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The Lieb-Schultz-Mattis theorem dictates that a trivial symmetric insulator in lattice models is prohibited
if lattice translation symmetry and U (1) charge conservation are both preserved. In this paper, we generalize
the Lieb-Schultz-Mattis theorem to systems with higher-form symmetries, which act on extended objects of
dimension n > 0. The prototypical lattice system with higher-form symmetry is the pure Abelian lattice gauge
theory whose action consists only of the field strength. We first construct the higher-form generalization of the
Lieb-Schultz-Mattis theorem with a proof. We then apply it to the U (1) lattice gauge theory description of the
quantum dimer model on bipartite lattices. Finally, using the continuum field theory description in the vicinity of
the Rokhsar-Kivelson point of the quantum dimer model, we diagnose and compute the mixed ’t Hooft anomaly
corresponding to the higher-form Lieb-Schultz-Mattis theorem.
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I. INTRODUCTION

Predicting low-energy properties of given many-body sys-
tems from a given kinematical data (spatial dimensions, sym-
metries, etc.) is of central importance, as majorities of strongly
correlated systems do not admit exact analytical solutions.
A prototypical example is the celebrated Lieb-Schultz-Mattis
theorem [1] and its generalizations by Oshikawa and Hastings
(LSMOH theorem) [2–4]. More recently, the LSMOH type
theorem has been discussed for systems with various spatial
lattice symmetries (space group symmetries) other than sim-
ple lattice translation [5–16].

The LSMOH type theorems provide a strong constraint on
the possible low-energy spectrum of a lattice quantum many-
body system for given input data of symmetries of a ground
state. For example, when the lattice translation symmetry and
U (1) charge conservation are preserved in the ground state,
the LSMOH theorem states that the system is gapless or it is
gapped with ground state degenerate, if the U (1) charge (the
number of charged particle) per unit cell is not integral. This
statement can be demonstrated, e.g., in the one-dimensional
antiferromagnetic spin 1/2 XXZ chain, which is equivalent,
by the Jordan-Wigner transformation, to a system of interact-
ing fermions with particle number conservation at half filling.
In this model, the system is in the gapless Tomonaga-Luttinger
liquid (TLL) phase when the lattice translation symmetry is
unbroken. When gapped, the LSMOH theorem dictates that
ground states necessary breaks the symmetries: For example,
the system may be in a Mott insulator phase with twofold
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degenerate ground states, which spontaneously break the lat-
tice translation symmetry and are related by the lattice trans-
lation. In higher dimensions, the degeneracy of ground states
in a gapped system can also be accounted for by topological
order [17].

The purpose of this paper is to generalize the LSMOH
theorem for a wider class of systems, such as pure lattice
gauge theories without matter. In particular, we will focus
on and exploit the 1-form symmetry (or more generally
n-form or higher-form symmetries), which is a generalization
of global symmetries which act on point particles, e.g., the
U (1) global symmetry related to the particle number con-
servation [18–20]. Compared to ordinary global symmetries,
where charged objects are (zero-dimensional, pointlike) parti-
cles, objects which are charged under higher-form symmetries
have a dimension n > 0, i.e., charged objects are supported on
a loop, brane, etc.

For example, consider the Maxwell theory on a (d + 1)-
dimensional manifold X defined by the action:

S = − 1

2g2

∫
X

da ∧ ∗da, (1)

where a is the U (1) gauge field and g is the coupling constant.
This theory possesses a symmetry that shifts a 1-form gauge
field a by a flat connection λ: a �→ a + λ. This transformation
defines a 1-form symmetry. The gauge invariant charged
object under this symmetry is the Wilson loop operator sup-
ported on a closed loop C,

W (C) = exp

[
i

∫
C

a

]
. (2)

Here, the 1-form symmetry shifting the Wilson loop opera-
tor (2) defined on C is generated by the integration of (d − 1)-
form ∗da/g2 on a certain (d − 1)-dimensional manifold that
intersects C once. This should be contrasted with the ordinary
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case of 0-form continuous symmetry, where the generator
is given by integrating the d-form Noether current on a
d-dimensional closed manifold regarded as a space. Similarly,
in general, an operator that generates the transformation of
an n-form symmetry in a (d + 1)-dimensional spacetime is
supported on a (d − n)-dimensional closed manifold.

One of the important concepts that can be generalized to
higher-form symmetries is the spontaneous symmetry break-
ing, which is familiar from ordinary 0-form global symme-
tries [20–22]. Namely, the higher-form symmetry is sponta-
neously broken in the reference ground state |0〉, if there exists
an operator O which is charged under the symmetry such that
〈0|O|0〉 �= 0. A typical example is the massless photon, which
can be interpreted as a Nambu-Goldstone boson as a conse-
quence of spontaneous breaking of 1-form U (1) symmetry in
the Maxwell theory.

More interestingly, the ordinary quantum anomaly has also
been generalized to those for higher-form symmetries. The
’t Hooft anomaly, which is an obstruction to promoting
a global symmetry to a local gauge symmetry, has been
known to impose rigorous constraints on ground state or
infrared structure of quantum field theories by means of the
anomaly matching argument [23,24]. Recently, new types
of ’t Hooft anomalies involving various symmetries includ-
ing higher-form symmetries have been discovered and their
consequences have been extensively studied and applied to
constrain vacuum structures and phase structures of quantum
field theories [12,20,25–36]. Along with the discussion on
the LSMOH theorem we shall see its intimate relation with a
’t Hooft anomaly [11–13,37].

A. Main results and outline

The main results and outline of the rest of the paper
are summarized as follows. Section II: After summarizing
basic properties of 1-form U (1) symmetry in the continuum
(Sec. II A), and on a lattice (Sec. II B), we review the basic
properties of 1-form symmetry minimally required for the dis-
cussion of the LSMOH theorem, in Sec. II C, we construct the
LSMOH theorem which is applied to systems invariant under
1-form U (1) and lattice translation symmetries: It dictates the
impossibility of having trivial gapped ground state without
breaking the symmetries, when the “filling” of the higher-
form symmetry is fractional (see “Theorem II.1”). (The gener-
alization for n-form symmetry with n > 1 is straightforward,
and discussed in Appendix A.)

Here, the filling for the charge of n-form symmetry is de-
fined as follows: the (d − n)-dimensional hyperplane M(d−n)

that supports the generator of the n-form symmetry is chosen
so that M(d−n) is extended by (d − n) unit lattice vectors
among the d lattice vectors that constitute the whole system.
With such choice, the filling is just defined as the charge per
(d − n)-dimensional unit cell, measured on the hyperplane
M(d−n).

