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Magnetization-induced shape transformations in flexible ferromagnetic rings
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Flexible ferromagnetic rings are spin-chain magnets, in which the magnetic and mechanical subsystems
are coupled. The coupling is achieved through the tangentially oriented anisotropy axis. The possibility to
operate the mechanics of the nanomagnets by controlling their magnetization is an important issue for the
nanorobotics applications. A minimal model for the deformable curved anisotropic Heisenberg ferromagnetic
wire is proposed. An equilibrium phase diagram is constructed for the closed loop geometry: (i) A vortex state
with vanishing total magnetic moment is typical for relatively large systems; in this case, the wire has the form
of a regular circle. (ii) A topologically trivial onion state with the planar magnetization distribution is realized in
small enough systems; magnetic loop is elliptically deformed. By varying geometrical and elastic parameters, a
phase transition between the vortex and onion states takes place. The detailed analytical description of the phase
diagram is well confirmed by numerical simulations.
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I. INTRODUCTION

Soft magnetic materials which can change their configu-
ration under the action of external electric or magnetic fields
find applications in diverse areas of science and technology.
They are used in the fabrication of materials and devices for
shapeable magnetoelectronics [1,2], programmable magnetic
materials [3,4], and numerous interactive human-machine
interfaces [5,6]. A possibility to control geometry of the
magnet by means of the external magnetic field that acts
on the magnetic subsystem opens exciting opportunities in
the engineering of miniature robots [3,4,6]. Among different
magnetically responsive flexible materials, the most studied
ones are magneto-sensitive elastomers, which are composite
materials of magnetic nanoparticles embedded into a non-
magnetizable polymer matrix [7,8]. Such elastomers include
nanoparticle-based flexible magnetic chains (wires) [9,10] and
ribbons [11,12]. The magnetic properties of elastomers are
well described by the long-range dipole-dipole interaction
[13].

More recently, organic and molecule-based magnets have
been established, exhibiting different types of magnetic or-
dering [14–19]. Such molecule-based magnets are of great
scientific interest for the development of flexible devices in
the context of organic electronics and spintronics [20,21].
Theoretical treatment of such systems is based on the
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description of elastic ferromagnets, the way developed by
Ref. [22]. Basic models include two subsystems: the pre-
cession Landau-Lifshitz dynamics of magnetic subsystem is
coupled with the Newtonian dynamics of elastic substrate
[23,24]. Further development of this approach for a Heisen-
berg magnet on elastic membranes resulted in novel effects,
including periodic shrinking of the membrane due to soliton-
soliton interaction [25] and, more generally, the curvature-
induced geometrical frustration in magnetic systems [26,27].

The purpose of the current study is to provide a minimal
model for a flexible ferromagnet ring, i.e., curved quasi-one-
dimensional magnets with elastically deformable closed loop
geometry. Here we present a detailed study of equilibrium
states of the magneto-flexible ring. The geometry of the mag-
net was shown previously to affect the magnetic subsystem
[28–30]. Here we consider a self-consistent problem, where
the inverse effect of influence of the magnetization on the
magnet shape is taken into account. The coupling between the
magnetic and geometrical subsystems is driven by the uniaxial
anisotropy with the easy axis oriented along the tangential
direction. A small enough rigid magnetic ring is magnetized
almost uniformly, forming the so-called onion state with two
domain walls [29,31,32]. In the case of an elastic ring, the size
of the domains with tangential magnetization decreases and
the minimum energy is achieved by mechanical deformation
of the ring shape. An opposite case of large rigid magnetic
rings is known to be characterized by the flux-free vortex state
[29]. Since the ring shape minimizes elastic energy of any
closed loop and the magnetization is everywhere tangential
to the ring, the deformation of elastic ring is not favorable.

