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Spin wave modes of multilayered ferromagnetic films
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A study of ferromagnetic spin wave modes in multilayered films under general conditions is presented within
a micromagnetic approximation. These modes, either in the magnetostatic or dipole-exchange approximation,
have been studied in the past theoretically and experimentally by several authors. The novelty of the present
study is that using a method based on the extinction-Green theorems it is possible to determine these modes with
ease, under an arbitrary direction of an applied dc magnetic field, and for boundary conditions of diverse nature.
The ferromagnetic films are coupled through dipolar interactions and eventually through exchange interactions.
Due to an assumed in-plane translation invariance of the multilayers, the method allows us to determine the
eigenfrequencies at a given in-plane wave vector as an algebraic eigenvalue problem of reasonable size: it is a
6N × 6N system of homogeneous equations if there are N distinct films in the structure. Examples of modes in
different multilayers are presented. If the stack of films is symmetric with respect to a central plane, it is shown
that there are modes reciprocal in frequency but nonreciprocal in shape with respect to a change of sign of the
wave vector. The latter is a generalization of the well-known shape nonreciprocity of Damon-Eshbach surface
modes moving in opposite directions, and is valid for all dipole-exchange modes and inclined applied magnetic
fields. The possibility of obtaining dispersion relations for obliquely applied magnetic fields should be of interest
in order to test experimentally boundary conditions that model physical mechanisms operating at the different
surfaces and interfaces of the films.
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I. INTRODUCTION

The geometry of extended thin films has been very im-
portant in ferromagnetism. One could say that it was the
first geometry to be extensively studied experimentally, and
presently it continues to play a major role since it is quite
ubiquitous in several structures and devices of interest. The
following natural extension of a single film was multilay-
ers of films of different characteristics and materials. These
stacks of films allowed us to engineer metamaterials with
properties that may be tuned to some extent to the in-
terest of the designer. In particular, modern growth tech-
niques of materials started with multilayered stacks of films,
and then proceeded to nanowires and nanoparticles that are
presently under close investigation. In the area of multi-
layers of films, a particular interest has been to determine
the type and extent of coupling between different films: in
general there are dipolar interactions, but depending on the
separation between the ferromagnetic films and the interven-
ing material, there may be an exchange coupling between
layers that may be of ferromagnetic or antiferromagnetic
character.

The study of spin wave modes in ferromagnetic multi-
layered films has been an area of active research interest
for several decades now, both due to its own merit and also
as a practical means to determine the underlying physical
properties of the films involved and of their interactions.
Thus, critical parameters of the models of magnetization
dynamics of multilayers of ferromagnetic films may be deter-
mined through their imprint on the behavior of the spin wave
modes of the multilayers. For example, surface anisotropies

or interfacial exchange coupling constants may be determined
through examination of spin wave modes characteristics.

By now there is a substantial body of work on the subject
of spin wave modes in multilayers of ferromagnetic films. In
the following we mention a few representative works on the
subject, it is not an exhaustive list. To start, a very important
background on this subject are studies of spin wave modes
in single ferromagnetic films: we mention early works on
magnetostatic modes [1,2] and dipole-exchange modes [3,4],
and newer studies using a microscopic Heisenberg model [5]
and a new long wavelengths model [6], with an interest in
Bose-Einstein condensation and superfluidity of magnons [7].
Now the first studies in ferromagnetic multilayers were on
magnetostatic modes, with long wavelengths on the order
of micrometers: Ref. [8] is a theoretical-experimental work
on N magnetized in-plane films with magnetostatic mode
propagation perpendicular to the magnetization, Ref. [9] is a
theoretical work on coupled magnetostatic modes in multilay-
ers magnetized in-plane that also determines light scattering
response, and Ref. [10] discusses detection of magnetostatic
modes in bilayers via Brillouin light scattering. At the end
of the 1980s and beginning of the 1990s there were several
studies [11–18] on spin wave modes and their excitation in
multilayers that also included the exchange interaction, i.e.,
dipole-exchange modes, and that considered surface and/or
interfacial anisotropies, and an exchange interaction between
layers. Most of the previous works used the so called partial
waves approach to describe the magnetization dynamics in-
side the films, which goes back to the work of DeWames and
Wolfram on a single film [3] (we comment on this method
in Appendix A 1). At this point we mention that there are
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some early works that developed a theory of the appropriate
boundary conditions for the continuum micromagnetic theory
approach to the magnetization dynamics in these multilayered
films: they dealt with surface anisotropies [19,20] and with in-
terlayer exchange coupling [21,22]. Later, at the beginning of
the 1990s, some works [23–26] were published that discussed
inconsistencies of the Hoffmann interlayer exchange coupling
boundary conditions: this lead to the so called Barnas-Mills
boundary conditions [25,26]. One could say that the core
of the continuum micromagnetic theory of dipole-exchange
spin wave modes in multilayered films had been established
by then. In the following years the theory was extended in
several directions like Brillouin light scattering studies in
multilayers [27–29], layers with antiferromagnetic coupling
and noncollinear magnetizations [30–32], magnonic crystals
[33], etc. Also, we mention that some review papers have been
published on the subject [34–36].

The present work shows quite general results on spin
wave modes in multilayers of ferromagnetic films, within a
continuum micromagnetic model for the magnetization dy-
namics, in the magnetostatic and dipole-exchange regimes. It
corresponds to a generalization of similar results that were
presented for a single film [37] to the case of multilayers of
films. An advantage of the method used is that it allows us
without much practical difficulty to calculate the details of the
spin wave modes under general conditions, with a magnetic
field applied at an arbitrary orientation with respect to the
films, and different boundary conditions at the surfaces of the
films. An assumption is that the equilibrium magnetization
is uniform (effectively we assume weak effective fields with
origin at the surfaces/interfaces). The method is based on an
application of extinction-Green theorems [38–40] that allows
us to write convolution integral equations for the modes, but
that in the case of these multilayered films become local
algebraic equations in wave-vector space due to translation
invariance in the in-plane direction. The determination of the
spin wave mode frequencies at a given wave vector requires
solving an homogeneous eigenvalue problem that involves a
6N × 6N matrix, where N is the number of films that form the
multilayer structure (it can also be solved for a periodic struc-
ture, in which case the size of the system is associated with
the number of films that form the basic repeated structure).
The explicit general form of these equations is presented: it
is simple to solve them in a particular case of interest due
to the reasonable size of the system of equations and to the
wide availability of numerical-graphical methods for solving
it. Furthermore, the shapes of the collective modes at any
location follow by a similar calculation. In particular, for
stacks of films that are symmetric with respect to a central
plane, we show by symmetry considerations that modes with
a different sign of wave vector have the same frequencies,
i.e., reciprocal in this sense, but their shapes are nonrecip-
rocal: indeed the magnetostatic potential and magnetization
components of these modes are, respectively, specular reflec-
tions and antireflections of each other with respect to the
central plane. This is a generalization of the well-known shape
nonreciprocity [41] of Damon-Eshbach surface modes [1] in
a single ferromagnetic film, modes that move in opposite
directions with the same frequencies but “attached” to the
opposite surfaces.

In Sec. II we discuss the theory, i.e., the equations to be
solved in order to determine the spin wave normal modes of
the multilayered structures, and we introduce the method that
uses the Green-extinction theorems to solve for these modes.
In Sec. III we discuss exact relations between modes with
opposite signs of their wave vectors in stacks of films that are
symmetric with respect to a central plane, these results follow
from symmetry considerations. In Sec. IV we discuss the
boundary conditions that have been proposed in the literature
in order to solve for the spin wave modes within the con-
tinuum micromagnetic approximation. In Sec. V we present
numerical results on magnetostatic and dipole-exchange spin
wave modes for selected cases. In Sec. VI we present
some conclusions and final considerations. Finally, we have
Appendix with details on some sections.

II. DIPOLE-EXCHANGE MODES OF FERROMAGNETIC
MULTILAYERED FILMS

In the following we outline the theory used to determine the
spin wave modes of multilayered films, within a continuous
micromagnetic model. The dynamic equations that need to
be solved correspond to the Landau-Lifshitz equations for
the magnetization dynamics in each ferromagnetic film, com-
bined with the magnetostatic equations needed to determine
the magnetic field or magnetostatic potential everywhere.
Thus, the determination of the spin wave modes in this ge-
ometry requires solving several coupled differential equations
in different regions that are connected through appropriate
boundary conditions.

We present a method that applied to this multilayered
geometry allows us to calculate the spin wave modes with
ease. It corresponds to an application of the Green-extinction
theorems that allows us to formulate the eigenvalue problem
in terms of integral equations written on the edges of the
samples. In particular, it is assumed that these multilayered
films are infinite in the in-plane directions, i.e., there is trans-
lation invariance in these directions. This means that due to
the convolution theorem the latter integral equations become
local algebraic equations in the in-plane wave vector space.
This means, for example, that in the case of two coupled
ferromagnetic films, the determination of the spin wave mode
frequencies, at a given in-plane wave vector, involves solving
an algebraic eigenvalue problem associated with a 12 × 12
matrix, something that is numerically simple.

The mentioned method was introduced in Ref. [37] for the
case of a single ferromagnetic film. In that case the method
was used with reference to Green’s functions. Following the
experience gained in that work, in the present case we do not
make reference to Green’s functions explicitly, since from a
practical point of view what was used there were the in-plane
Fourier transforms of those Green’s functions that indeed are
exponential type solutions to the equations of motion in the
different regions, at a given in-plane wave vector. Indeed, for
writing integral equations at the edges of the samples with
this method, one basically needs to do a convolution between
the modes that one is seeking with any other complete set
of solutions of the equations of motions in the particular
subregion in question (for these multilayered films that are
“infinite” in-plane these spatial convolutions become local
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FIG. 1. A possible geometry: A stack of five ferromagnetic films
separated by nonmagnetic spacers, two films are different from the
rest.

equations in wave vector space). As a matter of convenience,
in the following we will name these exponential solutions to
the equations of motion as “auxiliary solutions.”

In the following we describe the equations that need to be
solved and the method we use in order to determine the spin
wave modes of multilayered structures.

A. Spin wave modes

1. Equilibrium magnetization configuration
and linear dynamic deviations

In the following we describe the geometry, the equilibrium
magnetization configuration, and linear dynamic deviations
from it.

With respect to the geometry, we consider ferromagnetic
multilayered films, under several arrangements: it could be a
pair of films or several films separated by nonmagnetic media;
several films in contact; or a periodic concatenation of several
films separated by nonmagnetic media or not. For example,
Fig. 1 represents a stack of five films, separated by nonmag-
netic media, with two of them of different characteristics.