The proof of the generalized theorem is in parallel with that
of the original theorem by Oshikawa [2]: We first introduce
the background gauge field coupled with the U (1) global
symmetry and consider the “adiabatic insertion” of the unit
background magnetic flux, respecting the translation symme-
try in the system. The unit magnetic flux can be eliminated by

the homotopically nontrivial gauge transformation (the large
gauge transformation), which can change the lattice momen-
tum of the ground state depending on the filling of the 1-form
charge of the ground state. This leads to the degeneracy of the
ground states with different momentum.

Section III: In Sec. III, as an interesting example that
demonstrates the theorem, we consider the lattice gauge the-
ory that simulates the dynamics of the (2 + 1)-dimensional
quantum dimer model (QDM) on a bipartite lattice. This the-
ory is a pure U (1) lattice gauge theory whose Hamiltonian is
analogous to the familiar compact quantum electrodynamics
(CQED), but its Gauss law is modified from that of CQED
due to the presence of background staggered charge density.
This theory has a 1-form U (1) global symmetry, which leads
to the conservation of the number of dimers on a certain one-
dimensional closed string in the QDM. Then, the LSMOH the-
orem based on the 1-form symmetry and the lattice translation
symmetry implies that the system cannot be trivially gapped
if the filling of the dimer on a deliberately chosen string is
fractional. This result is explicitly demonstrated on the phase
diagram of the QDM on the honeycomb and square lattice.
For example, the filling of the 1-form symmetry is calculated
as ν = 1/3 in two neighboring gapped crystal (columnar and
plaquette) phases of the QDM on the honeycomb lattice. In
these phases the lattice translation symmetry is spontaneously
broken, and the threefold degenerate ground states appear
accordingly, which are related by the lattice translation to each
other. A more interesting case is the incommensurate crystal
found between two distinct crystal (plaquette and staggered)
phases, where the gapless excitation called phason emerges.
This gapless spectrum is enforced by the irrational filling of
the 1-form charge realized in the incommensurate crystal.

A remarkable feature of the QDM is the existence of
the special point called the Rokhsar-Kivelson (RK) point,
where the exact ground state wave function can be obtained
by the equal weight superposition of all dimer configuration
states. When the lattice is bipartite, the RK point appears
as a quantum criticality between the plaquette crystal and
incommensurate ordered phase. The RK critical point on a
bipartite lattice is described in the continuum by the quantum
Lifshitz model, which is dual to a U (1) gauge theory by the
standard boson-vortex duality. In the continuum description,
the LSMOH constraint is manifested in the form of the
mixed ’t Hooft anomaly afflicting the symmetries, by treating
the lattice translation as an internal symmetry. We diagnose
the ’t Hooft anomaly for the 1-form U (1) symmetry and the
effective internal version of lattice translation, in the field
theory which reproduces the vicinity of the RK critical point.

II. LSMOH THEOREM WITH 1-FORM SYMMETRY

A. 1-form U (1) symmetry in the continuum

Let us start by providing several general properties of 1-
form symmetry in the continuum, focusing on the symmetry
group U (1) for concreteness. Consider a theory written in
terms of a 1-form U (1) connection a, which is a connection on
a principal U (1) bundle over a (d + 1)-dimensional manifold
X. Assume that the action S[a] consists only of the curvature
da. Then, the theory is invariant under the shift of a by a flat
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connection

a(x) �→ a(x) + ω(x), dω = 0. (3)

Objects charged under the 1-form U (1) symmetry (3) are
Wilson loop operator

W (C) = exp

[
i

∫
C

a

]
, C ∈ Z1(X), (4)

which measures the holonomy along C.
Flat 1-form U (1) field is classified up to gauge transforma-

tions by the first cohomology group

[ω] ∈ H 1(X;R/2πZ). (5)

Here, H 1(X;R/2πZ) is generated by elements [λ] ∈
H 1(X;Z), and then we see that the theory has a global 1-form
U (1) symmetry

a(x) �→ a(x) + θλ(x), θ ∈ R/2πZ, (6)

and [λ] ∈ H 1(X;Z). In the case of θ ∈ 2πZ, the shift by
θλ(x) in (6) corresponds to large gauge transformations,
which leave Wilson loop operators invariant.

The symmetry transformation is implemented by an opera-
tor Uθ (M (d−1)) supported on a (d − 1)-dimensional manifold
M (d−1). It has the following equal time commutation relation
with Wilson loop operators:

Uθ (M (d−1))W (C)

= eiθ ·I(C,M (d−1) ) · W (C)Uθ (M (d−1)) at equal time, (7)

where θ ∈ R/2πZ, and I (C,M (d−1)) is the intersection
number.

As 0-form global symmetries, 1-form global symmetries
can be “gauged” or promoted to local (gauge) symmetries.
What it means by gauging 1-form U (1) symmetry is to
introduce a flat 2-form background U (1) field B(x), dB = 0,
and introduce the gauge equivalence relation

a(x) �→ a(x) + θ (x)λ(x)

B(x) �→ B(x) − d(θ (x)λ(x)) = B(x) − dθ (x) ∧ λ(x),
(8)

so that the covariant derivative

DBa := da + B (9)

is invariant. Note that the flatness dB = 0 is retained under the
transformation (8). The gauge equivalence classes of B(x) are
determined by the holonomy on a surface∫

C

B ∈ R/2πZ, C ∈ Z2(X), (10)

which is classified by the second cohomology group

[B] ∈ H 2(X;R/2πZ). (11)

B. 1-form U (1) symmetry on a lattice

1-form symmetry can also be formulated for lattice sys-
tems. It can be most easily done by considering discrete
spacetime by triangulating X. A 1-form field configuration
is an assignment of a ∈ R/2πZ on each edge (1-simplex),
where we define a(ab) = −a(ba) for each edge (ab). We as-
sume that the action S[a] depends on a only via (da)(abc) =

a(ab) + a(bc) + a(ca) on a triangle (2-simplex) with vertices
a, b, c. Then the action is invariant under the following 1-form
global U (1) transformation

a(ab) �→ a(ab) + θλ(ab), (12)

where θ ∈ R/2πZ is a constant, dλ = 0, and∑
(ab)∈C

λ(ab) ∈ Z, C ∈ Z1(X). (13)

Upon gauging this U (1) symmetry, we assign the back-
ground field B ∈ R/2πZ to each triangle (2-simplex). B

denotes a flat 2-form U (1) gauge field on the lattice, subject to
the following constraint. Given a tetrahedral (3-simplex) with
vertices a, b, c, d, we have a flatness condition

B(abc) − B(abd ) + B(acd ) − B(bcd ) = 0 mod 2π. (14)

Then, we replace the differential as

a(ab) + a(bc) + a(ca) �→ a(ab) + a(bc) + a(ca) + B(abc), (15)

and the gauge transformation is introduced as

a(ab) �→ a(ab) + β(ab),

B(abc) �→ B(abc) − (β(ab) + β(bc) + β(ca) ),
(16)

to maintain the U (1) symmetry. B is a U (1) 2-cocycle, and
a gauge transformation (16) shifts B(abc) by a 2-coboundary.
Hence the moduli space of flat background U (1) 2-form gauge
field B is identified as H 2(X;R/2πZ), and gauge equivalent
classes of B are determined by the holonomy∑

(abc)∈C

B(abc) ∈ R/2πZ, C ∈ Z2(X). (17)

C. LSMOH theorem with 1-form symmetry

In this subsection, we construct the generalized LSMOH
theorem involving 1-form U (1) symmetry. We derive an ana-
log of filling constraint on low energy spectrum for a lattice
system with 1-form U (1) symmetry, employing an “adiabatic
insertion” of flat 2-form field B. The case of n-form symmetry
for n > 1 is given in Appendix A.

