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Floquet engineering offers tantalizing opportunities for controlling the dynamics of quantum many-body
systems and realizing new nonequilibrium phases of matter. However, this approach faces a major challenge:
generic interacting Floquet systems absorb energy from the drive, leading to uncontrolled heating which washes
away the sought-after behavior. How to achieve and control a nontrivial nonequilibrium steady state is therefore
of crucial importance. In this work, we study the dynamics of an interacting one-dimensional periodically driven
electronic system coupled to a phonon heat bath. Using the Floquet-Boltzmann equation (FBE) we show that
the electronic populations of the Floquet eigenstates can be controlled by the dissipation. We find the regime
in which the steady state features an insulator-like filling of the Floquet bands, with a low density of additional
excitations. Furthermore, we develop a simple rate equation model for the steady state excitation density that
captures the behavior obtained from the numerical solution of the FBE over a wide range of parameters.
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I. INTRODUCTION

Floquet engineering has emerged as an exciting tool for
controlling the properties of quantum systems. A periodic
drive, it was shown, could give rise to topological phases
in graphene [1,2] as well as in trivial spin-orbit coupled
semiconductors [3]. Subsequent work revealed a wealth of
new phases without analogues in equilibrium [4–19]; these
phases exhibit exotic features such as time-translation sym-
metry breaking [8–11], topologically protected chiral edge
states in the presence of a completely localized bulk [12], or
fractionalized edges carrying a quantized flow of entropy [17].

In many-body systems, Floquet engineering faces an im-
portant challenge due to electron-electron interactions. Inter-
actions provide an efficient conduit for the system to absorb
energy from the drive. In the absence of a bath, such energy
absorption drives the system towards a maximum-entropy,
infinite-temperature state [20–27]. Therefore, in order to as-
sess the viability of Floquet engineering in electronic systems,
it is crucial to determine the conditions under which a heat
bath can stabilize a low-entropy steady state with certain
key properties of interest. In particular, in the context of
trying to realize Floquet topological insulators, it is important
that the steady state is well described in terms of electronic
populations in the single-particle Floquet states. Moreover, in
order to observe the topological features of the system, we
seek a population distribution corresponding to an insulator-
like steady state.
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Recently, several works have considered the steady states
of noninteracting Floquet topological insulators in contact
with external baths [28–37]. These works showed that, under
appropriate conditions on the driving and the system-bath
coupling (such as phonon bandwidth [32,33], lead density of
states [32,34], etc.), the topological features of the Floquet
system may be observed through both the bulk Hall con-
ductivity [29] and edge state transport [38]. However, in the
presence of interactions, it remains an open question whether
the bath engineering strategies outlined in the works above are
sufficient to control heating and stabilize the desired steady
states.

In this work we consider the following question: Can an
insulator-like filling of quasienergy bands be achieved in an
interacting electronic system in which a periodic drive is used
to induce a topological transition via a band inversion? In
this situation, the desired Floquet topological insulator (FTI)
steady state is strikingly different from the ground state of the
nondriven system: the FTI features a significant population
inversion when viewed in terms of the valence and conduction
bands of the host material. Thus, in such a resonantly driven
system, stabilizing the FTI steady state brings additional
challenges compared to other protocols (e.g., based on high
frequency driving [2,39,40].

To answer this question, here we consider a one-
dimensional (1D) interacting, open, periodically driven elec-
tronic system. We derive the Floquet-Boltzmann equation
(FBE) for the electronic populations of the quasienergy states
of the open interacting system [23,32]. We numerically solve
these equations for a system coupled to a bosonic bath of
acoustic phonons, and show that, despite the interactions, the
phononic bath still provides effective means for cooling the
interacting driven system, even for experimentally realistic

2469-9950/2019/99(1)/014307(12) 014307-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.014307&domain=pdf&date_stamp=2019-01-30
https://doi.org/10.1103/PhysRevB.99.014307


SEETHARAM, BARDYN, LINDNER, RUDNER, AND REFAEL PHYSICAL REVIEW B 99, 014307 (2019)

Ω/2

−Ω/2 ΔB/2

ΔB/2
Floquet-Auger I

ΔA relax.