We consider that there is a dc magnetic field applied to
the stack of films, in a direction that in general is inclined
with respect to the in-plane direction. We are assuming that
the direction of the equilibrium magnetization is unaffected
by surface torques that may arise (in principle, the equilib-
rium magnetization should curve a bit when approaching the
surfaces of films when there is a magnetic field applied to
the structure in an oblique direction), i.e., effectively we are
assuming that those surface torques are weak. For example,
in the case of existence of a surface anisotropy, the length
A/Ks should be much longer than the thickness of the film
(A and Ks are the exchange and surface anisotropy constants,
proportional to the strength of the exchange and surface
anisotropy energies, respectively). Under this approximation,
the equilibrium magnetization configuration in each film is in-
dependent of the rest of the films, thus we present the angles of
the applied magnetic film and the equilibrium magnetization
for a single film of the structure in Fig. 2.

The applied magnetic field of magnitude H0 makes an
angle θH with respect to the ẑ direction, which is parallel to
the plane of the film. Thus, the equilibrium magnetization in
layer ( j) will be inclined at an angle θ

j
M with respect to the

plane (θ j
M < θH ), defining the ˆ̃z j direction, i.e., �Meq = M j

s ˆ̃z j .

FIG. 2. Schematics of the equilibrium magnetization and applied
magnetic field in a given film of the structure.

This inclined magnetization at layer ( j) has an associated uni-
form internal magnetic field �H j

int = H0 cos θH ẑ + (H0 sin θH −
4πM j

s sin θ
j

M )ŷ = H j
int

ˆ̃z j , i.e., along the ˆ̃z j direction, since in
equilibrium the magnetization at each film is parallel to the
local internal magnetic field. These angles θ

j
M, θH are related

through

tan θ
j

M = H0 sin θH − 4πM j
s sin θ

j
M

H0 cos θH
. (1)

Furthermore, the linear dipole-exchange normal modes are
eigensolutions of the Landau-Lifshitz equations for the linear
magnetization dynamics coupled with the magnetostatic equa-
tions that determine the associated dipolar fields (when one
includes the exchange interaction the magnetization satisfies
appropriate boundary conditions on all the film surfaces).
To linear approximation the magnetization in each film is
expanded as

�M j (�x, t ) � M j
s
ˆ̃z j + �m j (�x, t )

= M j
s
ˆ̃z j + m j

x (�x, t )x̂ + m j
ỹ j (�x, t )ˆ̃y j, (2)

with ˆ̃y j and x̂ directions perpendicular to the equilib-
rium magnetization direction ˆ̃z j in film ( j). We will look
for linear eigenmodes of frequency ω, i.e., �m j (�x, t ) =
Re[�m j

ω(�x) exp(−iωt )]. We also introduce in-plane wave vec-

tors �Q, so that �mω
j (�x) = ∑

�Q �m(ω�Q)
j exp(i�Q ·�x), with �Q = qx̂ +

kẑ.

2. Magnetostatic equations

The spin wave normal modes have associated dynamic
demagnetizing fields that satisfy the following magnetostatic
equations everywhere:

∇ ·�bω = 0, ∇ ×�hω
D = 0, (3)

with �bω and �hω
D the magnetic induction and demagnetizing

fields, respectively, �bω
j = �hω

j + 4π�mω
j in the ferromagnetic

material ( j), and �bω = �hω
D outside the films. The second

equation ∇ ×�hω
D = 0 is solved through the introduction of

a magnetostatic potential, i.e., �hω
D = −∇φω, which is valid

everywhere. The first equation ∇ ·�bω = 0 implies that outside
the films:

0 = ∇2φω, (4)
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and inside film ( j):

0 = −∇2φω
j + 1

2

[(
∂

∂x
− i

∂

∂ ỹ

)
Mω j

+ +
(

∂

∂x
+ i

∂

∂ ỹ

)
Mω j

−

]
.

(5)

The following definitions were introduced: m j
± ≡ m j

x ±
im j

ỹ j ≡ M j
±/4π . The magnetostatic equations are to be solved

with their associated boundary conditions at every interface,
which are continuity of the normal component of �bω and the
tangential component of �hω or equivalent continuity of the
magnetostatic potential φω.

3. Magnetization dynamics, Landau-Lifshitz equation

In our micromagnetic model the energy of the system is the
sum of the energies of each film ( j) given by

Ej =
∫

Vj

dV

{
Aj(

M j
s
)2 (∇ �M )2 − 1

2
�HD(�M ) · �M − �H0 · �M

}
,

(6)

with Aj the exchange constant of film ( j). Thus, Ej includes
exchange, demagnetizing, and Zeeman contributions (one
needs to add also surface contributions that are relevant for
the boundary conditions). The Landau-Lifshitz equation for
the magnetization dynamics in film ( j) is

d �M j

dt
= −|γ | j �M

j × �H j
eff(�M ), (7)

with |γ | j the absolute value of the gyromagnetic factor of film
( j), and the effective field �H j

eff(�M ) = −δEj/δ �M is the sum of
the applied, demagnetizing, and exchange fields acting at film
( j):

�Heff(�M ) = H0(cos θH ẑ + sin θH ŷ) + �H j
D(�M )

+ (
Dj/M j

s

)∇2 �M j, (8)

with Dj the exchange stiffness constant of film ( j), Dj =
2Aj/M j

s . Notice that the demagnetizing field �H j
D(�M ) in gen-

eral has contributions from the magnetization of all the films
(in the dynamic case), thus effectively coupling all the films.
The linear approximation of the Landau-Lifshitz equations of
motion follows from replacing Eq. (2) into Eq. (7), and then
identifying the corresponding linear terms. Thus, the equation
for the linear modes takes the following form in film ( j):

iω�mω
j = |γ | j ˆ̃z

j
(
Dj∇2�mω

j − M j
s ∇φω

j − H j
int�m

ω
j

)
, (9)

with H j
int the magnitude of the equilibrium internal field in film

( j). We divide this equation by 4πM j
s |γ j |, in which case it is

written as

i	 j�m
ω
j = ˆ̃z j

(
d j∇2�mω

j − 1

4π
∇φω

j − h j
int�m

ω
j

)
, (10)

with 	 j ≡ ω/(4πM j
s |γ j |, h j

int ≡ H j
int/(4πM j

s ) nondimen-
sional frequencies and internal fields in film ( j) (notice that
the whole system oscillates with a single frequency ω, this
is just notation), and d j = Dj/4πM j

s = (l j
ex)2 the square of

the so called magnetostatic exchange length (dipolar length),

which is a relevant length scale, that approximately indicates
the length over which the spins are mainly aligned due to the
strength of the exchange interaction relative to magnetostatic
fields. In the case of a single film, Eq. (10) together with the
finite thickness L of the film, indicate that the normalized
frequencies of the modes 	 depend on the nondimensional
ratios lex/L, hint or Hint/Ms, and lex�Q, with �Q the in-plane
wave vector of the mode in question. In the case of several
films the ratios between different gyromagnetic ratios,
between magnetizations, and between exchange lengths,
become also relevant variables in the determination of the
modes dispersion relations and shapes.

B. Green-extinction equations

The frequencies of the spin wave modes as well as their
amplitudes on the surfaces of the samples may be obtained
by solving integral equations satisfied by them. These are
homogeneous extinction equations that may be thought of as
a generalization of Green’s theorem to the equations relevant
to this case, i.e., the magnetostatic equations and the Landau-
Lifshitz equation. Integral equations are thus derived for the
dipole-exchange normal modes evaluated on the surfaces of
the multilayers.

1. Extinction equations outside magnetized films

Extinction equations can be derived for the normal modes
of the system if one integrates in regions outside the mag-
netized samples the following expression that involves a so
called auxiliary function [in this case represented by φ−ω

0 (�x −
�x′), with�x′ an arbitrary reference point]. The latter satisfies the
same magnetostatic equation in that region, as the modes, i.e.,
Eq. (4). The integrand is chosen as the following combination,
and is null due to the first of Eqs. (3):∫
Vout

dV [φ−ω
0 (�x −�x′)∇ ·�bω(�x) − φω(�x)∇ ·�b−ω

0 (�x −�x′)] = 0.

(11)

The volume of integration is chosen outside magnetized sam-
ples, but ending on their limiting surfaces. Since �bω = −∇φω

and�b−ω
0 = −∇φ−ω

0 , integrating by parts the previous equation
one obtains∫

S
d�S · [φ−ω

0 (�x −�x′)�bω(�x) − φω(�x)�b−ω
0 (�x −�x′)] = 0,

(12)

with S the surface of this nonmagnetized region, with its
normal pointing outwards.

The previous equation involves a convolution over the z
and x directions that in our model are in-plane unlimited
coordinates associated with translational invariance. Since the
Fourier transform of a convolution of two functions is the
product of their Fourier transforms (evaluated with different
signs of the wave vectors though), Eq. (12) leads to

0 = φ
−(�Q,ω)
0 (lu − y′)b(�Q,ω)

y (lu) − φ(�Q,ω)(lu)b−(�Q,ω)
0y (lu − y′)

− φ
−(�Q,ω)
0 (ld−y′)b(�Q,ω)

y (ld ) + φ(�Q,ω)(ld )b−(�Q,ω)
0y (ld − y′),

(13)
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here �Q is the in-plane wave vector, and we have assumed
that the outside nonmagnetized region lies between y = ld and
y = lu. Thus, conveniently the integral Eq. (12) have been
transformed into the simple algebraic Eq. (13), at specific
values of the wave vector �Q. Since Eq. (4) in Fourier space
reads (Q ≡ |�Q|):

∂2φω/∂y2 − Q2φω = 0, (14)

we have φ
−(�Q,ω)
0 (y − y′) = exp[±Q(y − y′)], with ± repre-

senting two options of solutions. Using the previous two forms
in Eq. (13) leads to the following two equations for the modes
(U ≡ lu − ld is the thickness of the nonmagnetized region in
question, also notice that y′ has played no role, it drops out of
these equations):

(
e−QU −1

1 −e−QU

)(
b(�Q,ω)

y (lu)

b(�Q,ω)
y (ld )

)

= Q

(
e−QU −1

−1 e−QU

)(
φ(�Q,ω)(lu)

φ(�Q,ω)(ld )

)
. (15)

These equations can be inverted, so that one may
replace the unknowns b(�Q,ω)

y (lu), b(�Q,ω)
y (ld ) in terms of

φ(�Q,ω)(lu), φ(�Q, ω)(ld ):(
b(�Q,ω)

y (lu)

b(�Q,ω)
y (ld )

)
= Q

(− coth(QU ) csch(QU )
− csch(QU ) coth(QU )

)(
φ(�Q,ω)(lu)

φ(�Q,ω)(ld )

)
.

(16)

Notice that if one had exterior regions that extend to
“infinity,” the previous equations reduce to

b(�Q,ω)
y (ls) = Qφ(�Q,ω)(ls), (17)

b(�Q,ω)
y (li) = −Qφ(�Q,ω)(li ), (18)

where y = ls, li represent the limiting surfaces of exte-
rior regions extending to infinity in an upper and lower
region, respectively. Equations (16)–(18) show that nor-
mal magnetic inductions at the surfaces may be re-
placed in terms of the magnetostatic potentials evaluated
there.