We consider a theory consisting of 1-form U (1) field a liv-
ing on edges of a d-dimensional cubic lattice with a periodic
structure, whose vertices are labeled as (x1, x2, . . . , xd ) ∈
Z/L1Z × Z/L2Z × · · · × Z/LdZ. Time may be either con-
tinuous or discretized on a lattice. The theory is invariant
under the following global U (1) transformation (12). The
theory is also invariant under the translation Tl about one unit
cell along the lth direction, which acts on a as

aj (x) �→ aj (x + el ) (18)

for 1 � j � d, where el is a unit lattice vector in the lth
direction, and aj (x) is a 1-form field on the edge (x, x + ej ).

Now we assume that neither U (1) nor the translation sym-
metry is broken. Then we gauge the U (1) symmetry (12) by
coupling with a background flat 2-form gauge field B defined
on faces. Consider the field configuration that corresponds to
adiabatic flux insertion, represented as follows [see Fig. 1(a)]

Blm = 0 t < 0,

Blm(x; t ) = δ(xm) · 2πt/LlT 0 � t < T ,

Blm(x; t ) = δ(xm) · 2π/Ll T � t,

(19)
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FIG. 1. (a) Configuration of 2-form field B on the xlxm plane. (b) A large gauge transformation.

where m satisfies m �= l, 1 � m � d, and δ(x) is a delta
function such that

δ(x) = 1 x = 0
δ(x) = 0 x �= 0.

(20)

Blm(x; t ) denotes B on a face whose vertices are {x, x +
el , x + el + em, x + em} at time t . The other components of B

are 0. For the configuration (19), the holonomy of B defined
as (10) along the xlxm plane grows gradually from 0 to 2π as
time proceeds, ∑

f ∈C

Bf = 2πt

T
0 � t < T , (21)

where f is a label of a face, and C is a plane that includes
vertices written as (ylel + ymem) for 0 � yl < Ll, 0 � ym <

Lm.
Suppose that the Hamiltonian at t = 0 (written as H0) has

a finite excitation gap above the ground state and that the gap
does not close during the process of adiabatic flux insertion.
At t = 0, a ground state |ψ0〉 is chosen (when the ground state
are degenerate) so that it is an eigenstate of Tl and a U (1)
symmetry transformation operator Qm,

Tl|ψ0〉 = eipl |ψ0〉, Qm|ψ0〉 = ν
∏

1�k�d,k �=m

Lk|ψ0〉, (22)

where Qm is a U (1) charge operator associated with (d −
1)-dimensional hyperplane characterized as xm = 0, and ν

denotes the U (1) charge per unit cell. During the adiabatic
process, the configuration of B is always translation sym-
metric, hence the state remains the eigenstate of Tl with the
eigenvalue eipl . When the holonomy (21) along C reaches
the unit flux quantum 2π at t = T , the original ground state
evolves into some ground state |ψ ′

0〉 of the Hamiltonian at
t = T (written as H ′

0), that satisfies Tl|ψ ′
0〉 = eipl |ψ ′

0〉. The
configuration of the flat background U (1) gauge field (19) at
t = T with the holonomy 2π is gauge equivalent to that of
t = 0, by the following gauge transformation [see Fig. 1(b)]

am(x) �→ am(x) − δ(xm) · 2πxl/Ll,

Blm(x) �→ Blm(x) − δ(xm) · 2π/Ll.
(23)

We write the symmetry operator corresponding to the
above gauge transformation as Ulm. Then, it is found that
Ulm|ψ ′

0〉 is also a ground state of H0, and we can see that there
is the following commutation relation between Ulm and Tl

UlmTlU
†
lm = Tl exp

[
−2πi

Ll

Qm

]
. (24)

Now we obtain the action of Tl on Ulm|ψ ′
0〉 using the commu-

tation relation (24)

TlUlm|ψ ′
0〉 = eipl exp

[
2πi

Ll

Qm

]
· Ulm|ψ ′

0〉

= exp

⎡
⎣ipl + 2πiν

∏
k �=l,m

Lk

⎤
⎦ · Ulm|ψ ′

0〉. (25)

We have used that the gauge transformation Ulm com-
mutes with the U (1) charge Qm. Thus, if we have ν =
p/q, with Ll integer multiple of q and

∏
k �=l,m Lk mutu-

ally prime with q, the momentum of Ulm|ψ ′
0〉 is written as

pl + 2πr/q, using some integer r mutually prime with q.
Therefore, we obtain at least q mutually orthogonal ground
states |ψ0〉, |ψ1〉, . . . , |ψq−1〉 with different momentum, such
that

|ψk+1〉 = Ulm|ψ ′
k〉, Tl|ψk〉 = exp

[
i

(
pl + 2πkr

q

)]
|ψk〉.

(26)

Summarizing, we have proven the following [38]:
Theorem II.1. (LSMOH theorem for 1-form symmetry).
Consider a quantum many-body system defined on a d-

dimensional periodic lattice, in the presence of a global 1-
form U (1) symmetry and a translation symmetry along the
lth primitive lattice vector, and assume that both symmetries
are not broken. Then, if the U (1) charge (measured on a
(d − 1)-dimensional hyperplane characterized by xm = 0 for
m �= l) per unit cell is ν = p/q at the ground state, there are
only two possibilities for the low energy spectrum:

(1) The system is gapped, and the ground states are at least
q-fold degenerate, or

(2) The system is gapless.
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III. APPLICATION TO THE QUANTUM DIMER MODEL

In this section, we apply the generalized LSMOH theorem,
obtained in Sec. II C, to the (2 + 1)-dimensional quantum
dimer model (QDM) on a bipartite lattice. Previous applica-
tions of the original LSMOH theorem to the QDM are found
in Refs. [39,40].