Floquet-Auger II

Floquet-Umklapp

k
−π π0

Phonon

J0 J1

A B

W ee
31

W ee
22

Auger I

W ee
31

. . .

W ph
out

W ph
in

(LF,−)

(UF,+)

FIG. 1. Quasienergy band structure and interband scattering pro-
cesses. Electron-electron interactions yield three different types of
interband processes: Auger, and Floquet-Auger (FA) of types I and
II (see text), depicted by dashed, dotted, and solid lines, respec-
tively. In the Floquet-Auger processes, the sums of quasienergies
of the electrons in the initial and final states differ by an integer
multiple of the driving frequency, �. Interband scattering resulting
from electron-phonon interactions yields two important processes:
(i) relaxation from the upper to the lower band via phonon emission,
and (ii) excitation from the lower to the upper band. This process
can occur even at zero temperature, as a Floquet-Umklapp (FU)
process, which involves phonon emission and absorption of � from
the driving field.

parameters. We develop a simple effective model for the
Floquet band densities that captures the essence of all the
Floquet scattering channels and that shows good numerical
agreement with the exact FBE results for a large regime in
parameter space.

II. MICROSCOPIC MODEL

To investigate dynamics of a periodically driven 1D elec-
tronic system, we employ a tight-binding model for spin-
less electrons with time-dependent hopping parameters and
nearest-neighbor electron-electron interactions. We consider
a two-band model, with each unit cell of the lattice containing
two sites (labeled A and B; see inset of Fig. 1). The system’s
evolution is governed by the Hamiltonian H = H0(t ) + Hint,
where the single-particle Hamiltonian

H0(t ) =
∑

x

([J0 + δJ (t )]c†x,Acx,B + J1c
†
x,Bcx+1,A) + H.c.

(1)

defines the system’s band structure and driving, and

Hint = V0

∑
x

(nx,Anx,B + nx,Anx−1,B ) (2)

describes the nearest-neighbor interactions. Here, c
†
x,A and

cx,A (likewise c
†
x,B and cx,B ) denote the spinless electron

creation and annihilation operators on site x of sublattice A

(B); the corresponding on-site densities are given by nx,A =
c
†
x,Acx,A and nx,B = c

†
x,Bcx,B , respectively. The intracell and

intercell hopping parameters J0 and J1 as well as the inter-
action strength V0 are taken to be positive and constant in
time; throughout this work we take a modulation of the form
δJ (t ) = S cos �t , where � is the drive (angular) frequency
and S is the driving strength.

The single-particle Hamiltonian H0(t ) in Eq. (1) is
translationally invariant, and is therefore diagonal in crys-
tal momentum. We introduce an index ν to label the
bands of the system in the absence of driving, i.e., for
S = 0. In this basis, Eq. (1) takes the form H0(t ) =∑

kνν ′ c
†
kν[Ekσ

z
νν ′ + cos(�t )(Sk · σ )νν ′]ckν ′ , where Ek = |Jk|

and Sk = S(0,− sin θk, cos θk ), with Jk = J0 + eikaJ1 ≡
|Jk|eiθk . Here, σ = (σx, σy, σz) is the vector of Pauli matrices,
and a is the lattice constant of the system. We take the driving
frequency � to be larger than the band gap of the nondriven
system, Egap = |J0 − J1|, such that resonances are induced
at crystal momenta kR satisfying 2EkR

= � (we set h̄ = 1
throughout this work).

In the presence of driving, the system is conveniently
described in terms of its Floquet-Bloch band structure (see
Fig. 1). We apply Floquet’s theorem to find a complete basis
of states |ψkα (t )〉 = e−iEkα t |φkα (t )〉 that satisfy Schrödinger’s
equation with Hamiltonian H0(t ), where |φkα (t + T )〉 =
|φkα (t )〉 is periodic with T = 2π/�, and α = ± labels the
Floquet-Bloch bands with quasienergies Ekα . Importantly, the
T -periodic function |φkα (t )〉 can be expressed in terms of
a discrete set of Fourier harmonics {|φn

kα〉}, as |φkα (t )〉 =∑
n e−in�t |φn

kα〉. The structure of these harmonic coefficients
plays an important role in determining the rates of the various
scattering processes that will be considered below.