The paper is organized as follows. In Sec. II, we introduce
a model of the magneto-flexible one-dimensional wire and
discuss equations of motion for such a system. Equilibrium
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magnetization distributions, shape configuration of the closed
loop geometry, and the phase diagram of the equilibrium
states are discussed in Sec. III. In Sec. IV, we present final
remarks and discuss the role of magnetostatic effects and ex-
citation of zero modes. Some details concerning the analytical
and numerical computations are presented in the Appendices
A, B, and C.

II. THE MODEL

We consider a simple phenomenological model of a single-
chain magnet of ferromagnetically coupled atoms with nor-
malized magnetic moments mi (t ), labeled by index i ∈ 1, N .
Each magnetic moment mi is located at the point r i (t ) =
{xi (t ), yi (t ), zi (t )}. We are interested in the case when the
system represents a closed chain (ring), hence we impose the
coordinate periodicity conditions rN+i = r i . Each magnetic
moment mi is connected with its two neighbors mi+1 and
mi−1 by elastic bonds. We assume that the chain is inexten-
sible: |r i+1 − r i | = a with a being the lattice constant.

In our model, we take into account three contributions to
the total energy of the ferromagnetic ring:

E= Eex +Eb +Ean. (1a)

The first term in Eq. (1a) is the Heisenberg exchange energy,

Eex = J

N∑
i=1

(mi − mi+1)2, (1b)

with J> 0 being an effective exchange integral. The second
term in Eq. (1a) is an elastic energy [33,34], which determines
the change of the angle between the bond vectors ui =
(r i+1 − r i )/a and ui+1 = (r i+2 − r i+1)/a,

Eb = B

N∑
i=1

κ2
i , κ2

i ≡ |ui+1 − ui |2, (1c)

where B is the elastic modulus of the bending rigidity (spring
constant) of the chain and κi/a is the curvature of the chain at
the point i.

The last term determines the uniaxial magnetic anisotropy
contribution,

Ean = −K

N∑
i=1

(mi · ui )
2, (1d)

where K> 0 being the effective on-site anisotropy constant
of an easy-axis type. Such kind of anisotropy is effectively
induced by the dipole-dipole interaction in the thin wire [35].

The dynamics of the magnetic subsystem is governed by
the discrete version of the Landau–Lifshitz–Gilbert equations:

ṁi = |γ |
μs

mi × ∂E

∂mi

+ αmi × ṁi . (2a)

Here the overdot indicates a derivative with respect to time, α

is the Gilbert magnetic damping constant, γ is the gyromag-
netic ratio, and μs is the magnetic moment of a magnetic site
(atom).

The dynamics of the mechanical subsystem is governed
by Newton equations for atom positions r i (t ). For the sake

of simplicity, we will neglect inertia effects and take the
equations of motion for the mechanical degrees of freedom
in the form of overdamped Newton equations,

∂R

∂ ṙ i

= − ∂E

∂ r i

, (2b)

where R = ν
2

∑N
i=1 ṙ2

i is a dissipation function of the me-
chanical subsystem with ν being the mechanical relaxation
constant.

In what follows, we limit ourselves to the case of weak
anisotropy, K� Jand small curvature, κi � 1. In this case,
the characteristic size of excitations w = a

√
J/K (magnetic

length) is larger than the lattice constant a. Thus, in the
lowest approximation for the small parameter a/w and weak
gradients of magnetic and elastic variables, we can use the
continuum approximation for the energy Eq. (1). The energy
functional, normalized byE0 = √

JK, has the following form
in terms of magnetization unit vector m(ξ, t ) and the tangent
unit vector u(ξ, t ) with ξ = s/w being the normalized arc
length s:

E =
∫ L

0

[
m′2 + βu′2 − (m · u)2

]
dξ, (3)

where L = aN/w is the normalized length of the wire, β =
B/J is the renormalized bending parameter,1 and prime (′)
denotes the derivative with respect to ξ . One has to note the
correspondence between the exchange and bending energy
terms in Eq. (3).

