/PhysRevB.82.220402
https://doi.org/10.1103/PhysRevB.82.220402
https://doi.org/10.1103/PhysRevB.82.220402
https://doi.org/10.1103/PhysRevB.80.104405
https://doi.org/10.1103/PhysRevB.80.104405
https://doi.org/10.1103/PhysRevB.80.104405
https://doi.org/10.1103/PhysRevB.80.104405
http://arxiv.org/abs/arXiv:1801.01431
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1098/rspa.1952.0181
https://doi.org/10.1098/rspa.1952.0181
https://doi.org/10.1098/rspa.1952.0181
https://doi.org/10.1098/rspa.1952.0181
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970