A. Quantum dimer model and U (1) lattice gauge theory

The Hilbert space of the QDM is identified with the set
of possible dimer coverings of a lattice, e.g., the square,

honeycomb lattice, etc. For each dimer covering Cdimer, we
define a corresponding quantum state |Cdimer〉. The set of states
{|Cdimer〉} are orthogonal

〈Cdimer|C ′
dimer〉 = δCdimer,C ′

dimer (27)

and complete. The Hamiltonian of the QDM model typically
consists of two kinds of terms, one of which is diagonal in
the basis {|Cdimer〉}, and the other induces “hopping” between
different dimer configurations. For the honeycomb and square
lattices, the Hamiltonians are given by

(28)

(29)

respectively.
The QDM on a bipartite lattice can be formulated in terms of the U (1) lattice gauge theory [41]. To derive this, we consider

the enlarged Hilbert space where we introduce operators n on edges of the lattice taking their eigenvalues in Z, which in the
original QDM are Z2 variables representing the presence/absence of dimers on a given link. Conjugate to operators n on each
edge, we also introduce operators θ taking their eigenvalues in [0, 2π ), which can raise or lower n on each edge (i.e., “create” or
“annihilate” dimers). The enlarged Hilbert space is subject to the constraint, the “dimer constraint,” that for each vertex, variables
n for links emanating from it sum to 1. As we will see later, the local dimer constraint corresponds to the Gauss law in the U (1)
gauge theory.

In terms of n and θ , we consider the following Hamiltonian in the enlarged Hilbert space

Heff = K
∑

(ab)∈edge

(
n(ab) − 1

2

)2

+ H0[n, θ ]. (30)

Here, for large positive K , the first term acts as the projector onto the physical Hilbert space n ∈ {0, 1}. The second term H0[n, θ ]
reproduces the dynamics of the QDM in the physical Hilbert space. For example, in the case of the QDM on the square lattice,
H0 is given by

H0 = −t
∑

x

[n1(x)n1(x + e2) + n2(x)n2(x + e1)] + 2v
∑
{�}

cos[θ1(x) − θ2(x + e1) + θ1(x + e2) − θ2(x)], (31)

where nj (x) and θj (x) are link variables on an edge (x, x + ej ).
To cast the above rotor model in the language of the U (1) gauge theory, we assign an orientation to each edge of the bipartite

lattice following the “all-in all-out” rule: For a bipartite lattice consisting of A and B sublattices, each edge is oriented from a
vertex on A sublattice to the other vertex on B sublattice. Then, we define gauge and electric fields by

A(ab) = θ(ab), E(ab) = n(ab), (32)

where a ∈ A and b ∈ B, and we impose A(ab) = −A(ba), E(ab) = −E(ba). In terms of these variables, the dimer constraint can
be written as the Gauss law constraint

(div E(x) − ρ(x))|Phys.〉 = 0, (33)

on physical states, where the lattice divergence is defined as

div E(x) ≡
∑

x′
(xx′ )∈edge

E(xx′ ), (34)

and the staggered charge density ρ(x) is defined as

ρ(x) = 1x ∈ A, ρ(x) = −1x ∈ B. (35)
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Now we can express the effective Hamiltonian (30) in terms of U (1) gauge fields. On the honeycomb lattice

Heff = K
∑

x∈A,x′∈B
(xx′ )∈edge

(
E(xx′ ) − 1

2

)2

− t
∑
{�}

(E(12)E(34)E(56) − E(23)E(45)E(61)) + 2v
∑
{�}

cos[rot A], (36)

where the vertices labeled as A (resp. B) are described as white circles (resp. black circles). The lattice rotation on a plaquette is
defined as summation of link variables around the plaquette counterclockwise. For example, in the case of the honeycomb lattice

rot A = A(12) + A(23) + A(34) + A(45) + A(56) + A(61). (37)

Similarly, on the square lattice

Heff = K
∑

x∈A,x′∈B
(xx′ )∈edge

(
E(xx′ ) − 1

2

)2

− t
∑
{�}

(E(12)E(34) + E(23)E(41)) + 2v
∑
{�}

cos[rotA]. (38)

In the expressions (36), (38), and the Gauss law con-
straint (33), we obtain faithful representations of QDM Hamil-
tonians (28), (29) by taking the limit K → ∞.

B. 1-form symmetry and LSMOH theorem

The lattice gauge theories (36), (38) clearly have the lattice
translation symmetry which leaves the sublattice structure
invariant. In addition, these theories are also invariant under
the following 1-form global U (1) transformation

U (1)[1] : A �→ A + ω, (39)

where ω represents a flat field, i.e., rot ω = 0. The operator
Uω which implements the U (1)[1] transformation (39) is ex-
pressed as

Uω = exp(iQω ); Qω =
∑

x∈A,x′∈B
(xx′ )∈edge

ω(xx′ )E(xx′ ). (40)

Since Uω commutes with both E and rot A, one can easily ver-
ify that Uω commutes with the whole Hamiltonian (36), (38).
Thus, we can apply the LSMOH theorem for 1-form sym-
metry (Theorem 1.1) to the gauge theories and deduce that
the system cannot be trivially gapped (i.e., the ground state
is degenerate or gapless) if the filling of the U (1)[1] charge
is fractional. Below, we will demonstrate the LSMOH is
consistent with the known phases that exist in the honeycomb
lattice QDM. (From now on, we will mostly discuss the case
of the honeycomb lattice in the main text. The discussion on
the square lattice is found in Appendix C [42].)

First, let us clarify the meaning of the filling fraction for the
1-form charge. The U (1)[1] charge in the honeycomb lattice
QDM (36) measured on a line x2 = 0 is

Q2(x2 = 0) ≡
L1−1∑
x1=0

Eα (x1, 0). (41)

Here, we employed the Cartesian coordinate (x1, x2) defined
on the honeycomb lattice, whose x1 axis is vertical to one edge
in the honeycomb lattice. The scale is chosen such that the
distance between two neighboring parallel edges is 1. Eα (x)

is an electric field on an edge (x, x + eα ), where eα is a lattice
vector connecting neighboring vertices which is perpendicular
to the x1 axis (see Fig. 2). We assume that the lattice is
periodic as required for applying the LSMOH theorem on
the system, with L1 being the length of the system in the x1

direction. The operator Q2 generates a shift of the Wilson loop
extended in the x2 direction, via the canonical commutation
relation between E and A. In the QDM, Q2 is simply the sum
of the number of dimers vertical to the x1 axis touching the
vertices on a line x2 = 0, since using (32) we see that

Q2(x2 = 0) =
L1−1∑
x1=0

nα (x1, 0). (42)

Then, the filling ν ≡ Q2/L1 is the number of dimers per the
unit length.