Spatiotemporal evolution of the system is governed by
continuum equations for magnetic and elastic subsystems.
Using the angular parametrization for the magnetization unit
vector m(ξ, t ) and the tangent unit vector u(ξ, t ),

m = (sin θ cos φ, sin θ sin φ, cos θ ), (4a)

u = (sin ψ cos χ, sin ψ sin χ, cos ψ ), (4b)

an explicit form of the energy functional in terms of angular
variables is obtained, see Appendix A.

III. EQUILIBRIUM STATES OF THE FLEXIBLE
FERROMAGNETIC RING

The equilibrium states of the system are determined by the
minimum of the energy functional Eq. (3). It corresponds to
the planar magnetization distribution in a planar wire with the
magnetization vector m(ξ ) lying within the wire plane,

m0 = (cos φ0, sin φ0, 0), u0 = (cos χ0, sin χ0, 0). (5)

1The normalized bending parameter β for the wire of thickness d

can be expressed through its mechanical parameter, i. e. Young’s
modulus Y , as follows, β = Yd2/(8A) [41]. For example, for the
Fe nanowire with the diameter d = 2 nm, Y ≈ 120 GPa [42], and
exchange constant A = 17 pJ/m, the normalized bending parameter
β ≈ 103, while for the organic molecular ferromagnets with the
diameter d = 2 nm, Young’s modulus in the range Y ≈ 10−3 ÷ 10
GPa [43–46], and exchange constant A ≈ 0.38 ÷ 0.65 pJ/m [47,48],
the normalized bending parameter β ∈ [0.75, 103].
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FIG. 1. Equilibrium state of the flexible ring: (a), (b) Magne-
tization (green arrows) and magnetic sites (blue dots) distribution
obtained from numerical simulations for a chain with L ≈ 10.5.
(c), (d) Comparison of theoretical predictions Eqs. (8), (11) (lines)
and results of numerical simulations (markers). The vortex state is
obtained for β = 2 and the onion state is obtained for β = 0.2.

The corresponding azimuthal magnetic angle φ0 and the az-
imuthal elastic angle χ0 are determined by the set of two
coupled pendulum equations (for details, see Appendix A):

2φ′′
0 = sin 2(φ0 − χ0), 2βχ ′′

0 = − sin 2(φ0 − χ0). (6)

The set of Eqs. (6) with boundary conditions

φ0(L) = φ0(0) + 2π, φ′
0(L) = φ′

0(0),

χ0(L) = χ0(0) + 2π, χ ′
0(L) = χ ′

0(0), (7)

has a solution of the form

φvor(ξ ) = χvor(ξ ) = 2πξ/L. (8)

We refer to this solution as a vortex state [see Fig. 1(a)]: it
describes the flux-free magnetization distribution in a circular
wire. It is similar to the rigid case [29]. The energy of the
vortex state is

E vor(β,L) = 4π2

L
(1 + β ) − L. (9)

Another type of boundary conditions

φ0(L) =φ0(0), φ′
0(L) = φ′

0(0),

χ0(L) =χ0(0) + 2π, χ ′
0(L) = χ ′

0(0), (10)

corresponds to the equilibrium solution

φon(ξ ) = β

1 + β

[
2πξ

L
− π

2
− am

(
4K(k)

L
ξ, k

)]
,

χon(ξ ) = 1

1 + β

[
2πβξ

L
+ π

2
+ am

(
4K(k)

L
ξ, k

)]
, (11)

where am(x, k) is the Jacobi elliptic amplitude function [36].
The modulus k is determined by the equation

√
kK(k) = L

4

√
1 + β

β
, (12)

where K(k) is the complete elliptic integral of the first kind
[36]. The corresponding magnetization solution is analogous
to the well-known onion state [29,31,32] typical for the ring
geometry; hence we refer to Eqs. (11) as the onion state in
an elliptical wire, see Fig. 1(b). The normalized energy of the
onion state reads

E on(β,L) = 4π2β2

L(1 + β )
− L

k
+ 16βK(k)E(k)

L(1 + β )
+ LE(k)

kK(k)
,

(13)

where E(k) is the complete elliptic integral of the second kind
[36].