2. Extinction equations inside magnetized films

In order to obtain extinction equations associated with
the inside of magnetized samples, we consider the following
integral over a magnetized sample volume:∫

Vin

dV [φω(�x)∇ ·�b−ω
I (�x −�x′) − φ−ω

I (�x −�x′)∇ ·�bω(�x)] = 0,

(19)

with φ,�b corresponding to normal modes, and φI ,�bI repre-
senting auxiliary functions: both do satisfy the magnetostatic
and Landau-Lifshitz equations, i.e., Eqs. (5) and (9) (but
with different signs of the frequencies). The integrand is null
due to the first of Eqs. (3) [notice that we have considered
the auxiliary functions terms evaluated at (−ω), which will
prove useful later;�x′ is a reference point]. Integrating by parts
Eq. (19), one obtains

0 =
∫

S
d�S · [φω(�x)�b−ω

I (�x −�x′) − φ−ω
I (�x −�x′)�bω(�x)] − 4π

∫
Vin

dV [∇φω(�x) · �m−ω
I (�x −�x′) − ∇φ−ω

I (�x −�x′) · �mω(�x)], (20)

Now, taking the cross product of Eq. (9) with �m−ω
I and subtracting that of Eq. (9) evaluated for the auxiliary functions and at

(−ω) with �mω, one obtains

∇φω(�x) · �m−ω
I (�x −�x′) − ∇φ−ω

I (�x −�x′) · �mω(�x) = (
Dj/M j

s

)
[�m−ω

I (�x −�x′) · ∇2�mω(�x) − �mω(�x) · ∇2�m−ω
I (�x −�x′)]. (21)

Using Eq. (21) in Eq. (20) and integrating by parts, one obtains the following extinction integral equation over the surface of the
magnetized sample:

0 =
∫

S
d�S ·

⎧⎨
⎩φω(�x)�b−ω

I (�x −�x′) − φ−ω
I (�x −�x′)�bω(�x) − 4π

(
Dj/M j

s

) ∑
k̃

[m−ω

Ik̃
(�x −�x′)∇mω

k̃
(�x) − mω

k̃
(�x)∇m−ω

Ik̃
(�x −�x′)]

⎫⎬
⎭.

(22)

In the case of a thin film, which lies between y = l1 and y = l2, this previous extinction Eq. (22) corresponds to a convolution
in the z and x directions in both surfaces of the sample, i.e., taking the Fourier transform of Eq. (22) in those directions, one
transforms this integral equation into an algebraic equation for each independent value of the wave-vector �Q and frequency ω:

0 = bI
y(l2 − y′)φ(l2) − φI (l2 − y′)by(l2) − bI

y(l1 − y′)φ(l1) + φI (l1 − y′)by(l1)

− d j

2

(
∂M−
∂y

(l2)MI
+(l2 − y′) + ∂M+

∂y
(l2)MI

−(l2 − y′) − ∂M−
∂y

(l1)MI
+(l1 − y′) − ∂M+

∂y
(l1)MI

−(l1 − y′)
)

+ dj

2

(
∂MI

−
∂y

(l2 − y′)M+(l2) + ∂MI
+

∂y
(l2 − y′)M−(l2) − ∂MI

−
∂y

(l1 − y′)M+(l1) − ∂MI
+

∂y
(l1 − y′)M−(l1)

)
, (23)
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where we have simplified notation by excluding labels (�Q, ω) for the modes and −(�Q, ω) for the auxiliary functions [M± ≡
4π (mx ± imỹ) and d j ≡ Dj/4πM j

s ]. In Appendix A 1 the following auxiliary functions of exponential form are determined:

φ
−(�Q,ω)
I = Ae−α(y−y′ ), MI

± = B±e−α(y−y′ ), (24)

i.e.,

bI
y = [αA − i(B+ − B−) cos θM/2] exp[−α(y − y′)]. (25)

There are six different auxiliary solutions associated with each film ( j), i.e., α = α
( j)
n with n = 1, . . . , 6, and with associated

coefficients A( j)
n , Bn( j)

± , see Appendix A 1 for details. The α’s are solutions of a sixth order equation, Eq. (A6). Using Eqs. (24)
and (25) in Eq. (23), one obtains the following set of six extinction equations (n = 1, . . . , 6) associated with film ( j) for the
modes of wave vector �Q:

0 = e−αL{[αA − i(B+ − B−) cos θM/2]φ(l2) − Aby(l2)} + Aby(l1) − [αA − i(B+ − B−) cos θM/2]φ(l1)

− (d/2)e−αL{[M ′
+(l2) + αM+(l2)]B− + [M ′

−(l2) + αM−(l2)]B+}
+ (d/2){[M ′

+(l1) + αM+(l1)]B− + [M ′
−(l1) + αM−(l1)]B+}, (26)

where indices ( j) and n indicating film ( j) and solution n (from α
( j)
n ) are not shown for simplicity; M ′

± is shorthand for ∂M±/∂y,
and L = l2 − l1 is the thickness of film ( j).

In Sec. IV on boundary conditions, it is shown that for different mechanisms operating at the surfaces it is possible to
express the values of the normal derivatives of the magnetization at the different surfaces, i.e., the M ′

±(l j )’s, in terms of the
magnetization components at the surfaces, i.e., the M±(ln)’s, and proceed to solve then the extinction equations with as many
equations as unknowns. This is explained in the following section.

Now, if one defines for each film the nondimensional quantities α̃ ≡ αlex, Q̃ = Qlex, k̃ = klex, q̃ = qlex, then Eq. (A6) for α

written in terms of nondimensional variables reads (without indices j, n)

2(α̃2 − Q̃2) = −[(k̃ sin θM + iα̃ cos θM )2 + q̃2]

(
1

α̃2 − Q̃2 − hint + 	
+ 1

α̃2 − Q̃2 − hint − 	

)
, (27)

i.e., α̃ is a function of the nondimensional variables �̃Q, H0/Ms, and 	.
Now, if these nondimensional quantities just defined are used in Eq. (26), it reads

0 = e−α̃L̃{[2α̃ − (b̃+ − b̃−) cos θM]φ(l2) − 2by(l2)} + 2by(l1) − [2α̃ − (b̃+ − b̃−) cos θM]φ(l1)

− e−α̃L̃{[M̃ ′
+(l2) + α̃M̃+(l2)]b̃− + [M̃ ′

−(l2) + α̃M̃−(l2)]b̃+} + [M̃ ′
+(l1) + α̃M̃+(l1)]b̃− + [M̃ ′

−(l1) + α̃M̃−(l1)]b̃+, (28)

with L̃ ≡ L/lex, B± = −iAb± (b̃± depend on the same vari-
ables as α̃), M̃± ≡ −idM±. Equation (28) plus the replace-
ment of the boundary conditions (as just explained) shows
explicitly the dependence of the modes on the nondimensional

variables L̃ ≡ L/l j
ex, H0/M j

s ,
�̃Q and on the gyromagnetic ra-

tios |γ j |, as predicted after the Landau-Lifshitz Eq. (10).

3. Set of extinction equations for multiple films

In the previous two sections we wrote extinction equations
for generic regions that are nonmagnetized or that correspond
to magnetized films. The unknowns in these equations are
physical variables evaluated at the edges or surfaces of these
regions: the magnetostatic potential, the normal magnetic
induction, the normal derivative of magnetization compo-
nents, and magnetization components (the frequency is also
an unknown, which ultimately is the eigenfrequency of a
normal mode). More specifically, the unknowns are Fourier
components of these variables that do not couple to other
Fourier components due to in-plane translational invariance.

In the following we discuss how these equations are solved
if there are multiple films. For this it is better to understand
first the case of a single film [37]: Eq. (26) corresponds
to six equations (six possible values of α) for 12 unknowns

[M±(lu), M±(ld ), M ′
±(lu), M ′

±(ld ), φ(lu), φ(ld ), by(lu),
by(ld )]. The boundary conditions associated with the
exchange interaction (to be detailed in another section)
relate the normal derivatives of the magnetization to the
magnetization components at the surfaces, thus reducing
the number of unknowns by four. Furthermore, Eqs. (17)
and (18) correspond to the regions over and under the film,
and as explained before allow us to reduce by two the
number of unknowns. Thus, at the end one has effectively
the six homogeneous equations, Eq. (26), for six unknowns
[M±(lu), M±(ld ), φ(lu), φ(ld )], with the frequency as an
unknown also: this is a well posed eigenvalue problem for the
frequency of the modes and their shapes at the surfaces of the
film (these linear modes are arbitrary up to a multiplicative
constant).

Now, every time an extra film is added to the system, there
are effectively six more equations and six more unknowns
on the surfaces of the films, i.e., the problem remains well
posed and with a reasonable size. Indeed a new film represents
six more equations of the type of Eq. (26), with 12 more
unknowns, but four of those are eliminated by the exchange
boundary conditions and another two of those are effectively
eliminated by the two extra Eq. (16) that correspond to a new
interfilms region. An important point that was implicitly used
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in the previous analysis is that the magnetostatic boundary
conditions correspond to both continuous normal magnetic
induction and magnetostatic potential, which means that the
unknowns in the equations outside the films are the same as
the analogous ones in the inside equations, i.e., the outside
equations do not add extra unknowns.

4. Spin wave modes everywhere

If one is interested in determining the value of all the
physical variables everywhere, i.e., inside magnetized films

or outside them, the presented method in terms of extinction
equations using auxiliary functions may be extended to do
this. First, if one is interested in determining the magnetostatic
potential in a nonmagnetized region, one may use Eq. (12)
where the cross section of the volume of integration that
leads to this equation corresponds to a rectangular section
that has as one edge the surface of a film (y = ld in the
previous notation) and the other edge is at level y inside
this nonmagnetized region. Thus, the equivalent of Eq. (15)
becomes in this case

(−Qe−Q(y−ld ) e−Q(y−ld )

Q 1

)(
φ(�Q,ω)(y)

b(�Q,ω)
y (y)

)
=

( −Q 1
Qe−Q(y−ld ) e−Q(y−ld )

)(
φ(�Q,ω)(ld )

b(�Q,ω)
y (ld )

)
, (29)

which can be inverted to give(
φ(�Q,ω)(y)

b(�Q,ω)
y (y)

)
=

(
cosh[Q(y − ld )] − sinh[Q(y − ld )]/Q

−Q sinh[Q(y − ld )] cosh[Q(y − ld )]

)(
φ(�Q,ω)(ld )
b(�Q,ω)

y (ld )

)
. (30)

Thus one has obtained expressions for φ(�Q,ω)(y), b(�Q,ω)
y (y), i.e., the fields inside nonmagnetized regions, in terms of the known

values of b(�Q,ω)
y (ld ), φ(�Q,ω)(ld ) at the surface of a contiguous film.