Now let us refer to several ordered phases in QDM. It
is known that there are three distinct ordered phases in the
QDM on the honeycomb lattice [43] (see Fig. 3). In the region
v  t the system lies in the “columnar” crystal phase, which
gives way to the “plaquette” crystal phase by a first order
transition. In these two ordered phases the filling is calculated

FIG. 2. Cartesian coordinate on the honeycomb lattice. Lattice
vectors connecting two neighboring vertices are labeled as eα, eβ ,
and eγ , respectively.
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FIG. 3. The schematic phase diagram of the QDM on the honeycomb lattice. The 1-form filling ν = 1 in the staggered phase. ν = 1/3 in the
columnar and plaquette phase, which terminate at the RK critical point. There is a sequence of the incommensurate crystal and commensurate
ordered phase between the RK point and the staggered phase [44,45], where ν increases continuously from 1/3 to 1.

as ν = 1/3, then the generalized LSMOH theorem based on
U (1)[1] and the lattice translation symmetry in the x1 direction
dictates that the lattice translation symmetry must be broken to
have a gapped phase. Here, we note that the continuous 1-form
symmetry such as U (1)[1] cannot be spontaneously broken in
a (2 + 1)-dimensional system, as guaranteed by the general-
ized version of the Coleman-Mermin-Wagner theorem. In the
columnar and plaquette crystal phase, the lattice translation
is indeed spontaneously broken, and threefold degenerate
ground states appear accordingly, which are related by the
lattice translation. The third ordered phase is a “staggered”
phase which appears in the region v > t , where the filling
is calculated as ν = 1 if dimers in the staggered phase are
vertical to the x1 axis, otherwise ν = 0. At any rate ν is
integral and we deduce that a gapped phase can be realized
without breaking the lattice translation symmetry, which is
consistent with symmetries of the staggered phase.

We remark that the 1-form filling ν is allowed to take
distinct values for different phases of the QDM. This should
be contrasted with the 0-form filling of lattice models which
preserve the particle number [46]. The LSMOH theorem is
applied to each sector of the Hilbert space with the specific
1-form charge. More generally, in gauge theories we usually
sum over all configurations of gauge fields in path integral,
without fixing specific topological sector.

C. Continuum field theory description

The special point v = t which appears at the transition
between the plaquette and staggered phases, is called the
Rokhsar-Kivelson (RK) point [47,48]. The RK point is re-
markable in the sense that one can obtain exact ground states
as the equal weight superpositions of states in each sector of
dimer configurations connected by the resonance term in (28).
The vicinity of the RK point has a field theoretical description
in the continuum. The degree of freedom in the effective field
theory is a scalar field φ with the compactification radius 2π ,
which is introduced as the height field. In terms of φ, the
underlying theory believed to control the vicinity of the RK
point is given by the following Lagrangian [48]

L = 1

2
∂tφ∂tφ − ρ

2
∇iφ∇iφ − κ2

2
∇2φ∇2φ

= 1

2
∂μφ∂μφ − κ̃2

2
∂i∂

iφ∂j ∂
jφ

= dφ ∧ ∗dφ − κ̃2

2
(�φ)2, (43)

where ∂μ := (∂0,
√

ρ∇i ), � = ∂i∂
i and κ̃ := κ/ρ, with ρ ∝

−(v/t ) + 1 changing its sign precisely at the RK point. An
identification of the dimer variables n and the scalar field φ of
the field theory is [44,49]

nα − 1

3
= 1

2π
∂1φ + 1

2

[
eiφe

4πix1
3 + H.c.

]
,

nβ − 1

3
= 1

2π

(
−1

2
∂1 +

√
3

2
∂2

)
φ + 1

2

[
eiφe

4πix1
3 + 4πi

3 + H.c.
]
,

nγ − 1

3
= 1

2π

(
−1

2
∂1 −

√
3

2
∂2

)
φ + 1

2

[
eiφe

4πix1
3 − 4πi

3 + H.c.
]
.

(44)

1. U (1)[1] × T1 symmetry

Let us refer to symmetry in the continuum description (43).
One can read off the action of the translation symmetry in
x1 direction (denoted by T1) on φ from (44) by imposing
that n transforms correctly under the translation. Then, in the
continuum limit T1 acts on φ as an internal symmetry

T1 : φ �→ φ − 2π

3
. (45)

Besides the T1 symmetry (45), this theory has a U (1) 1-
form symmetry, whose generator is given by (42) in the lattice
model. The continuum description of the charge operator of
U (1)[1] (42) in the QDM is expressed as

Q2 =
L1−1∑
x1=0

nα (x1, 0)

=
∑
x1=0

1

2π
∂1φ(x1, 0) + 1

2

[
eiφ(x1,0)e

4πix1
3 + H.c.

] + L1

3

≈
∫

x2=0
dx1∂1φ + L1

3
, (46)

where we used the identification (44) and dropped the sum-
mation of the staggered part in the last equation.

Equations of motion are read off from the Lagrangian (43),

∂μ∂μφ + κ̃2��φ = 0, εμνρ∂ν∂ρφ = 0. (47)

Conserved currents for 0-form and 1-form U (1) symmetries
are, respectively, given by

djA = 0, (∗jA)μ = (∂0φ, ∂iφ + κ̃2��φ), (48)

djB = 0, (∗jB )μν = εμνρ∂ρφ. (49)

014402-7



KOBAYASHI, SHIOZAKI, KIKUCHI, AND RYU PHYSICAL REVIEW B 99, 014402 (2019)

Then, (46) is identified as a generator of 1-form symmetry
given by integrating the current on a line up to constant,

Q2 =
∫

x2=0
jB + L1

3
. (50)

On the other hand, Z3 translation symmetry (45) is a subgroup
of the U (1) 0-form symmetry.

According to (46), the filling measured relative to 1/3 is
identified as the gradient of the height φ measured in x1

direction per unit lattice,

ν − 1

3
= Q2 − L1/3

L1
≈

∫
x2=0

dx1∂1φ (51)

which is sometimes called “tilt” [50]. The flat tilt is observed
in the columnar and plaquette phase reflecting ν = 1/3, while
the staggered phase is fully tilted. On the tilted side of the RK
transition v/t > 1, it is argued [44,45,51] that the tilt increases
in the “incomplete devil’s staircase” fashion. Namely, the
increase of the tilt is continuous at least in the vicinity of
the RK point on the tilted side, and there is a sequence of
commensurate gapped crystal and incommensurate points. It
is also argued [44] that the incommensurate region has finite
measure in the parameter space. Here, the incommensurate
region is characterized as the irrational tilt, which corresponds
to the limit q → ∞ for ν = p/q. We remark that in the
incommensurate region it is guaranteed nonperturbatively to
have gapless spectrum by the LSMOH theorem based on
U (1)[1] symmetry.

2. Quantum anomaly in continuum description

Next, we move on to the continuum description of the
LSMOH theorem based on U (1)[1] × T1 symmetry. It is
known [7,11–13] that the LSMOH theorem is manifested in
the form of a quantum anomaly afflicting the symmetry in
continuum field theory. This is analogous to ’t Hooft anomaly
which appears on the boundary of symmetry-protected topo-
logical phases. There is however a subtle difference between
the lattice models subject to the LSM type theorem, and the
boundaries of symmetry-protected topological phases—see,
for example, Refs. [11,12].