To verify our analytical results, we performed numerical
simulations of anisotropic flexible chain of magnetic mo-
ments. Spatiotemporal evolution of such system is modeled by
discrete dynamical Eqs. (2), for details see Appendix B. The
obtained numerical results confirm our analytical predictions,
namely (i) The magnetization distribution for the vortex state
corresponds to the tangential direction with m · u = 1, which
lies in the wire plane. The wire has a regular circular shape
with a constant curvature κ , see Fig. 1. (ii) The onion state
is characterized by the planar elliptical deformation of the
wire according to Eqs. (11) with corresponding magnetization
distribution φon(ξ ), see Fig. 1.

Next, we summarize the results of the equilibrium states
of the system: both the magnetization distribution and the
wire configuration. By comparing energies of different states,
we find the energetically preferable states for different values
of the normalized wire length L and the bending elasticity
parameter β. The resulting phase diagram is presented in
Fig. 2. There are two phases: (i) The vortex state is realized
for relatively large L, when L > Lb(β ). In such a state, the
magnetization is directed in the tangential direction to the
wire of a circular shape, in accordance with Eq. (8), see
Fig. 1(a). (ii) The onion state is energetically preferable, when
L < Lb(β ). The magnetization distribution is inhomogeneous
and the wire has elliptical shape in accordance with Eqs. (11),
see Fig. 1(b).

The boundary between the two phases Lb = Lb(β ) can be
derived by using the condition E vor(β,Lb ) = E on(β,Lb ):

2π

Lb

= π

2

√
1 + 1/β√
k0K(k0)

, (14a)

where k0 is the solution of equation

2K(k0)E(k0) + K2(k0)(k0 − 1) = π2

4
(2 + 1/β ). (14b)

In the case of a rigid ring (β → ∞), one gets a limit value
2π/Lb = �0 ≈ 0.657, which corresponds to the reduced cur-
vature of a circular-shaped wire; such a critical parame-
ter is known to separate two different equilibrium magne-
tization states of the ring [29]. An opposite limit case of
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FIG. 2. Phase diagram of the equilibrium magnetization and
shape states for the flexible ferromagnet. Symbols correspond to
simulation: Yellow circles correspond to the vortex magnetization
distribution with circular shape of the wire; blue diamonds corre-
spond to the onion magnetization distribution with elliptical wire
shape. Green solid line describes the boundary Lb(β ) between the
vortex and the onion states plotted with the prediction Eqs. (14) and
the dashed line is its fitting by Eq. (15).

extremely flexible ring results in the boundary curve 2π/Lb ≈
(4/π )

√
β. For the approximate description of the boundary

dependence Eqs. (14), we can use the fitting function:

2π

L�
b

= �0

√
c2 + 1/β

c + π�0/(4β )
, c ≈ 1.106. (15)

Providing the asymptotically correct behavior, this approxi-
mation reproduces results Eqs. (14) with an accuracy of about
6×10−4.

IV. DISCUSSION

We have performed a detailed study of the statics of
ferromagnetic rings in the context of soft condensed matter.
Specifically, we proposed a minimal model Eq. (3) for the
curved anisotropic Heisenberg ferromagnet on an elastically
deformable curved wire.

First, we discuss the symmetry of the model and its con-
sequences. The energy functional Eq. (3) is invariant with
respect to the joint rotation of elastic u-vector and magneti-
zation m-vector through an angle Υ about some axis given by
g = (sin ψg cos χg, sin ψg sin χg, cos ψg ),

u(ξ ) → U g (Υ )u(ξ ), m(ξ ) → U g (Υ )m(ξ ). (16)

For an explicit form of the rotation matrix U g (Υ ), see Ap-
pendix C. The consequence of this symmetry is the appear-
ance of normal modes with zero frequency (zero modes) on
the background of equilibrium states Eqs. (5). The corre-
sponding elastic zero mode, as a linear excitation �u on the
background of the static solution u0, i.e., �u = u − u0, is

determined by the infinitesimal rotation:

�u ∝ ∂Υ U g (Υ )u0(ξ )|Υ =0 =
∥∥∥∥∥∥

− cos ψg sin χ0

cos ψg cos χ0

sin ψg sin(χ0 − χg )

∥∥∥∥∥∥. (17)

In the same way, one can derive the magnetic zero mode,
�m ∝ ∂Υ U g (Υ )m0(ξ )|Υ =0.