Furthermore, if one is interested in the physical variables inside a magnetized region, using an analogous procedure leads to
the following equations, where y is a level inside the magnetized region ( j):

0 = e−α(y−l1 ){[αA − i(B+ − B−) cos θM/2]φ(y) − Aby(y)} + Aby(l1) − [αA − i(B+ − B−) cos θM/2]φ(l1)

− (d/2)e−αL{[M ′
+(y) + αM+(y)]B− + [M ′

−(y) + αM−(y)]B+} + (d/2){[M ′
+(l1) + αM+(l1)]B−+[M ′

−(l1)+αM−(l1)]B+}.
(31)

These are six inhomogeneous equations (associ-
ated to six different α) for six unknowns, i.e.,
by(y), φ(y), M ′

+(y), M+(y), M ′
−(y), M−(y), that can be solved

with ease for these physical variables since it is a 6 × 6
system of linear equations [the variables evaluated at the
surface y = l1 were determined previously from the solution
to the eigensystem of equations associated with Eq. (26)].

III. SYMMETRIC STACKS OF FILMS, MODES WITH
RECIPROCAL AND NONRECIPROCAL FEATURES

In the case of a stack of films that is symmetric with
respect to reflections with respect to a given central plane,
modes that propagate in opposite directions (or whose in-
plane wave vectors differ only by their signs) have the same
frequencies, i.e., reciprocal with respect to frequencies, and
have shapes that are related but nonreciprocal (their respective
magnetostatic potential and magnetization components are
symmetric or antisymmetric specular reflections of each other
with respect to the central symmetry plane). This property is
independent of the angle in which the magnetic dc field is
applied to the structure, and it is valid both for magnetostatic
and dipole-exchange modes.

The previous reciprocal and nonreciprocal properties under
change of sign of the wave vector may be deduced directly
from the structure of the extinction equations in wave vector
space. Notice that in their final form these equations include
the boundary conditions. The details of this are presented in
Appendix A 3 a, where the eigenvalue equations for the modes

and their frequencies are analyzed with respect to how their
solutions differ under a change of sign of the wave vector.
This is done for magnetostatic as well as for dipole-exchange
modes.

The underlying symmetry that explains these properties
under the change of sign of the wave vector is that for a
symmetric stack of films if one applies the dc magnetic field
in the opposite direction and analyzes the modes with respect
to inverted axis (centered in the symmetry plane) the problem
becomes equivalent to the original one. This means that the
original modes should be also modes of the case with inverted
dc magnetic field and inverted axis of reference, but these
modes are written with respect to the new reference frame and
in the new coordinates. The equations for these modes may be
retraced to the original coordinates and in the process one dis-
covers that there are modes for the original system, i.e., with
nonreversed magnetic field, that have the same frequencies of
the original modes, but whose magnetostatic potentials and
magnetization components are symmetric and antisymmetric
specular reflections of the respective fields of the original
modes. This is explained in more detail in Appendix A 3 b.

IV. BOUNDARY CONDITIONS

We are using a micromagnetic continuous model in or-
der to determine the dipole-exchange spin wave modes of
multilayered structures. Within this model one needs to im-
pose magnetostatic boundary conditions, i.e., the continuity
of normal magnetic induction and of magnetostatic potential
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(these are sufficient for magnetostatic modes), but also the
introduction of the exchange field, which involves second
order partial derivatives, requiring the consideration of sup-
plemental boundary conditions at the surfaces of the films.
In the following we briefly review work presented in several
references on this issue of nonmagnetostatic boundary condi-
tions within the continuum model.

A relevant initial work on the topic corresponds to that of
Rado and Weertman in Ref. [19] that introduces the concept
of general “exchange boundary conditions,” through writing
the Landau-Lifshitz equation of motion for the magnetization
of a ferromagnet as

−(1/|γ |)∂ �M/∂t = (
2A/M2

s

)
�M × ∇2 �M + �Tvol, (32)

i.e., the torque on the magnetization is separated into an
exchange part plus all the extra volumetric terms �Tvol. Then
the idea was to integrate the previous expression over a small
volume V that covers the region of separation of the ferromag-
net from the outside (for the moment assumed nonmagnetic),
leading to

0 = −(
2A/M2

s

) ∫
S

dS �M × (∂ �M/∂n) +
∫

dS�Tsup, (33)

where the first term represents a superficial torque of exchange
origin (it is explained in Appendix A 4 a, n represents a normal
direction to the sample surface, pointing to the exterior of
it), and �Tsup represents a torque per unit surface area with
contribution from concentrated superficial torques, which may
have different physical origins.

One of the possible sources of �Tsup corresponds to surface
anisotropies. For example, a form of surface anisotropy areal
energy density is U s

an = Ks[1 − (�M ·�n/Ms)2] (n̂ is the unitary
vector normal to the surface, pointing to the exterior of the
sample). For a film with uniaxial surface anisotropy Soohoo
[20] derived the following form of the boundary conditions for
the dynamic magnetization components, which include partial
pinning (in our case the sign of Ks differs from that reference):

0 = ∂mỹ

∂n
− λ cos(2θM )mỹ, (34)

0 = ∂mx

∂n
+ λ sin2(θM )mx, (35)

with λ = Ks/A (see also Ref. [42]), n = y in the upper surface
of a film, and n = −y in the lower one, θM is the angle that the
equilibrium magnetization makes with the plane of the film.
We refer to Eqs. (34) and (35) as the partially pinned boundary
conditions, which are derived in Appendix A 4 b. Equations
(34) and (35) correspond to an application of Eq. (33), they are
their dynamic linear version (in the case of a magnetic field
applied obliquely they are approximate since the equilibrium
magnetization configuration is also approximate, and they
were used for example in Ref. [4]).

Another source of �Tsup corresponds to the case of an
effective pinning if the ferromagnet is in contact with an
antiferromagnet, the exchange-bias effect [43]. In this case
there is an exchange interaction between the interfacial layers
of the ferromagnet and the antiferromagnet, which is simply
modeled [43] via a surface energy:

US = �p · �M, (36)

with p a pinning parameter, and −�p an effective exchange bias
field. Thus, in this model it follows that

�Tsup = −�M × �p. (37)

More recently, a boundary condition resulting from a ferro-
magnet that has interfacial Dzyaloshinskii-Moriya interaction
(IDMI), has been discussed in Ref. [44]. In this case �Tsup is
modeled as

�Tsup =
∫ L

L−b
dy�M × �Hsup, (38)

with L the thickness of the film, b the thickness of the
interface atomic layer, and the interface effective magnetic
field originating from IDMI is given by

�Hsup = −(2D̃/Ms)ẑ × ∂�m/∂x, (39)

with D̃ a Dzyaloshinskii-Moriya constant, and ẑ the in-
plane direction of an applied magnetic field (direction of the
equilibrium magnetization also). In the case of a Damon-
Eshbach surface mode studied in Ref. [44], with wave-
vector k [exp(−ikx) dependence], the previous surface torque
becomes

�Tsup = −2iD̃bk[mxx̂ + myŷ]. (40)

Substitution into Eq. (33) leads to equations for the dynamic
magnetization components of the type

0 = ∂my/∂y − iD̃kb

A
mx, (41)

0 = ∂mx/∂y + iD̃kb

A
my, (42)

for an upper surface.
The final type of boundary condition (BC) that we discuss

is related to the direct exchange interfacial interaction between
two ferromagnetic layers, something that has been discussed
in several references [21–26]. Initial works on the topic were
those of Hoffmann et al. [21,22], where effective boundary
conditions between two ferromagnetic layers were derived
using a semiclassical model of exchange coupling. Those
boundary conditions were reconsidered by several authors
[23–26] since the Hoffmann BCs do not have a proper be-
havior in the limit of a single continuous film. The resulting
Barnas-Mills boundary conditions [25,26] overcame those
difficulties. Although these BC may be derived semiclassi-
cally starting from a Heisenberg model for the exchange,
they also may be derived assuming that there is an interfacial
energy written within a continuum approach, as follows:

Esup = −
∫

dyA12δ(y)�M1(−a/2) · �M2(a/2), (43)

with y the normal coordinate, and the lattice planes of both
materials are located at y = ±a/2. The associated surface
torque acting on the lower surface (y = −a/2) is

�Tsup = A12 �M1(−a/2) × �M2(a/2), (44)

while in the upper surface the torque is the negative of the
previous one.

Actually, in the case of the continuum model, locating
effectively the interface at y = 0 solved the inconsistencies
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FIG. 3. Dispersion relations of magnetostatic modes of a ferro-
magnetic bilayer made of equivalent films. The films are separated
by 20% of the thickness L of each film. Applied magnetic field
of magnitude H0 = 6.4Ms at an oblique angle θH = 0.454π, θM =
0.154π, ϕ = 0.3π (in the figure negative wave vectors correspond
to ϕ = 0.3π + π . Internal field Hi = 1.04Ms, ωM ≡ |γ |Ms, Q is the
in-plane wave vector in the φ direction.

present in the initial Hoffmann model. The dynamics of the
magnetization at the interfacial lattice planes that follows
from Eq. (43) leads to the following Barnas-Mills boundary
conditions [25,26,45]:

0 = A12 �M
0+
2 × �M0−

1 +a

2
A12

(
∂ �M0+

2

∂y
× �M0−

1 +∂ �M0−
1

∂y
×�M0+

2

)

+ A1

M2
1

(
�M1 × ∂ �M1

∂y

)
0−

+ A2

M2
2

(
�M2 × ∂ �M2

∂y

)
0+

, (45)

0 = A2

M2
2

(
�M2 × ∂ �M2

∂y

)
0+

− A1

M2
1

(
�M1 × ∂ �M1

∂y

)
0−

. (46)

In Appendix A 4 c the Barnas-Mills boundary conditions
[Eqs. (45) and (46)] are derived and their linear version is
presented (they contain approximations for magnetic fields
applied in oblique directions, of similar origin as in the case
of surface anisotropy boundary conditions). Notice that in
Ref. [45] boundary conditions at ferromagnetic interfaces of
finite thickness have been discussed, and it also contains a
discussion of most of the boundary conditions previously
mentioned.

V. EXAMPLES OF MAGNETOSTATIC
AND DIPOLE-EXCHANGE MODES

IN FERROMAGNETIC FILMS

A. Magnetostatic modes in films

In the following we present specific examples of magneto-
static modes calculations. In Appendix A 2 we discuss how
the magnetostatic modes are determined within the context of
the application of the extinction-Green theorems: it is much
simpler than for dipole-exchange modes, since there are only
two eigenvalue equations per film. We write the in-plane
wave vector as �Q = qx̂ + kẑ = Q(sin ϕx̂ + cos ϕẑ), and in
following figures negative wave vectors means ϕ → ϕ + π .