Equations (1) and (2) prescribe the dynamics of the elec-
tronic system in isolation. In the presence of a periodic drive,
the system’s coupling to the environment plays a crucial role
in determining its steady state. We therefore consider the
electronic system’s coupling to a bath of acoustic phonons.
We take the system to be embedded in a three-dimensional
(3D) medium which supports phonon modes, playing the role
of the substrate supporting the 1D quantum wire. The phonon
bath and electron-phonon coupling Hamiltonians are given by

Hb =
∑

q

ωqb
†
qbq, (3)

Hel−ph =
∑

q

∑
kν

k′ν ′

Gν ′k′
νk (q ) c

†
k′ν ′ckν (bq + b

†
−q ). (4)

Here, q = (q, q⊥) is the phonon momentum (with compo-
nents q parallel to the 1D electronic system, and q⊥ in
the transverse direction), and ωq = C|q| defines the phonon
spectrum, taken to be linear and isotropic with speed of
sound C, up to a frequency cutoff �D . The electron-phonon
interaction amplitude Gν ′k′

νk (q ) corresponds to an electronic
transition νk → ν ′k′ via absorption of a phonon with momen-
tum q (or emission with −q); this amplitude is proportional
to

∑
l δ(k′ − k − q + 2πl/a), with l ranging over all integers,

ensuring crystal-momentum conservation along the direction
of the electronic system. For simplicity, in this work we
choose the matrix elements multiplying the momentum delta
function in the phonon scattering amplitude to be G0σ

3
νν ′ ; i.e.,

the electron-phonon coupling conserves the band index of the
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nondriven system. The qualitative features of our results do
not depend on the exact form of the electron-phonon coupling.
The Debye cutoff frequency �D is an important parameter
of the model, which we use to control the types of possible
scattering processes (see below).

We seek the steady states of the interacting driven system
coupled to the bosonic (phonon) bath described by Eqs. (3)
and (4). We define the population of the single-particle Flo-
quet state kα as Fkα (t ) = 〈f †

kα (t )fkα (t )〉, where the operator
f

†
kα (t ) = ∑

ν,n e−i(Ekα+n�)t 〈kν|φn
kα〉c†kν creates an electron in

the Floquet state |ψkα〉 at time t . We focus on the regime
where scattering rates in the steady state are small compared
with the gaps between Floquet-Bloch bands, translation in-
variance is maintained, and strong multiparticle correlations
(e.g., excitons) are absent. In this regime, the steady state is
well represented in terms of the populations Fkα (t ) of the
single-particle Floquet states.

We use the Floquet-Boltzmann equation (FBE) [23,24,32]
to evolve these populations:

Ḟkα = I
ph
kα ({F }) + I ee

kα ({F }), (5)

where I
ph
kα and I ee

kα are the collision integrals that capture the
net rates of electron scattering into Floquet state kα due to
electron-phonon and electron-electron interactions, Eqs. (4)
and (2), respectively. Explicit expressions for these collision
integrals and the Fermi’s golden rule transition rates inside
them are given in Appendix A.

III. SIMPLE MODEL FOR POPULATION KINETICS

Before examining the numerical solution of the full FBE,
we first develop and discuss a simple effective model that
captures the basic qualitative features of the steady states
of Eq. (5). Specifically, we focus on the interplay between
electron-electron and electron-phonon scattering in determin-
ing the net populations of the two Floquet-Bloch bands,

nα = 1

N

∑
k

Fkα, (6)

where α = −,+ denotes the lower/upper Floquet (LF/UF)
bands, respectively (see Fig. 1), and N is the number of unit
cells in the system. At half filling, which is our focus in this
work, the number of excitations in the upper Floquet band is
equal to the number of holes in the lower Floquet band; this
implies n+ = 1 − n− ≡ n.