In terms of angular variables, zero mode solutions read

�ψ = c1 sin(χ0 − χg ), �χ = c2,

�θ = c1 sin(χ0 − χg ), �φ = c2, (18)

where χg is a constant angle; c1 and c2 describe amplitudes of
the corresponding modes, see Appendix C for the details.

By exciting zero modes, one can swing the loop plane
through some angle. We have checked this idea by means
of numerical simulations. Specifically, we choose the system
parameters which correspond to the onion state; for details,
see Appendix B 2. We relax the system to its equilibrium
magnetization state with elliptical shape of the elastic subsys-
tem. By applying an external mechanical force together with
a magnetic field, we deform both the magnetic and the elastic
structure of the flexible magnetic ring. After switching off the
external influence, we observe numerically that the system
relaxes to the equilibrium state, which is accompanied by a
loop plane swing, see Fig. 3 and Supplementary movie [37].
Note, for the practical observation of loop rotation, flexible
ferromagnetic ring can be placed in a viscous liquid.

To estimate the effect, we compare the numerically ob-
tained dependence uz(ξ ) = z′/w with the linear mode profile
for the out-of-plane component of the elastic unit vector:

uz(ξ ) = cos ψ = u0 sin
(
χon(ξ ) − χg

)
, (19)

where χg is the azimuthal angle of the vector g. One can
see from Fig. 3 that the zero-mode solution Eq. (19) fits to
a good accuracy with the simulation data; see Appendix B 2
for details.

Next, let us discuss how our model can be generalized
taking into account the long-range magnetostatic effects. The
nonlocal magnetostatic interaction for thin wires of circular
and square cross sections is known [35] to be reduced to a
local effective easy-tangential anisotropy Kms = πμ2

s /a
3. It

is important that such a conclusion survives for the case of
curved wires [35]. Thus the magnetostatic interaction can be
taken into account as an additional anisotropy. In this case, the
magnetostatic effects can be taken into account by a simple
redefinition of the anisotropy constants, leading to a new
magnetic length,

K→ Keff = K+ Kms,

w → weff = a

√
J

Keff
= 2�√

1 + 2Q
, (20)

where � = a
√
J/(4Kms) is an exchange length and Q =

K/(2Kms) is a quality factor [38].
To check our predictions about the effective anisotropy,

we performed numerical simulations taking into account the
nonlocal dipolar interaction (for details, see Appendix B).
We performed simulations for flexible and magnetically soft
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FIG. 3. Rotation of the loop plane: (a)–(d) Magnetic and elastic configuration of the flexible system according to numerical simulations
with L ≈ 10, β = 0.5, α = 0.01, and ν = 0.01μs/(a2|γ |): (a) Initial equilibrium configuration; (b) deformed system under the action
of external magnetic field and mechanical stress with temporal profile f (τ ), described by Eq. (B4) with τ1 = 50, τ2 = 550 and δ = 5;
(c) intermediate state of the ring during the rotation; (d) relaxed configuration after switching off external influence. Red arrow determines the
direction of the normal vector n to the ring plane [in (d) the normal vector n does not lie in the x0z plane]. Black dashed ellipselike ring in
(b)–(d) corresponds to the initial shape of the ring (a). Purple and yellow arrows in (b) determine the direction of the external magnetic field
f (τ )b and deformation f (τ )[r i (τ ) − r i (0)], respectively. (e) The comparison of theoretical predictions Eq. (19) and the results of numerical
simulations. The corresponding dynamics is illustrated in the Supplemental movie [37].