First, we consider two films of equal characteristics, sep-
arated by a distance that is 20% of the thickness of each
film (L), there is a magnetic field of magnitude H0 = 6.4Ms

applied at an angle θ = 0.454π from the plane: this leads to
an internal field of magnitude 1.04Ms and inclination angles of
the magnetization θM = 0.154π in each film. Also ϕ = 0.3π .
For this symmetric bilayer we present in Fig. 3 the dispersion
relations for negative and positive wave vectors: frequency
reciprocity with respect to the sign of the wave vector is
evidenced. These results correspond to similar parameters to
the system presented in the dipole-exchange case of Fig. 6 of
Ref. [11] (we selected the parameters such that the internal
field would be approximately equal to Ms in magnitude). In
Fig. 3 one sees several lower frequency “volume” modes with
characteristics analogous to those discussed for a single film
in Ref. [37], which in the case of a magnetic field applied at an
oblique angle show forward and backward characteristics; and
a couple of “surface” modes of higher frequencies (the con-
tinuous dark region in the “volume” modes region represents
many modes with close frequencies). Then, Fig. 4 shows plots
of the magnetostatic potential at specific values of the wave
vector for the just mentioned two surface modes: one sees that
although there is frequency reciprocity for this pair of equal
films, there is nonreciprocity with respect to the shapes of the
modes (the specific values of Q and ω at which these modes
are plotted are marked with points in Fig. 3). It is known that
this mode nonreciprocity exists for single films [41], i.e., that
for a given sign of the wave vector or direction of propagation
the surface mode propagates, located on one surface of the
film, while for the other sign it travels bound to the opposite
surface. In this case we have a couple of ferromagnetic films
that are close and with an almost perpendicularly applied
magnetic field. Figures 4(a) and 4(b) correspond to the higher

FIG. 4. Magnetostatic potential of magnetostatic modes of a bilayer of ferromagnetic material. Films are separated by 20% of the thickness
L of each film. Applied magnetic field at an oblique angle θ = 0.454π , of magnitude H0 = 6.4Ms, θ = 0.454π, θM = 0.154π, ϕ = 0.3π .
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FIG. 5. Dispersion relations of magnetostatic modes of a bilayer
of Ni and Fe. The films are separated by 6 Å, and have equal
thicknesses LFe = LNi = 200 Å. Applied magnetic field at an oblique
angle θH = 0.3π , of magnitude H0 = 15.9 kG, θFe = 0.135π , θNi =
0.24π , ϕ = 0.35π . Internal fields Hi

Fe = 10.26 kG, Hi
Ni = 12.81 kG.

frequency surface mode and different signs of the wave vector,
they may be understood in terms that the surface modes are
located at the outer surfaces of the two different films, i.e.,
effectively on the opposite sides but also far apart. While for
the lower frequency surface mode and again for different signs
of the wave vector Figs. 4(c) and 4(d) show the surface modes
in different films and effectively opposite sides, but in this
case the modes have significant amplitudes in the opposite
film, explaining the frequency difference with the modes of
Figs. 4(a) and 4(b).

In Fig. 5 we present magnetostatic dispersion relations for
a bilayer of different ferromagnets, Ni and Fe films. There
is a magnetic field of magnitude H0 = 15.9 kG applied at an
oblique angle θH = 0.3π , the films are separated by a distance
of 6 Å, each has a thickness of LFe = LNi = 200 Å, and ϕ =
0.35π . The main features of the dispersion relations are asso-
ciated with the features of isolated modes in each film [37].
For example, we see dispersion relations emerging at Q = 0
from frequencies close to 44 and 50 GHz, while according to
the theory of a single film [37] they should emerge at ω =
|γ |

√
H2

i + Hi cos2 θM , with Hi the internal field inside the re-
spective film, which leads to values of 44.1 and 49.6 GHz, re-
spectively, for Ni and Fe, i.e., there is coincidence (values for
parameters of Ni and Fe were taken as in Fig. 9 of Ref. [17],
i.e., for Ni 4πMs = 6 kG, g = 2.2 and for Fe 4πMs =
21 kG, g = 2.1). Furthermore, according to Ref. [37], for
a single film volume modes frequencies should lie in the
range between ω = |γ |

√
H2

i + 4πMsHi sin2 ϕ cos2 θM and
ω = |γ |

√
H2

i + 4πMsHi , which is broadly consistent with
Fig. 5, since HNi

i = 12.81 kG, θNi = 0.24π , and HFe
i =

10.26 kG, θFe = 0.135π . These previous frequency limits
are represented for each film by dashed horizontal lines in
Fig. 5, of different colors, notice that there is an overlap
between volume modes frequencies. In particular one sees
that in this case there is frequency nonreciprocity for the
surface modes as the sign of the wave vector is changed.

FIG. 6. Magnetostatic potential of magnetostatic surface modes
of a bilayer of Ni and Fe, at particular values of frequencies and wave
vectors (ω = 55.8 GHz, Q = ±106/cm). The films are separated
by 6 Å, and have equal thicknesses LFe = LNi = 200 Å. Applied
magnetic field of magnitude H0 = 15.9 kG at an oblique angle θ =
0.3π , θFe = 0.135π , θNi = 0.24π , ϕ = 0.35π .

The higher frequency modes of Fig. 5 (blue lines) are surface
modes localized mainly in the Fe film, and in this case
have different frequencies for different signs of the wave
vector due to the interaction with the Ni film. As mentioned,
the highest frequency volume modes of isolated Ni have an
overlap with the lowest volume modes of isolated Fe, and
this leads to hybridization between these modes when the
films are close together, as is evident in the region around
47 GHz. Figure 6 shows plots of the magnetostatic potential
of the highest surface modes just mentioned (originating in
Fe), at particular values of the wave vectors (the frequencies
and wave vectors of these plots are marked by dots in Fig. 5).
Figure 6(a) corresponds to a negative wave vector, it shows
the magnetostatic potential of a mode of surface character that
is mainly confined to the exterior surface of the Fe film; and
Fig. 6(b) corresponds to a surface mode with a positive wave
vector of the same magnitude, the magnetostatic potential is
mainly confined to the interior surface of the Fe film, but in

FIG. 7. Dispersion relations of magnetostatic modes of a multi-
layer of Ni (two films) and Fe (three films) symmetrically located,
as in Fig. 1. The films are separated by 6 Å, and have equal
thicknesses LFe = LNi = 200 Å. Applied magnetic field of magnitude
H0 = 15.9 kG at an oblique angle θH = 0.3π , θFe = 0.135π , θNi =
0.24π , ϕ = 0.35π . Internal fields Hi

Fe = 10.26 kG, Hi
Ni = 12.81 kG.
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FIG. 8. Magnetostatic potential of magnetostatic surface modes of a a multilayer of Ni (two films) and Fe (three films). Same parameters
as in Fig. 7, and plots correspond to marked points there. (a) and (b) Correspond to the highest frequency surface mode, with wave vectors
±5 × 105/cm, and (c) and (d) to the lower frequency surface modes at Q = +5 × 10−5/cm2.

this case it has also significant values inside Ni, explaining
why its frequency differs from that of mode (a).

We now include Figs. 7 and 8 that correspond to mag-
netostatic modes of a multilayer of five films, two of Ni,
and three of Fe (intercalated and ordered in a symmetrical
way, as in Fig. 1). Figure 7 shows the dispersion relations
of the magnetostatic modes, its interpretation is similar to
the one given for the case of a bilayer of Ni and Fe of
Fig. 5: one still has frequency reciprocity under change of
wave-vector sign, although in this case there are more modes
since there are more coupled films. And Fig. 8 shows plots
of the magnetostatic potential in particular cases: those of
the surface modes marked by points in Fig. 7. We included
this figure in order to show that these surface modes may
have significant amplitudes in almost all of the films involved.
In particular, Figs. 8(a) and 8(b) correspond to the highest
frequency surface mode, with wave vectors that are the nega-
tive of each other (Q = 5 × 10−5/cm2): one sees that there is
nonreciprocity of the mode shapes in this case, but evidently
they do have a reflection symmetry with respect to each
other. Furthermore, Figs. 8(c) and 8(d) show the magnetostatic
potential of the lower frequency surface modes for the same
and positive wave vector: again one sees important amplitudes
of the potential in almost all films, but with a different
distribution.

B. Dipole-exchange modes in films

In the following we discuss results on dipole-exchange
modes that follow from the application of the theory presented
in the previous sections.

As a first example, we consider a bilayer made of two
equivalent ferromagnetic films, with exchange constant such
that A/L2 = 0.1, with L the thickness of one film. In Fig. 9(a)
a comparison is made of dipole-exchange dispersion rela-
tions of this bilayer between the cases magnetized in-plane
with longitudinal (ϕ = 0, dashed curves) and perpendicu-
lar propagation (ϕ = π/2) that correspond to the left fig-
ure (actually this figure reproduces the results of Fig. 6 of
Ref. [11], except that we have included results for negative
wave vectors), with those of the right figure that correspond
to the bilayer magnetized obliquely, with an equivalent in-
ternal field (in magnitude) to the previous cases and with
ϕ = 0.3π . In the right figure we also compare the dipole-
exchange modes frequencies with the corresponding magne-
tostatic modes frequencies (dashed curves) for the same pa-
rameters: the coincidence is good at low values of the in-plane
wave vectors, as expected. This allows us to understand the
structure of the dipole-exchange modes at low wave vectors,
since the figure shows clearly hybridization between sur-
face modes of magnetostatic origin with exchange dominated
modes. As for magnetostatic modes in bilayers of identical

FIG. 9. Dispersion relations of dipole-exchange modes of a double layer made of equivalent ferromagnetic films, with an exchange A
constant such that A/L2 = 0.1, with L the thickness of a single film, Q the wave vector, ωM ≡ |γ |Ms. Left figure: Magnetic field applied
in-plane, of magnitude H0 = Ms, dashed curves correspond to ϕ = 0, and continuous curves to ϕ = π/2. Right figure: Magnetic field applied
at an oblique angle θ = 0.454π , of magnitude H0 = 6.4Ms, θM = 0.154π, ϕ = 0.3π , internal field of magnitude HFe

i = 1.04Ms. This figure
includes comparison with pure magnetostatic modes dispersion relations for low values of the wave-vector Q, which are the dashed curves.
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FIG. 10. Frequencies of dipole-exchange modes of a multilayer
stack Fe/Ni/Fe/Ni/Fe, as a function of the common thickness L of
each layer. Applied magnetic field of magnitude H0 = 16.94 kG at
an oblique angle θ = 0.49π , θFe = 0.28π , θNi = 0.48π , ϕ = 0.35π .
Internal fields of magnitude HFe

i = 1.05 kG, HNi
i = 10.96 kG.

films (our Fig. 3), these figures evidence reciprocal frequency
behavior as the sign of the wave vector is changed. The
effect of inclining the applied magnetic field [i.e., going
from Fig. 9(a) to 9(b)] is to eliminate the backward behavior
(associated with a negative group velocity) of the dispersion
relation of the longitudinal propagation case (ϕ = 0) that is
present in the in-plane case.