Due to the periodicity of quasienergy, the designation
of “upper” and “lower” Floquet bands amounts to a gauge
choice. However, the rates of dissipative processes are sen-
sitive to the characters of the Floquet band wave functions
(valence-band-like or conduction-band-like), and provide a
natural orientation for the bands (see, e.g., Refs. [32,38]). Our
choice follows this natural orientation, picked in anticipation
of the results below.

We construct the model by characterizing the rates of all
possible inter-Floquet-band transitions facilitated by electron-
phonon scattering and electron-electron interactions. The
rates of the various scattering processes depend on incoming
and outgoing crystal momentum and band indices, as well as
the full distribution of Floquet state populations, {Fkα}; see

Eq. (5). Therefore, the evolution of the excitation density n

generally cannot be written as a function of n alone. As a
crude approximation, a closed dynamical equation for n can
be obtained by making a “uniform” approximation on the
FBE, replacing all k-dependent rates by their band-averaged
values (see Appendix A). Crucially, this model retains the
essential structure of phase-space restrictions on different
classes of processes, which we describe in detail below. Com-
paring to numerical simulations of the full FBE, we will show
that the simple model captures and provides insight into the
qualitative dependence of the steady-state excitation density
on the fundamental parameters of the system.

Consider first the possible electron-phonon scattering pro-
cesses. Phonon-mediated transitions out of the UF band (and
into the LF band) require an excited particle in the UF band to
scatter into a hole in the LF band. This requirement constrains
the phase space for such processes, which thus provides a
sink for density in the UF band with rate W

ph
outn+(1 − n−) =

W
ph
outn

2. We refer to processes that reduce the density of ex-
citations as “cooling” processes. Similarly, phonon-mediated
transitions from the LF band into the UF band require a
particle in the LF band to scatter into an empty state in the UF
band. Such processes provide a source for the excited popu-
lation, with rate W

ph
in (1 − n+)n− = W

ph
in (1 − n)2. We refer to

processes that increase the density of excitations as “heating”
processes.

Importantly, the competition between phonon-mediated
“heating” and “cooling” processes, captured by the rates W

ph
in

and W
ph
out, depends on the driving strength and frequency, as

well as the bandwidth of the phonon bath, �D . We consider
the case where the phonon bandwidth is larger than the
resonance-induced Floquet gap centered at quasienergy E=0,
denoted by �A in Fig. 1. Under this condition, the sink
rate W

ph
out in Eq. (7) is nonzero; excited particles in the UF

band can scatter into available holes in the LF band, while
emitting a phonon to conserve quasienergy. In contrast, at zero
temperature (and assuming �D < Egap), scattering processes
contributing to the bare rate W

ph
in in the source term are

always of “Floquet-Umklapp” type: the scattered electron’s
quasienergy in the final state differs from its initial value
by � − ωq, where ωq is the energy of the emitted phonon.
For �D < Egap and/or an electron-phonon coupling that is
diagonal in the original band indices, we find that the rate W

ph
in

is suppressed in comparison to W
ph
out by a factor of (S/�)4

(where S is the drive strength, and � is its frequency); see
Appendix A. Thus for weak driving, (S/�) � 1, heating due
to electron-phonon scattering is naturally a weak effect (see
Fig. 4 for more details).

Electron-electron interactions may give rise to two types
of “Auger” processes that can change the populations in the
two Floquet bands: (I) two particles in the same Floquet band
may scatter to a final state which has one particle in each of
the Floquet bands, and (II) two particles in the same Floquet
band may simultaneously scatter to the opposite Floquet band.
Examples of these processes are depicted in Fig. 1 (see also
Fig. 4).

Electron-electron scattering conserves total crystal mo-
mentum and quasienergy. Similar to conservation of
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crystal momentum, conservation of quasienergy can either
be “direct,” with the sum of initial and final single particle
quasienergies being equal, or “Umklapp”-like, where the sum
of single particle quasienergies in the final state differs from
its initial value by �. Processes of type (I) can be either direct
or Floquet-Umklapp-like; we label such processes “Auger I”
and “Floquet-Auger I,” respectively. Processes of type (II),
which we label “Floquet-Auger II,” are necessarily of the
Umklapp type. For weak driving, the rates of these Floquet-
Umklapp processes are suppressed by a factor (S/�)2 (for
a specific Floquet-Umklapp process, the suppression can be
even stronger).