In our system, such anomaly involves the combination
of 1-form U (1)[1] and the translation symmetry T1. Here,
we diagnose the ’t Hooft anomaly involving U (1)[1] × T1

symmetry by looking at the action (43) under the background
gauge fields for the symmetry.

We introduce a background U (1)[1]-gauge field B by cou-
pling to the conserved current jB = dφ,

L = dφ ∧ ∗dφ + dφ ∧ B − κ̃2

2
(�φ)2, (52)

which is invariant under a 1-form gauge transformation

B �→ B + dλ. (53)

Next, we introduce a background U (1)-gauge fields (A,C)
to gauge Z3 symmetry by forming the covariant derivative

dφ − A [19],

S =
∫

(dφ − A) ∧ ∗(dφ − A) + (dφ − A) ∧ B

− κ̃2

2
(∂i (∂

iφ − Ai ))2d2x + F ∧ (3A − dC). (54)

where A is a 1-form U (1) gauge field, C is a 2π -periodic
scalar field, and F is a 2-form field. Integration over F yields
3A = dC and makes A into a Z3 gauge field.

The gauged action (54) is not invariant under the 1-form
gauge transformation (53) but

S �→ S − 2π

3
k (mod 2π ), (55)

with k ∈ Z. This is an expected Z3 ’t Hooft anomaly that
signals the phase shift of the partition function in the presence
of Z3 twist, under U (1)[1] large gauge transformation. The
counterpart of this ’t Hooft anomaly is observed in the lattice
model, as the nontrivial commutation relation between the
lattice translation T1 and a large U (1)[1] gauge transformation
dependent on the filling of U (1)[1] charge, which leads to the
degeneracy of ground states. Namely, this anomaly (55) is a
continuum description of (24) with the filling at the vacuum
ν = Q2/L1 = 1/3, as realized in the plaquette phase lying in
the vicinity of the RK point.

3. Gauge invariant operators

Finally, we refer to possible perturbations to the theory (43)
near the RK point. There are two types of gauge invariant
observables in this theory, both of which are forbidden by
requiring U (1)[1] × T1 symmetry, respectively: One of them
is a vertex operator of a magnetic charge n,

Vn(x) = exp[inφ(x)]. (56)

The quantization n ∈ Z follows from the compactness of the
scalar field φ ∼ φ + 2π . The lattice translation symmetry
T1 (45) forbids Vn with n = 3l + 1, 3l + 2 for l ∈ Z, hence
the leading perturbation becomes cos(3φ).

The other is made manifest in U (1) gauge theory which
is dual to (43), by standard particle-vortex duality. The dual
action is written as [49]

S =
∫

d2x

(
1

4
da ∧ ∗da − κ̃2

16
(εij ∂ifj0)2

)
, (57)

where a is U (1) gauge field. Then, we find Wilson loop
operator for an electric charge of charge m is gauge invariant,

Wm(C) = exp

[
im

∫
C

a

]
, (58)

where C is a closed loop. Like the case of Vn(x), m is also
quantized as m ∈ Z when C is chosen to be noncontractible,
which follows from invariance under the large gauge trans-
formation. Wm(C) for a noncontractible C is forbidden by
U (1)[1] symmetry for arbitrary m.

This situation is analogous to the case of one-dimensional
antiferromagnetic spin-1/2 XXZ chain, which is mapped to
a half-filled fermion system with (0-form) U (1) charge con-
servation. The continuum field theory for the XXZ chain is
the TLL in terms of the bosonic scalar field φ, with (0-form)
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global symmetry U (1)[0] and the lattice translation symmetry
T . The possible perturbations for the TLL are Vn = einφ and
Ṽm = eimθ for n,m ∈ Z, where θ is the dual field of φ. Like
the perturbations in the QDM, Vn is forbidden up to cos(2φ)
by the lattice translation symmetry T : φ �→ φ + π , and Ṽm

is forbidden by the U (1)[0] symmetry for arbitrary m.

IV. CONCLUSION AND OUTLOOK

In this paper, we have studied the LSMOH type theorem
based on the combination of U (1) higher-form symmetry and
lattice translations, with particular focus on 1-form symme-
tries. Our result is applied for pure U (1) lattice gauge theories
which simulate the QDM on bipartite lattices in 2 + 1 dimen-
sion. The QDM on a bipartite (square, honeycomb) lattice has
a gapless deconfined phase called the incommensurate crystal
next to the RK critical point. We observed that the decon-
finement in the incommensurate crystal phase is enforced by
the irrational filling of 1-form charge. The LSMOH theorem
is manifested as a mixed ’t Hooft anomaly for U (1)[1] × T1

symmetry near the RK critical point. We explicitly diagnosed
this ’t Hooft anomaly by calculating the partition function in
the presence of a background gauge field.

One direction to extend the studies here is to apply our
results to the QDM on a bipartite lattice in higher dimensions,
which can be realized, for example, as an effective model
of the spin-1/2 antiferromagnetic Heisenberg model on a
pyrochlore lattice [52]. It would be interesting to look for the
possibility of the deconfined phase enforced by the fractional
1-form filling in such systems, which is left for future inves-
tigation. Finally, in this work we have not considered spatial
symmetries other than simple lattice translation and reflection,
so we leave the refinement of our result for additional crystal
symmetries for future work.
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APPENDIX A: n-FORM SYMMETRY

In this appendix, we discuss the generalized version of the
LSMOH theorem based n-form symmetry. It is straightfor-
ward to generalize the logic introduced in Section II to n-form
U (1) symmetry.

1. n-form U (1) symmetry in the continuum

Consider a theory written in terms of a n-form U (1) field
h and assume that the action S[h] consists only of dh. The

theory is invariant under the shift of h by a flat field

h(x) �→ h(x) + ω(x), dω = 0. (A1)

Gauge equivalence classes of flat n-form U (1) field are clas-
sified by the cohomology group

[ω] ∈ Hn(X;R/2πZ). (A2)

Then we see that the theory has a global n-form U (1) symme-
try

h(x) �→ h(x) + θλ(x), θ ∈ R/2πZ, (A3)

and [λ] ∈ Hn(X;Z).
Objects charged under the n-form U (1) symmetry (A3) are

operators defined on n-dimensional surfaces,

V (C) = exp

[
i

∫
C

h

]
, C ∈ Zn(X), (A4)

which measures a kind of holonomy along C. The n-
form symmetry transformation is implemented by an opera-
tor Uθ (M (d−n) ) supported on (d − n)-dimensional manifold
M (d−n). We have the equal time commutation relation as

Uθ (M (d−n) )V (C)

= eiθ (C,M (d−n) ) · V (C)Uθ (M (d−n) ) at equal time, (A5)

where (C,M (d−n) ) is the intersection number.
Gauging n-form U (1) symmetry means introducing the

flat (n + 1)-form background U (1) field c(x), dc = 0, and
introduce the gauge equivalence relation

h(x) �→ h(x) + θ (x)λ(x)

c(x) �→ c(x) − d(θ (x)λ(x)) = c(x) − dθ (x) ∧ λ(x),
(A6)

so that the covariant derivative

Dch := dh + c (A7)

is invariant. The gauge equivalence classes of c(x) are deter-
mined by a kind of holonomy∫