(Q = 0) wires including the dipolar interaction. According to
Eqs. (20), we get weff = 2�. Simulation data are presented in
Fig. 4 for the renormalized length of the ring, according to

L → Leff = aN

weff
. (21)

Note that the local approach is known [39] to provide an
underestimate of the magnetostatic energy of the onion state,
while for the vortex state it gives correct results. The effective
anisotropy approach Eqs. (20) do not take into account the

long-range part of the magnetostatic interaction. The conse-
quence of this effect is the shifting down of the analytically
estimated boundary between vortex and onion states Eqs. (14)
in comparison with simulations, see Fig. 4(c).

In conclusion, we have presented a minimal model for
studying a flexible magnetic wire. The ground states of the
system essentially depend on geometric, magnetic, and elastic
parameters. Depending on the parameters, one can distinguish
two different states: the onion state with the quasiuniform
magnetization typical for small enough rings; the vortex

FIG. 4. Flexible ferromagnetic rings with inclusion of the dipole-dipole interaction: (a), (b) Comparison of theoretical prediction Eqs. (8),
(11) (lines) and results of numerical simulations (markers). The vortex state is obtained for β = 2 and the onion state is obtained for β = 0.2. (c)
Phase diagram of the equilibrium magnetization and shape states for the flexible ferromagnet. Symbols correspond to simulation: yellow circles
correspond to the vortex magnetization distribution with circular shape of the wire; blue diamonds to the onion magnetization distribution with
elliptical wire shape. Green solid line describes the boundary Lb(β ) between the vortex and the onion states plotted with the prediction
Eqs. (14) and the dashed line is its fitting by Eq. (15).

014404-5



GAIDIDEI, YERSHOV, SHEKA, KRAVCHUK, AND SAXENA PHYSICAL REVIEW B 99, 014404 (2019)

state with the magnetization oriented tangential to the wire
is preferable in the opposite case. We have calculated the
phase diagram of possible states in a wide range of bending
constants β and normalized ring lengths L.
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APPENDIX A: STATIC SOLUTIONS

To analyze static configurations, let us start with the total
energy of the system Eq. (3). Using angular parametrization
Eqs. (4) one gets the energy functional in the following form:

E =
∫ L

0

{
θ ′2 + sin2 θ φ′2 + β(ψ ′2 + sin2 ψ χ ′2)

− [sin θ sin ψ cos(φ − χ ) + cos θ cos ψ]2
}
dξ. (A1)

Minimization of the energy functional Eq. (A1) results in
static equations:

θ ′′ − sin θ cos θφ′2 + [sin θ sin ψ cos(φ − χ ) + cos θ cos ψ] [cos θ sin ψ cos(φ − χ ) − sin θ cos ψ] = 0, (A2a)

β[ψ ′′ − sin ψ cos ψχ ′2] + [sin θ sin ψ cos(φ − χ ) + cos θ cos ψ] [sin θ cos ψ cos(φ − χ ) − cos θ sin ψ] = 0, (A2b)

(sin2 θφ′)′ − [sin θ sin ψ cos(φ − χ ) + cos θ cos ψ] sin θ sin ψ sin(φ − χ ) = 0, (A2c)

β(sin2 ψχ ′)′ + [sin θ sin ψ cos(φ − χ ) + cos θ cos ψ] sin θ sin ψ sin(φ − χ ) = 0. (A2d)

The set of static equations (A2) has a solution in the form
of the planar wire (elastic polar angle ψ = π/2) with the
planar magnetization distribution (magnetization polar angle
θ = π/2). This results in a set of two equations for azimuthal
magnetic angle φ(ξ ) and azimuthal elastic angle χ (ξ ), see
Eqs. (6).