Next we consider a configuration that may be compared
with that of Fig. 9 of Ref. [17] that corresponds to a stack
of five films, Fe/Ni/Fe/Ni/Fe disposed in a symmetric way,
as in Fig. 1. The frequencies of the lowest modes of the
structure are plotted as a function of the layer thicknesses
(all equal) in Fig. 7. A magnetic field is applied at an
oblique angle θ = 0.49π of magnitude H0 = 16.94 kG such
that the internal field in Fe is similar to the internal field
of Fig. 9 of Ref. [17], that is 1 kG. The parameters of the
ferromagnets are: Fe, 4πMs = 21 kG, g = 2.1, A = 2 × 10−6

erg/cm; Ni, 4πMs = 6 kG, g = 2.2, A = 0.7 × 10−6 erg/cm;
and an interlayer exchange constant of A12 = 10 erg/cm2 is

considered. The internal magnetic fields have magnitudes
HFe

i = 1.05 kG, HNi
i = 10.96 kG, θFe = 0.28π , θNi = 0.48π ,

ϕ = 0.35π .Except for the lowest modes, the frequencies
come in 2–3 groups that result from lifting of degeneracies
due to the interactions in the stack of the two films of Ni and
three films of Fe. This is a lifting of degeneracies of exchange-
type modes induced by the interlayer exchange interactions
included [17]. As far as the dependence of the frequencies on
the thickness of the layers shown in Fig. 10, it is a decaying
behavior for all modes except for the lowest one of dipolar
origin: this is due to their exchange origin, i.e., transverse os-
cillations across the thickness of the films with a given number
of nodes become less energetic as the thickness of the films
increases.

Then, we present several figures for a bilayer of equivalent
Fe films: frequencies of the lowest modes as a function of the
magnitude of the interlayer exchange interaction parameter
A12, and plots of the magnetization of selected modes that
are shown to evolve as A12 changes. The thickness of the Fe
layers is 400 Å, 4πMs = 21 kG, g = 2.1. In Fig. 11 we present
the frequencies of the lowest dipole-exchange modes of this
bilayer of Fe films as a function of the interlayer coupling
constant A12. The left figure corresponds to an applied in-
plane magnetic field of magnitude H0 = 1 kG, ϕ = π/2, and
the right figure to a magnetic field of magnitude H0 = 18.2 kG
applied at an oblique angle θ = 0.491π , θFe = 0.31π , ϕ =
0.3π , internal field of magnitude HFe

i = 0.92 kG, i.e., an
internal magnetic field of similar magnitude as the one of the
left figure. Actually the left figure was chosen with the same
parameters as those of Fig. 5 of Ref. [17], and it reproduces
it. The interpretation of the left figure [17] is that the third
mode corresponds to the surface Damon-Eshbach mode of
a “full” film of 800 Å, and that the others are exchange
modes of 400 Å films at A12 = 0, and that as A12 increases
they do split in frequencies between antisymmetriclike modes
of higher frequencies and symmetriclike modes that retain
their frequencies. Our right figure, which has a quite inclined
applied magnetic field (close to π/2) and with a similar
internal field, shows a qualitatively similar behavior than
the one of the left figure for an in-plane field, although the

FIG. 11. Frequencies of dipole-exchange modes of a double layer of equivalent Fe films as a function of the interlayer coupling
constant A12. Thickness of layers is 400 Å. Left figure: Applied in-plane magnetic field of magnitude H0 = 1 kG, ϕ = π/2. Right figure:
Applied magnetic field of magnitude H0 = 18.2 kG at an oblique angle θ = 0.491π , θFe = 0.31π , ϕ = 0.3π , internal field of magnitude
HFe

i = 0.92 kG.
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FIG. 12. Magnetization components of the lowest frequency dipole-exchange mode of a double layer of Fe films, for different values of
the interlayer coupling constant A12, left figure has A12 = 0 and right figure A12 = 5 erg/cm2 (black curves correspond to mx , and orange to
mỹ). Applied magnetic field of magnitude H0 = 18.2 kG at an oblique angle θ = 0.491π , θFe = 0.31π , ϕ = 0.3π . Internal field of magnitude
HFe

i = 0.92 kG, thickness of layers is 400 Å each.

three lowest modes are nondegenerate at A12 = 0 in this
case. In Fig. 12 we present the magnetization components
of the lowest frequency dipole-exchange mode of this dou-
ble layer of equivalent Fe films, for different values of the
interlayer coupling constant A12: the left figure corresponds
to no interlayer exchange coupling and the right figure to
A12 = 5 erg/cm2[black curves correspond to mx, and orange
to mỹ, and the parameters correspond to those of Fig. 11(b),
i.e., to an obliquely applied magnetic field]. It is seen that
with increasing A12 the magnetizations of both films become
almost coupled continuously into antisymmetriclike modes in
this case. In Fig. 13 we present similar plots as in Fig. 12,
with the same parameters but now for the magnetization
components of the fourth and fifth dipole-exchange modes.
The two left figures correspond to the fourth mode, A12 = 0,
A12 = 5 erg/cm2, respectively, and the third figure to the fifth
mode, A12 = 5 erg/cm2 (black curves correspond to mx, and
orange to mỹ). One sees that at increasing A12 for the fourth
mode the magnetizations of both films become almost coupled
continuously into a symmetriclike mode, and that even at
A12 = 0 the continuity was almost there; while the plot for

the fifth mode at A12 = 5 erg/cm2 shows an antisymmetriclike
mode between both films, with not such a good continuity as
in the previous case.

Finally, in Fig. 14 we present calculations of dispersion
relations of symmetric systems of: (a) three films of Fe-Co-Fe,
and (b) five films of Fe-Co-Fe-Co-Fe. These results compare
well with Brillouin light scattering (BLS) experimental
results presented in Fig. 6 of Ref. [46], but we do the fitting
of the experimental results with somewhat different exchange
constants: we do use AFe = 2.7 × 10−6 erg/cm, ACo = 2.1 ×
10−6 erg/cm, while they did use AFe = 2.1 × 10−6 erg/cm,
ACo = 3.0 × 10−6 erg/cm. Notice that there are uncertainties
in the literature about the values of these constants, they vary
due to the method of measurement, the thickness of the films,
environment, etc. For example in Ref. [47], for films of Co
of 10 nm they do quote two values for the exchange constant:
ACo = 1.5 × 10−6 erg/cm with a measurement method based
on spin spiral formation, and ACo = 2.1 × 10−6 erg/cm by
BLS, which coincides with our estimate. Also, Ref. [48]
measured ACo = 1.9 × 10−6 erg/cm by BLS on Co
layers.

FIG. 13. Magnetization components of the fourth and fifth dipole-exchange mode of a double layer of Fe films, for different values of the
interlayer coupling constant A12 (black curves correspond to mx , and orange to my). The two left figures correspond to the fourth mode, A12 = 0,
A12 = 5 erg/cm2, respectively, and third figure to the fifth mode, A12 = 5 erg/cm2. Applied magnetic field of magnitude H0 = 18.2 kG at an
oblique angle θ = 0.491π , θFe = 0.31π , ϕ = 0.3π . Internal field of magnitude HFe

i = 0.92 kG, thickness of layers is 400 Å each.
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FIG. 14. Dispersion relation of multilayers composed of Fe and Co. (a) Symmetric system of three films of Fe-Co-Fe. (b) Symmetric
system of five films Fe-Co-Fe-Co-Fe. The parameters are MFe = 1580 G, MCo = 1450 G, gFe = 1.99, gCo = 2.1, AFe = 2.7 × 10−6 erg/cm,
ACo = 2.1 × 10−6 erg/cm, LFe = 10 nm, LCo = 20 nm, magnetic field applied in-plane H0 = 500 Oe, and perpendicular propagation (ϕ =
π/2). In the Fe-Co interfaces there is partial pinning characterized by Ks ≈ 0.4 erg/cm2 and the exchange interaction constant between films
is A12 ≈ 20 erg/cm2.

VI. CONCLUSIONS, SUMMARY

We have developed a theory, which is an extension of the
Green-extinction theorems, that allows us to calculate with
some ease the frequencies and shapes of the magnetostatic
and dipole-exchange modes of multilayer structures of fer-
romagnetic films. If there are N films, one needs to solve a
6N × 6N eigenvalue problem to determine the frequencies of
the modes, and the shape of the modes follow by a similar size
calculation. This may be done under general conditions with
respect to possible boundary conditions at the surfaces of the
films (the films may be in contact with nonmagnetic materials
or in close proximity with other magnetic materials), and also
with respect to the inclination of an applied magnetic field to
the structure.

We have presented numerical results for magnetostatic
modes and dipole-exchange modes on several structures. Our
calculations reproduce old results in the literature, and focus
on new results in configurations with inclined applied mag-
netic fields. In particular, we have shown that for stacks of
films which are symmetric with respect to a central plane,
modes that propagate in opposite directions have the same
frequencies but their shapes are related through specular re-
flections with respect to the central plane (this is even valid for
applied fields in an oblique direction, and with the exchange
interaction included). These results are a generalization of the
well-known result on Damon-Eshbach magnetostatic surface
modes of thin films, i.e., modes that propagate in opposite
directions have the same frequency but their shapes attach to
the opposite surfaces.

The study of spin wave modes in multilayers has been
of interest in part because it provides a way to determine
important film parameters, either bulk or surface parameters,

or parameters that describe interactions with other films. Thus,
we have focused on configurations with an inclination of the
applied magnetic field since it brings an experimental degree
of freedom that changes frequencies and the shapes of the
modes: then it becomes a way of testing the validity of the-
oretical models, in particular with respect to the appropriate
boundary conditions and the strength of surface anisotropies
or interaction parameters.

It was already seen in the literature on the topic that there is
a very rich variety of spin wave modes in these multilayered
ferromagnetic structures: we confirmed and extended this a
bit. This rich variety may be exploited to good use in some
applications. The multilayers of films are structures of com-
mon use, and the method presented in this work is a practical
way to determine the details of the spin wave modes in
them.
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APPENDIX: MULTILAYER UNDER AN OBLIQUE
APPLIED MAGNETIC FIELD

1. Auxiliary functions

The equations to be solved for the auxiliary func-
tions in the case of an applied magnetic field at an an-
gle θH with the planes of the films are the following for
film ( j):

0 =
(

− ∂2

∂y2
+ Q2

)
φ

−(�Q,ω)
G − i

2

(
cos θ

j
M

∂
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+ ik sin θ

j
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−(�Q,ω)
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These equations follow from Eqs (5) and (9), and are written in Fourier space, for components −(�Q, ω), �Q = qx̂ + kẑ; d j ≡
Dj/4πM j

s , h j
int ≡ H j

int/4πM j
s , θM ≡ θ

j
M, 	 j ≡ ω/4πM j

s |γ j |. We look for solutions of exponential form:

φ
−(�Q,ω)
I = Ae−α(y−y′ ), MI

± = B±e−α(y−y′ ). (A2)

Replacing these previous forms into Eqs. (A1) one obtains the following linear system for A, B±:

0 = 2(α2 − Q2)A + i
(
q − α cos θ

j
M + ik sin θ

j
M

)
B+ + i

(
q + α cos θ

j
M − ik sin θ

j
M

)
B−, (A3)

0 = [
d j (α

2 − Q2) − h j
int + 	 j

]
B+ + i

(
q + α cos θ

j
M − ik sin θ

j
M

)
A, (A4)

0 = [
d j (α

2 − Q2) − h j
int − 	 j

]
B− + i

(
q − α cos θ

j
M + ik sin θ

j
M

)
A. (A5)

Equations (A4) and (A5) into Eq. (A3) leads to the following equation for α:

2(α2 − Q2) = −[(
k sin θ

j
M + iα cos θ

j
M

)2 + q2
]( 1

d j (α2 − Q2) − h j
int + 	 j

+ 1

d j (α2 − Q2) − h j
int − 	 j

)
. (A6)

For general θ
j

M Eq. (A6) is a sixth order equation for α, then
we have in general six different solutions α

j
n for each film ( j),

with n = 1, . . . , 6. Notice that if Eq. (A6) for α is written in
terms of the variable iu = α it becomes an equation for the
roots of a sixth order polynomial in u with real coefficients:
by a theorem of algebra it has solutions that come in complex
conjugate pairs. Coming back to the variable α this means
that there are three solutions with the real part of α positive,
and three solutions with their real parts the negatives of
the previous values. Once an α

j
n has been determined from

Eq. (A6), Eqs. (A4) and (A5) determine the B j
n± in terms of

the Aj
n:

B j
n± = −iA j

n

[
q ± α

j
n cos θ

j
M ∓ ik sin θ

j
M

]
{
d j

[(
α

j
n
)2 − Q2

] − h j
int ± 	 j

} ≡ −iA j
nbj

n±.