C

c ∈ R/2πZ, C ∈ Zn+1(X), (A8)

i.e.,

[c] ∈ Hn+1(X;R/2πZ). (A9)

2. LSMOH theorem with n-form symmetry

We formulate the above theory on the periodic lattice,
whose vertices are labeled as (x1, x2, . . . , xd ) ∈ Z/L1Z ×
Z/L2Z × · · · × Z/LdZ, and repeat the same logic as
Sec. II C to derive LSMOH-type theorem for higher form
symmetry. In this case, n-form U (1) field h is assigned on
each n-dimensional hypercube. The theory is invariant under
the global U (1) transformation

h �→ h + θλ, (A10)

where θ ∈ R/2πZ is a constant, dλ = 0, and∑
γn∈C

λγn
∈ Z, C ∈ Zn(X), (A11)
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where γn is a label of n-dimensional hypercube. The theory
is also invariant under the translation Tl about one unit cell
along the lth direction and assume that neither U (1) nor the
translation symmetry is broken.

Then we gauge the U (1) symmetry (A10) by coupling with
a background flat (n + 1)-form gauge field c defined on (n +
1)-dimensional hypercube. Consider the field configuration
that corresponds to adiabatic insertion

clm1...mn
= 0 t < 0,

clm1...mn
(x; t ) =

n∏
i=1

δ
(
xmi

) · 2πt/LlT 0 � t < T , (A12)

clm1...mn
(x; t ) =

n∏
i=1

δ
(
xmi

) · 2π/Ll T � t,

and the other components of c are 0. For the configura-
tion (A12), the holonomy of c along (n + 1)-dimensional
xlxm1 . . . xmn

hyperplane grows gradually from 0 to 2π as time
proceeds: ∑

γn+1∈C

cγn+1 = 2πt

T
0 � t < T , (A13)

where γn+1 is a label of (n + 1)-dimensional hypercube, and
C is some xlxm1 . . . xmn

hyperplane.
Suppose that the Hamiltonian at t = 0 (written as H0) has

finite excitation gap above the ground state and that the gap
does not close during the process of adiabatic flux insertion.
At t = 0, the ground state |ψ0〉 is chosen (when the ground
state are degenerate) so that it is an eigenstate of Tl and a U (1)
symmetry transformation operator Qm1...mn

:

Tl|ψ0〉 = eipl |ψ0〉, Qm1...mn
|ψ0〉 = ν

∏
k �=m1...mn

Lk|ψ0〉,

(A14)

where Qm1...mn
is a U (1) charge operator associated with (d −

n)-dimensional hyperplane characterized as xm1 = · · · =
xmn

= 0, and ν denotes the U (1) charge per unit cell. When
the holonomy (A13) along C reaches the unit flux quantum
2π at t = T , the original ground state evolves into some
ground state |ψ ′

0〉 of the Hamiltonian at t = T (written as
H ′

0) that satisfies Tl|ψ ′
0〉 = eipl |ψ ′

0〉. The configuration of
the flat background U (1) gauge field (A12) at t = T with
the holonomy 2π is gauge equivalent to that of t = 0, by the
following gauge transformation

hm1...mn
(x) �→ hm1...mn

(x) −
n∏

i=1

δ
(
xmi

) · 2πxl/Ll,

clm1...mn
(x) �→ clm1...mn

(x) −
n∏

i=1

δ
(
xmi

) · 2π/Ll. (A15)

We write the symmetry operator corresponding to the above
gauge transformation as Ulm1...mn

. Then, Ulm1...mn
|ψ ′

0〉 is also
a ground state of H0, and there is the following commutation
relation between Ulm1...mn

and Tl

Ulm1...mn
TlU

†
lm1...mn

= Tl exp

[
−2πi

Ll

Qm1...mn

]
. (A16)

Now we obtain the action of Tl on Ulm1...mn
|ψ ′

0〉 using the
commutation relation (A16)

TlUlm1...mn
|ψ ′

0〉 = eipl exp

[
2πi

Ll

Qm1...mn

]
· Ulm1...mn

|ψ ′
0〉

= exp

⎡
⎣ipl + 2πiν

∏
k �=l,m1,...,mn

Lk

⎤
⎦

· Ulm1...mn
|ψ ′

0〉. (A17)

Thus, if we have ν = p/q, with Ll integer multiple of q

and
∏

k �=l,m1,...,mn
Lk mutually prime with q, the momentum

of Ulm1...mn
|ψ ′

0〉 is written as pl + 2πr/q, using some integer
r mutually prime with q. Therefore, we obtain at least q mu-
tually orthogonal ground states |ψ0〉, |ψ1〉, . . . , |ψq−1〉 with
different momentum, such that

|ψk+1〉 = Ulm1...mn
|ψ ′

k〉,

Tl|ψk〉 = exp

[
i

(
pl + 2πkr

q

)]
|ψk〉. (A18)

Then, we have proven that
Theorem A.1. (LSMOH theorem for n-form symmetry).
Consider a quantum many-body system defined on a d-

dimensional periodic lattice, in the presence of a global n-
form U (1) symmetry and a translation symmetry about the lth
primitive lattice vector, and assume that both symmetries are
not broken. Then, if the U (1) charge (measured on a (d − n)-
dimensional hyperplane characterized as xm1 = · · · = xmn

=
0 for m1, . . . , mn �= l) per unit cell ν = p/q at the ground
state, only two possibilities are possible for the low energy
spectrum:

(1) The system is gapped, and the ground states are at least
q-fold degenerate, or

(2) The system is gapless.

APPENDIX B: 1-FORM LSMOH THEOREM IS AVAILABLE
IN THE QUANTUM DIMER MODEL

Here, we give a simple proof that the result of LSMOH
theorem (Theorem 1.1) is true for (36), even if we take the
limit K → ∞ before taking the thermodynamic limit. To do
this, we see if |ψ0〉 is a ground state of the gauge theory (36),
the state U12|ψ0〉 also lies in the low energy sector, whose
energy splitting from |ψ0〉 is independent of K and bounded
by O(1/L1). Here, the operator U12 is defined as

U12 ≡ exp

(
2πi

L1

L1−1∑
x1=0

x1Eα (x1, 0)

)
. (B1)

This statement can be proven in the same manner as the
original proof of the LSM theorem (for one-dimensional spin
system) by Lieb, Schultz, and Mattis. We evaluate the differ-
ence of the energy expectation values for |ψ0〉 and U12|ψ0〉
as

δE[K] = 〈ψ0|(U †
12Heff [K]U12 − Heff [K])|ψ0〉

� 〈ψ0|(U †
12Heff [K]U12 − Heff [K])|ψ0〉

+ 〈ψ0|(U12Heff [K]U †
12 − Heff [K])|ψ0〉
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FIG. 4. (a) Configuration of 2-form field B on the x1x2 plane at the end of the insertion process. (b) A large gauge transformation.