APPENDIX B: NUMERICAL SIMULATIONS

In order to verify our analytical results we numerically
simulate the magneto-elastic dynamics of a flexible chain
of discrete magnetic moments mi (t ) located in the positions
r i (t ) with i ∈ 1, N , using the dynamical equations (2). For
the position r i the periodic boundary condition was applied,
r1 = rN+1.

The dynamics of the magnetic subsystem is described by
the Landau–Lifshitz Eqs. (2a)

dmi

dτ
= mi × ∂H

∂mi

+ α mi ×
[

mi × ∂H

∂mi

]
, (B1a)

while the dynamics of the mechanical subsystem is described
by the overdamped Newton Eqs. (2b)

η
dr i

dτ
= −∂H

∂ r i

, (B1b)

where τ = ω0t is a reduced time with ω0 = 4π |γ |μs/a
3, α

and η = ν|γ |/μs are damping coefficients, H is the dimen-
sionless energy normalized by 4πμ2

s /a
3. We consider five

contributions to the energy of the system:

H= Hex +Han +Hd +Hb +Hstr. (B2a)

The first term in Eq. (B2a) is the exchange energy

Hex = −2
�2

a2

N−1∑
i=1

mi · mi+1. (B2b)

The second term determines the uniaxial anisotropy contribu-
tion

Han = −Q

2

N∑
i=1

(mi · ui )
2. (B2c)

The third term determines the dipolar interaction

Hd = a3

8π

∑
i,j

′
[

mi · mj

|r ij |3 − 3
(mi · r ij )(mj · r ij )

|r ij |5
]
, (B2d)

where r ij = r i − rj . The fourth term determines the bending
potential

Hb = β
�2

a2

N∑
i=1

|ui+1 − ui |2. (B2e)

The last term in (B2a) determines the stretching energy

Hstr = �

a2

N∑
i=1

(|r i − r i+1| − a)2, (B2f)

where � determines the stretching rigidity constant. The
model under consideration in Sec. II supposes that the chain
is inextensible, |r i − r i+1| = a. That is why in simulations we
consider the case � � 1.

The dynamical problem is considered as a set of 6N

ordinary differential Eqs. (B1) with respect to 6N unknown
functions mx

i (t ), m
y
i (t ), mz

i (t ), rx
i (t ), r

y
i (t ), rz

i (t ). For given
initial conditions the set Eqs. (B1) is integrated numeri-
cally. During the integration process condition |mi (t )| = 1 is
controlled.

1. Equilibrium states of a flexible chain

We considered the ring-shaped chain with length L =
100a. The ring-shaped form in xy plane was fixed as an
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initial chain-units distribution for all cases. To find the equi-
librium state of a flexible ring we performed the integration
of Eq. (B1) with damping coefficients α = 0.01 and ν =
0.01μs/(a2|γ |) on a long time interval.

We have performed two different kinds of numerical simu-
lations:

(i) Anisotropic chain, Q 
= 0. We simulated an anisotropic
flexible ferromagnetic chain with the quality factor Q = 2.
The magnetic length was varied in the range w ∈ [5a, 12a]
with the step �w = 0.5a. Numerical simulations were per-
formed for five different initial magnetization distributions,
namely the vortex, onion, normal, and two random states.
The final static state with the lowest energy is considered to
be the equilibrium state. The corresponding phase diagram is
presented in Fig. 2. We find that in a ring-shaped chain we can
realize only two magnetization distributions, namely vortex
and onion. Additionally, we found that the onion state deforms
the circular shape of the chain into the elliptical shape, while
the vortex state preserves the circular shape of the chain, see
Fig. 1.

(ii) Isotropic chain, Q = 0. We considered an isotropic
flexible ferromagnetic chain accountin for the dipolar inter-
action. According to the analytic approach, described above,
the dipolar effects can be taken into account by a simple
redefinition of the anisotropy constants [35], leading to a new
magnetic length Eq. (20). Here we check these ideas by direct
simulations for systems where effective magnetic length was
varied in the range weff ∈ [5a, 12a]. Equilibrium states are
studied in the same way as for the case of anisotropic chains.
Resulting phase diagram of equilibrium states is plotted in
Fig. 4(c).