(A7)

The Aj
n become overall multiplicative constant for the aux-

iliary functions of Eqs. (A2) [Eqs. (A3)–(A5) are homoge-
neous].

Notice that these solutions, which we call auxiliary func-
tions, are the basis of the so called partial waves method [3,17]
used to solve the problem of finding the dipole-exchange
modes in single films or multilayers: basically the solution in
that case is searched as linear combinations of these partial
waves in each submedium, that are matched through the
boundary conditions.

2. Magnetostatic modes

The determination of the magnetostatic modes of a multi-
layer of ferromagnetic films is also possible with this method.

If in the case of dipole-exchange modes for every film
there were effectively six homogeneous equations and six
unknowns to determine the eigenmodes and frequencies at the
surfaces (associated with six independent auxiliary functions),
in the magnetostatic case there are effectively two equations
and two unknowns for each film (two auxiliary functions). The
equations for the magnetostatic modes are basically obtained
by replacing by zero the exchange constant d j in the respective
equations for the dipole exchange modes. Thus, the extinction
Eq. (23) becomes

0 = bI
y(l2 − y′)φ(l2) − φI (l2 − y′)by(l2) − bI

y(l1 − y′)φ(l1)

+ φI (l1 − y′)by(l1), (A8)

where labels (�Q, ω) for the modes and −(�Q, ω) for the
auxiliary functions have been omitted. The auxiliary functions
have the following exponential form in film ( j):

φ
−(�Q,ω)
I = Aje−α j (y−y′ ), MI

± = B( j)
± e−α j (y−y′ ), (A9)

bI
y = [αAj − i(B( j)

+ − B( j)
− ) cos θ j/2]e−α j (y−y′ ), (A10)

where from Eq. (A7) one deduces that in the magnetostatic
case

B( j)
± = iA j

(q ± α j cos θ j ∓ ik sin θ j )

h j
int ∓ 	 j

≡ −iA jb
( j)
± , (A11)

and from Eq. (A6) that α j satisfies a quadratic equation,
leading to

α
(1,2)
j = Q

⎛
⎝ ih j cos ϕ sin θ j cos θ j ±

√(
	2

j − h2
j − h j

)(
	2

j − h2
j − h j sin2 ϕ cos2 θ j

)
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j + h j cos2 θ j − 	2
j

⎞
⎠, (A12)
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[last]i.e., there are two solutions with superindices (1,2), that
in α

(1,2)
j correspond to signs +,− in Eq. (A12) [it means

also that the Aj, B( j)
± should have the indices (1,2) since

there is one such solution for each α
(1,2)
j ]. Here the wave

vector was written as �Q = qx̂ + kẑ = Q(sin ϕx̂ + cos ϕẑ). For
example, for the in-plane case (θ j = 0) the previous expres-
sion becomes α2

j = q2 + k2/μ j , and for the perpendicular
to plane case (θ j = π/2), α2

j = μ jQ2, with μ j = (h2
j + h j −

	2
j )/(h2

j − 	2
j ).

Having clarified how to obtain the auxiliary functions in
the magnetostatic case, the remaining task is to combine the
extinction equations outside the samples, i.e., Eqs. (16)–(18),
with the interior extinction equations for the different films,
i.e., Eq. (A8). In the latter process the normal magnetic
inductions may be eliminated from these equations, leading
to effectively two equations per each film considered, and to
an homogeneous eigenvalue problem for the frequencies of
the modes and the magnetostatic potentials of these modes
evaluated at the surfaces of the films. For example, for two
films [(u, d ) mean upper and lower films] the magnetostatic
extinction equations become [the origin is located symmet-
rically between the two films, the upper film surfaces are at
y = l and at y = lu (upper one), and the lower film surfaces at
y = −ld (lower one) and y = −l]

0 = e−αu
n lu

[
2
(
αu

n − Q
) − cos θu

(
bu

n+ − bu
n−

)]
φ(lu)

− e−αu
n l
{
2
[
αu

n + Q coth(2Ql )
] − cos θu

(
bu

n+ − bu
n−

)}
φ(l )

+e−αu
n lφ(−l )Q/ sinh(2Ql ), (A13)

0 = eαd
n l

{
2
[
αd

n − Q coth(2Ql )
] − cos θd

(
bd

n+ − bd
n−

)}
φ(−l )

− eαd
n ld

[
2
(
αd

n + Q
) − cos θd

(
bd

n+ − bd
n−

)]
φ(−ld )

+ eαd
n lφ(l )Q/ sinh(2Ql ), (A14)

where n = 1, 2, and

bu
n± = −(

q ± αu
n cos θu ∓ ik sin θu

)
/(hu ∓ 	u), (A15)

bd
n± = −(

q ± αd
n cos θd ∓ ik sin θd

)
/(hd ∓ 	d ). (A16)

3. Symmetry considerations

We are interested if there are reciprocal or nonreciprocal
relations for the frequencies and modes of multilayers when
the wave vector �k = qx̂ + kẑ changes sign, or equivalently
ϕ → ϕ + π .

a. Analysis of the extinction equations under change
of sign of the wave vector

We analyze separately the magnetostatic and dipole-
exchange cases.

Magnetostatic modes. If there is a change of sign of the
wave vector, let us call the new constant α of the auxiliary
functions as α̃. Then, according to Eq. (A12),

α̃(1) = −α(2), α̃(2) = −α(1), (A17)

i.e., the new set of α̃ is the negative of the set of α. Now, for a
single ferromagnetic film with surfaces at y = ±l combining
Eqs. (17) and (18) with Eq. (A8) leads to the following
extinction equations for the magnetostatic modes:

0 = e−αnl [2(αn − Q) − cos θ (bn+ − bn−)]φ(l )

− eαnl [2(αn + Q) − cos θ (bn+ − bn−)]φ(−l ), (A18)

where n = 1, 2, and

bn± = −(q ± αn cos θ ∓ ik sin θ )/(h ∓ 	). (A19)

In changing the sign of the wave vector, the sets of α and b±
change signs, and Eq. (A18) becomes

0 = −eαnl [2(αn + Q) − cos θ (bn+ − bn−)]φ(l )

+ e−αnl [2(αn − Q) − cos θ (bn+ − bn−)]φ(−l ), (A20)

i.e., the frequencies are reciprocal ω(�k) = ω(−�k) [the deter-
minants resulting from Eqs. (A18) and (A20) are equivalent],
but the modes are specularly related [φ(±l ) → φ(∓l )].

Similarly, one may analyze the case of magnetostatic
modes in two films changing �k → −�k in Eqs. (A12)–(A16):
one sees that if the films are different (either in geometry or
materials) there are no symmetry relations (this is seen for
example in Fig. 5), but if the films are of the same dimensions
and the same type there is still reciprocity in frequencies
and the modes are specularly related, as it is seen in Fig. 3.
One may generalize these results to stacks of films, if the
stack is specularly symmetric with respect to a given plane
the frequencies are reciprocal and the modes are specularly
related, this is seen for example in Fig. 7.

In the following subsection on dipole-exchange modes we
discuss the underlying symmetry that explains the previous re-
sults, since the analysis for magnetostatic modes is analogous.

Dipole-exchange modes. In the case of dipole-exchange
modes if the sign of the wave vector is changed in Eq. (A6)
for the paramater α, and at the same type α is changed into
−α, the equation remains unchanged, meaning that the new
set of solutions α̃ are the negatives of the α, as occurred in the
magnetostatic case. Now we consider a single ferromagnetic
film, and to be specific we consider boundary conditions
associated with partial pinning, i.e.,

∂M±
∂n

= −λ sin2 θM± ± λ

2
cos2 θ (M+ − M−). (A21)

The extinction Eq. (26) in this case become

0 = e−αnl [2(αn − Q) − cos θ (bn+ − bn−)]φ(l ) f − eαnl [2(αn + Q) − cos θ (bn+ − bn−)]φ(−l )

+ e−αnl{[(λ sin2 θ − αn)bn−+(λ/2) cos2 θ (bn+ − bn−)]M̃+(l ) + [(λ sin2 θ−αn)bn+−(λ/2) cos2 θ (bn+−bn−)]M̃−(l )}
+ eαnl{[(λ sin2 θ+αn)bn− + (λ/2) cos2 θ (bn+−bn−)]M̃+(−l ) + [(λ sin2 θ + αn)bn+ − (λ/2) cos2 θ (bn+ − bn−)]M̃−(−l )},

(A22)
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where M̃± ≡ −idM±, and n = 1, . . . , 6, and

bn± = (q ± αn cos θ ∓ ik sin θ )/(d (α2
n − Q2) − h ± 	).

(A23)

If one changes the sign of �Q, i.e., of q and k, the sets of α

and the b± change sign, and as for the magnetostatic case,
the new equations are equivalent to the set of Eq. (A22)
leading to reciprocal frequencies, but the variables have been
“specularly reflected” with respect to the plane y = 0 in the
following way: φ(±l ), M+(±l ), M−(±l ) → φ(∓l ),−M( ∓
l ),−M−(∓l ).