= 8v

(
cos

(
2π

L1

)
− 1

)
〈ψ0|

⎛
⎜⎜⎝∑

{�}
x2=0

cos[rotA]

⎞
⎟⎟⎠|ψ0〉

� 8v · 1

2

(
2π

L1

)2

· L1 = 16π2v

L1
, (B2)

where we simply added the term 〈ψ0|(U12Heff [K]U †
12 −

Heff [K])|ψ0〉 in the second line, which is non-negative due to
the variational principle. Using the similar logic, we find that
the variational energy of Un

12|ψ0〉 is bounded by 16π2vn/L1.
With help of the commutation relation between the lattice
translation in x1 direction like (24), we find at least q mutually
orthogonal ground states with distinct momentum when the
filling ν ≡ Q2/L1 = p/q. Here the upper bound of energy
splitting 16π2vq/L1 is independent of K , therefore

lim
L1,L2→∞

lim
K→∞

δE[K] � lim
L1,L2→∞

lim
K→∞

16π2vq

L1
= 0, (B3)

which assures the availability of LSMOH theorem after taking
the limit K → ∞. It is straightforward to generalize the logic
to the case of square lattice.

APPENDIX C: THE QUANTUM DIMER MODEL
ON THE SQUARE LATTICE

1. Symmetries and LSMOH theorem

In this appendix, we discuss the quantum dimer model on
the square lattice, which is largely in parallel with the case of
the honeycomb lattice. The main difference is that the gauge
theory is not invariant under translations by the unit lattice
vectors e1, e2 of the square lattice due to the presence of the
staggered background charges. I.e., the unit cells are enlarged.
The spatial symmetry is thus generated by the translations T±
by the lattice vectors e± := e1 ± e2. The LSMOH theorem can
be applied based on U (1)[1] × T+ symmetry.

To see how this works, first we assume that L1 = L2 =
L to make the system periodic in e+ direction. Then, one

performs the adiabatic insertion of 2-form background field
B coupled with A from B = 0 to the final configuration

Bfinal
12 (x) = 2π

L
δx1x2 (C1)

[see Fig. 4(a)]. The configuration of background field (C1)
is gauge equivalent to the initial configuration B = 0, by the
following large gauge transformation [see Fig. 4(b)]

U+− = exp

(
2πi

L

∑
x

xE1(x, x) − 2πi

L

∑
x

xE2(x, x − 1)

)
.

(C2)

One can see that the commutation relation between the large
gauge transformation U+− and T+ is given by

U+−T+U
†
+− = T+ exp

[
−2πi

L
Q+

]
, (C3)

where Q+ is the charge operator that operates on Wilson loops
extended in e− direction:

Q+ =
∑

x

E1(x, x) −
∑

x

E2(x, x − 1). (C4)

Using (32) we see that Q+ is the number of dimers measured
on the string, when the vertices (x, x) belong to the sublattice
A.

The phase diagram of the square lattice QDM is qualita-
tively similar to the honeycomb lattice QDM. There are three
kinds of ordered phases: columnar, plaquette, and staggered
phases. The filling ν = Q+/L takes value 1/2 in the columnar
and plaquette phase where the T+ symmetry is broken, while
in the staggered phase with ν = 0 or 1 the T+ symmetry is
preserved.

2. Continuum field theory calculations

As in the honeycomb lattice QDM, one can identify the
LSMOH anomaly corresponding to (C3) near the RK point,
that involves the combination of U (1)[1] and the translation
symmetry T+. The underlying field theory also has identical
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form to the case of honeycomb lattice, (43). An identification
of the dimer variables nj (x) and the height variables of the
field theory are [44,49]

n1 − 1

4
= 1

2π
(−1)x1+x2∂2φ + 1

2
[(−1)x1eiφ + H.c.],

n2 − 1

4
= 1

2π
(−1)x1+x2+1∂1φ + 1

2
[(−1)x2 ieiφ + H.c.].

(C5)

One can read off the action of T+ on φ from (C5) by imposing
that nj transforms correctly under the translation. Then, in the
continuum limit we see that T+ acts on φ as

T+ : φ �→ φ − π. (C6)

The charge operator Q+ of U (1)[1] symmetry (C4) in the
quantum dimer model is translated into the charge of 1-form
symmetry in the field theory as

Q+ =
∑

x

E1(x, x) −
∑

x

E2(x, x − 1)

=
∑

x

(
1

2π
∂2φ(x, x) − (−1)x cos φ(x, x)

)

+
∑

x

(
1

2π
∂1φ(x, x − 1)

− (−1)x sin φ(x, x − 1)

)
+ L

2

≈
∫

x1=x2

dφ + L

2
, (C7)

where we used the identification (C5) and dropped the sum-
mation of the staggered part in the last equation. Now we
diagnose the mixed LSMOH anomaly using the same logic
as in Sec. III, i.e., first we gauge the U (1)[1] symmetry and
then calculate the partition function twisted by T+, in the
presence of the 2-form background field coupled with a. Both
T+ symmetry and U (1)[1] act only on the zero mode part of

fields. The action of T+ is

T+ : α0 �→ α0 − π, (C8)

leaving the other operators invariant. The 2-form flux insertion
in terms of U (1)[1] corresponds to shifting the fractional part
λ0 of β0 = N0 + λ0, where N0 ∈ Z is the untwisted integral
winding number. In conclusion, the LSMOH anomaly in this
case is diagnosed as

Z[λ0 + 1] = −Z[λ0], (C9)

reflecting the filling ν = 1/2 at the plaquette phase.

3. CR symmetry

Besides the translation symmetry T+, the system has the
CR symmetry changing the sublattice represented as

CR : E1(x1, x2) �→ E1(−x1, x2),

E2(x1, x2) �→ −E2(1 − x1, x2),

A1(x1, x2) �→ A1(−x1, x2),

A2(x1, x2) �→ −A2(1 − x1, x2),

(C10)

and we can apply the LSMOH theorem that is based on the
U (1)[1] × CR symmetry. In this case, the commutation rela-
tion between the large gauge transformation for the U (1)[1]

(written as U12) and CR is analogous to (24)

U12(CR)U †
12 = (CR) exp

(
−2πi

L1
Q2

)
, (C11)

where the large gauge transformation and Q2 are defined on a
line x2 = const.

U12 = exp

(
2πi

L1

∑
x1

x1E2(x)

)
, (C12)

and

Q2 =
∑
x1

E2(x). (C13)

According to (C11), we see that the ground state cannot be
trivially gapped if the filling (the eigenvalue of Q1/L1 at the
ground state) is fractional.
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