2. Zero modes

Our theoretical treatment predicts the effect of the loop
plane swing by exciting zero modes. In order to realize this
effect we performed the following numerical simulations:
Initially we relaxed the system to the ground onion state,
see Fig. 3(a). By applying an external force and magnetic
field pulses we deformed both the elastic subsystem and
the magnetic texture, see Fig. 3(b). After switching off the
external excitation the system relaxes to the equilibrium state,
which is accompanied by the swing of the loop plane, see
Figs. 3(c) and 3(d). To be more specific, the external elastic
deformation is modeled by the potential

HC = f (τ )
ρ

a2

N∑
i=1

∣∣r i − rC
i

∣∣2
,

rC
i = aN

2π

(
cos

2πi

N
, sin

2πi

N
, 0

)
, (B3)

where ρ > 0. Here the function

f (τ ) = 1

2

(
tanh

τ − τ1

δ
− tanh

τ − τ2

δ

)
(B4)

determines the temporal profile of the external potential. Here
τ1, τ2, and δ are pulse parameters. This potential deforms the
configuration of the chain from elliptical to the circular one.

Potential Eq. (B3) results in the force which acts on the i-th
node (atom)

Fi = FC
i + Fdef

i . (B5a)

The first term in Eq. (B5a) is a reaction force

FC
i = 2f (τ )

ρ

a2

[
rC

i − r i (0)
]
. (B5b)

The second term determines a deformation force contribution

Fdef
i = −2f (τ )

ρ

a2
[r i (τ ) − r i (0)]. (B5c)

The interaction of magnetic subsystem with external mag-
netic field was taken into account as

Hz = −f (τ )
N∑

i=1

(mi · b), b = b(cos ϑ, 0, sin ϑ ), (B6)

where b = Ba3/(4πμs ) is the amplitude of the magnetic field
and ϑ = 17π/36. The magnetic field is applied at the angle
ϑ to the xy plane in order to avoid the transition to the
metastable states. Yellow and purple arrows in Fig. 3(b) de-
termine the direction of deformation force Fdef

i and magnetic
field f (τ )b, respectively.

The magnetic ring with onion magnetization distribution
and elliptical shape configuration after this simulation turned
out to be the original xy plane. Figure 3 demonstrates the final
dependence uz(ξ ) which the chain units acquire as a result of
rotation. The results of numerical simulation are fitted well
by Eq. (19) within an accuracy of about 5×10−3; the fitting
parameters being u0 ≈ 0.24 and χg ≈ √

3.
It is important to mention here that the system with vortex

magnetization distribution and circular configuration stayed in
the xy plane.

APPENDIX C: ROTATION OF THE
ELASTIC UNIT VECTOR u

Let us consider the rotation of some vector through an
angle Υ about the axis

g =
⎛
⎝gx

gy

gz

⎞
⎠ =

⎛
⎝sin ψg cos χg

sin ψg sin χg

cos ψg

⎞
⎠. (C1)

The rotation matrix can be written as [40]

U g (Υ ) = (1 − cos Υ )g gT + cos Υ 1 + sin Υ g×, (C2a)

where 1 is the 3×3 identity matrix and

g× =
⎛
⎝ 0 −gz gy

gz 0 −gx

−gy gx 0

⎞
⎠. (C2b)

We consider small deviations of the elastic unit vector from
the static solution, �u = u − u0. In the same way we intro-
duce small deviations of the angular variables, �ψ = ψ −
π/2 and �χ = χ − χ0. By linearizing in �ψ and �χ , we can
represent �u = (−�χ sin χ0, �χ cos χ0, −�ψ ). Now, by
comparing the above expression for �u with Eq. (17), we get
the amplitude for the zero eigenmode in the form Eqs. (18).
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