Now, following a similar analysis as in the magnetostatic
case one may conclude in the dipole-exchange case that
for a pair of inequivalent films the frequency dispersion
relations as well as the modes are nonreciprocal, but if the
two films are equivalent the frequencies are reciprocal (as in
Fig. 9) and the potential and magnetizations of the modes
are specularly reflected symmetrically for the potential and
antisymmetrically for the magnetizations, as in the single film
case just explained. And again, as in the magnetostatic case,
one concludes that a stack of films that is symmetric in all its
properties with respect to a specular reflection with respect to
a given central plane, then the frequencies are reciprocal and
the modes are specularly reflected in a symmetric way for the
potentials and antisymmetrically for the magnetizations.

b. Underlying symmetry, derivation of modes reciprocal
in frequencies and nonreciprocal in shapes

The underlying symmetry that explains the previous results
is associated with the fact that for a symmetric stack of films
(with respect to a central plane) if one applies the dc magnetic
field in the opposite direction and analyzes the modes with
respect to inverted axes one should get the same frequencies
and same modes in the new reference frame since under
this change the system is equivalent to the original one. We
elaborate about this in the following. The linear version of the
Landau-Lifshitz equation in a given film ( j), i.e., Eq. (9), read
(∂/∂ ỹ = cos θ∂/∂y − sin θ∂/∂z):

i	mỹ = d∇2
�x mx − 1

4π

∂φ

∂x
− himx, (A24)

i	mx = −d∇2
�x mỹ + 1

4π

(
cos θ

∂φ

∂y
− sin θ

∂φ

∂z

)
+ himỹ,

(A25)

with hi the normalized magnitude of the internal field, and
we do not write indices ( j) associated with the given film.
The equations for the magnetostatic potential in magnetic and
nonmagnetic regions are, respectively:

0 = ∇2
�x φ − 4π (∂mx/∂x + ∂mỹ/∂ ỹ), (A26)

0 = ∇2
�x φ. (A27)

These equations are to be solved subject to boundary condi-
tions of magnetostatic and exchange origin. We will assume
that there is a mode m̃x, m̃ỹ, φ̃, with frequency ω̃ that satisfies
these equations and boundary conditions. Now, if the orig-
inal axis are (x, y, z), we call the inverted axis (X,Y, Z ) =

(−x,−y,−z). Then the equivalent of Eq. (9) in a given film
with an inverted dc field and in the inverted frame read

i	MỸ = d∇2
�X

MX − 1

4π

∂


∂X
− hiMX , (A28)

i	MX = −d∇2
�X

MỸ + 1

4π

(
cos θ

∂


∂Y
− sin θ

∂


∂Z

)
+ hiMỸ ,

(A29)

and the associated magnetostatic equations are

0 = ∇2
�X

 − 4π (∂MX /∂X + ∂MỸ /∂Ỹ ), (A30)

0 = ∇2
�X

. (A31)

Now these previous equations and boundary conditions are
solved by modes of the same form and frequencies as the ones
for the original problem, i.e.,

i	̃m̃ỹ(�X ) = d∇2
�X

m̃x − 1

4π

∂φ̃

∂X
− him̃x, (A32)

i	̃m̃x(�X ) = −d∇2
�X

m̃ỹ + 1

4π

(
cos θ

∂φ̃

∂Y
− sin θ

∂φ̃

∂Z

)
+ him̃ỹ,

(A33)

0 = ∇2
�X
φ̃ − 4π (∂m̃x/∂X + ∂m̃ỹ/∂Ỹ ), (A34)

0 = ∇2
�X
φ̃, (A35)

with all the fields evaluated at �X = (X,Y, Z ). Changing vari-
ables according to (X,Y, Z ) = (−x,−y,−z), one gets

i	̃m̃ỹ(−�x) = d∇2
�x m̃x + 1

4π

∂φ̃

∂x
− him̃x, (A36)

i	̃m̃x(−�x) = −d∇2
�x m̃ỹ − 1

4π

(
cos θ

∂φ̃

∂y
− sin θ

∂φ̃

∂z

)
+him̃ỹ,

(A37)

0 = ∇2
�x φ̃ + 4π (∂m̃x/∂x + ∂m̃ỹ/∂ ỹ), (A38)

0 = ∇2
�x φ̃, (A39)

with all the fields now evaluated at −�x = (−x,−y,−z).
Thus, if the mode φ̃(�x), m̃x(�x), m̃ỹ(�x) is a solution of the
original Eqs. (A24)–(A27) at frequency ω̃, then comparing
Eqs. (A36)–(A39) with Eqs. (A24)–(A27) one concludes
that φ̃(−�x), −m̃x(−�x), −m̃ỹ(−�x) is a solution of the origi-
nal Eqs. (A24)–(A27) at frequency ω̃, or a mode of those
equations that correspond to an applied magnetic field in the
original direction (for brevity we left out the discussion of
the boundary conditions, but the conclusion is not affected by
them). Thus, we have proved that for a symmetric stack of
films, with a magnetic field applied in an arbitrary direction,
there are modes with reciprocal frequencies and nonreciprocal
in shape: their magnetic potentials are symmetric and magne-
tization components antisymmetric with respect to specular
reflections with respect to the central plane of symmetry of
the stack of films.
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4. Contributions to boundary conditions

a. Intralayer exchange

With respect to a contribution from the internal exchange
interaction within a material to the boundary condition at
one of its surfaces, the internal exchange interaction may be
written as

EX = A

M2
s

∫
dV

∑
j

(∇Mj )
2. (A40)

Taking the variation of the previous expression:

δEX = 2
A

M2
s

∑
j

∫
dV ∇Mj · ∇(δMj )

= 2
A

M2
s

∑
j

∫
dV [∇ · (δMj∇Mj ) − ∇ · (∇Mj )δMj]

= −2
A

M2
s

∑
j

∫
dV ∇2MjδMj + 2

A

M2
s

∑
j

∫
�dS · ∇Mj

= δMj, (A41)

which allows us to identify the following volumetric exchange
effective field:

�Hvol
X = −δEX /δ �M = 2A

M2
s

∇2 �M = D

Ms
∇2 �M, (A42)

and also the following superficial effective exchange field:

�H sup
X = − 2A

M2
s

∂ �M

∂n
. (A43)

Notice that here n represents a normal that points to the out-
side of the material. The previous result may also be obtained
by integrating the volumetric exchange field of Eq. (A42) over
a small volume �V on the edge of the sample (that has a part
outside the sample, this is the volume used by Rado-Weertman
to deduce their boundary conditions). Since ∇2φ = ∇ · ∇φ

one may use the divergence theorem to deduce that∫
�V

dV
2A

M2
s

∇2Mj = − 2A

M2
s

∫
S
∇Mj · �dS = − 2A

M2
s

∫
S

∂Mj

∂n
dS,

(A44)

with the minus sign coming from the fact that the external
normal to �V has the opposite direction of the external
normal to the material, i.e., it is consistent with the result of
Eq. (A43), and explains the first term of Eq. (33) that was
derived by Rado-Weertman [19].

b. Surface anisotropy

The surface anisotropy energy has the form Es
an =∫

dSKs[1 − (�M · n̂/Ms)2], its variation leads to and effective
field acting at the surface that is

−δEs
an

δ �M
= 2Ks

M2
s

(�M · n̂)n̂. (A45)

When this is replaced appropriately in Eq. (33) for the bal-
ance of superficial torques on the surface of one film, one

obtains

0 = �M ×
{

−∂ �M

∂n
+ λ(�M · n̂)n̂

}
, (A46)

with λ = Ks/A. By replacing a linear approximation for the
magnetization in Eq. (A46), i.e., �M � Ms ˆ̃z + mỹ ˆ̃y + mxx̂, one
obtains for the linear terms:

0 = ∂mỹ

∂n
x̂ − ∂mx

∂n
ˆ̃y + λ[− cos(2θ )mỹx̂ + mx sin θ ẑ]. (A47)

Finally, doing an approximation that neglects a term in the ˆ̃z
direction coming from the last term of the previous equation,
one gets the boundary conditions of Eqs. (34) and (35), that
were derived in Ref. [20].

c. Interlayer exchange

We derive the boundary conditions Eqs. (45) and (46) as-
sociated with the interlayer exchange interaction of Eq. (43).
According to the Rado-Weertman criteria of Eq. (33), we
impose the total surface effective torques at the surfaces y =
±a/2 (simplified as just ±, a is a lattice constant) to be null,
and this leads to

0 = −2A1

M2
1

�M−
1 × ∂ �M−

1

∂y
+ A12 �M

−
1 × �M+

2 , (A48)

0 = 2A2

M2
2

�M+
2 × ∂ �M+

2

∂y
+ A12 �M

+
2 × �M−

1 . (A49)

Also we may approximate

�M−
1 � �M0−

1 − a

2

∂ �M0−
1

∂y
, (A50)

�M+
2 � �M0+

2 + a

2

∂ �M0+
2

∂y
. (A51)

Subtracting Eq. (A48) from Eq. (A49) leads to Eq. (45)
[where one has also used Eqs. (A50) and (A51)]. Also, adding
Eqs. (A48) and (A49) leads to Eq. (46).

Now we write the linear versions of Eqs. (A48) and (A49),
using that

�M1,2 � M1,2û1,2 + m(1,2)
x x̂ + m(1,2)

η η̂1,2, (A52)

where we have used the notation û1,2 = ˆ̃z1,2 for the direction
of the equilibrium magnetization in each medium, and η̂1,2 =
ˆ̃y1,2 as the perpendicular direction to it (and to x̂). Equations
(A50) and (A51) in Eq. (A48) lead when projected into the η̂1

and x̂ directions to

0 = −2A1

M1

∂m(1)
x

∂y
+ A12

(
M1m(2)

x − M2 cos �θm(1)
x

)

+ aA12

2

(
M2 cos �θ

∂m(1)
x

∂y
+ M1

∂m(2)
x

∂y

)
, (A53)

0 = 2A1

M1

∂m(1)
η

∂y
+ A12 cos �θ

(
M2m(1)

η − M1m(2)
η

)

− aA12

2
cos �θ

(
M2

∂m(1)
η

∂y
+ M1

∂m(2)
η

∂y

)
, (A54)

with �θ = θ2 − θ1. Equation (A53) contains an approxima-
tion, the terms proportional to cos �θ result from a projection
of terms proportional to η̂2 into η̂1. Now, Eqs. (A50) and
(A51) in Eq. (A49) lead when projected into the η̂2 and x̂
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directions to

0 = 2A2

M2

∂m(2)
x

∂y
+ A12

(
M2m(1)

x − M1 cos �θm(2)
x

)

− aA12

2

(
M1 cos �θ

∂m(2)
x

∂y
+ M2

∂m(1)
x

∂y

)
, (A55)

0 = −2A2

M2

∂m(2)
η

∂y
+ A12 cos �θ

(
M1m(2)

η − M2m(1)
η

)

+ aA12

2
cos �θ

(
M1

∂m(2)
η

∂y
+ M2

∂m(1)
η

∂y

)
. (A56)

Equation (A55) contains an approximation, the terms propor-
tional to cos �θ result from a projection of terms proportional
to η̂1 into η̂2.

Equations (A53)–(A56) may be regarded as four equa-
tions for the four unknowns ∂m(1,2)

x /∂y, ∂m(1,2)
η /∂y: through

a matrix inversion one may then express each of these
unknowns in terms of the magnetization components
m(1,2)

x and m(1,2)
η . This information is then replaced in

the extinction equations and one proceeds with the
method in order to calculate the eigenfrequencies and
eigenmodes.
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