We now characterize the rates for electron-electron scat-
tering processes, taking into account the phase-space require-
ments for the corresponding transitions. Processes of type I re-
quire two particles in the initial band to scatter into two empty
states, one in each band. If the two particles are initially in the
LF band, we obtain a source term for the excitation density
(a “heating” process) with rate W ee

31n
2
−(1 − n+)(1 − n−) =

W ee
31 (1 − n)3n. Note that this rate includes the contributions of

both Auger-I and Floquet-Auger I processes. If both particles
are initially in the UF band, we obtain a sink term for the den-
sity of excitations with a rate of W ee

31n
2
+(1 − n+)(1 − n−) =

W ee
31n

3(1 − n). Due to particle-hole symmetry, the same bare
rate W ee

31 appears for both the source and sink terms.
Using similar considerations, we find that processes of

type II contribute a source term for n with rate W ee
22n

2
−(1 −

n+)2 = W ee
22 (1 − n)4, and a sink term with rate W ee

22n
2
+(1 −

n−)2 = W ee
22n

4. In the primary regime of interest the excitation
density will be small. Therefore, the sink terms arising from
electron-electron scattering will be suppressed (relative to the
source terms), as they involve higher powers of n.

Combining all source and sink terms, the rate of change of
the excitation density n is approximately given by

ṅ = W
ph
in (1 − n)2 − W

ph
outn

2 + W ee
31 [n(1 − n)3 − n3(1 − n)]

+W ee
22 [(1 − n)4 − n4]. (7)

We obtain the steady-state population of the UF band by
solving ṅ = 0. This condition yields a cubic equation for the
steady-state excitation density, which is supplemented by the
condition 0 � n � 1. While such a relation in principle admits
for multistability, we find only a single physical solution in all
regimes studied. In Appendix B we present a generalization of
Eq. (7) which incorporates the role of a fermionic reservoir.

Although Eq. (7) can be solved exactly using the general
solution for the roots of a cubic polynomial, it is instructive
to examine the behavior perturbatively around specific limits
of interest. In the absence of phonons, W

ph
in = W

ph
out = 0, in-

teractions drive the system toward a high-entropy state with
n∗ = 1/2. In the more general scenario, the phonon bath
can extract entropy and energy from the system, yielding a
nontrivial steady state.

A nontrivial steady state with a Floquet-band-insulator-like
distribution is obtained when the heating rates due to electron-
phonon and electron-electron interactions are small compared
with the rate of relaxation by the phonon bath. To characterize
this regime, it is useful to define the dimensionless quantities
κ31 = W ee

31/W
ph
out, κ22 = W ee

22/W
ph
out, and κph = W

ph
in /W

ph
out. As

FIG. 2. Left: Steady-state populations in the UF band, Fk+, for
several values of the effective cooling strength G2

0/V 2
0 . Results are

obtained from the FBE, Eqs. (5) and (A2), with phonon bandwidth
�D/�A = 2.2 and phonon temperature Tph = �A/10. Dashed lines
indicate the crystal momentum values where the UF band minima
are located. For low values of G2

0/V 2
0 , the steady state is “hot,” with

nearly uniform occupation Fk+ ≈ 0.5 for all k. For large values of
G2

0/V 2
0 , the steady state is “cold,” and features a low density of

excitations concentrated around the minima of the UF band. Solid
lines show fits to a Floquet-Fermi-Dirac distribution with effective
chemical potential μ∗

+ (with respect to E = 0) and temperature T ∗

taken as free parameters. Right: extracted values of μ∗
+ and T ∗ vs

G2
0/V 2

0 . When μ∗
+ �= 0, the steady state is described by a “double”

Floquet-Fermi-Dirac distribution, with separate chemical potentials
for electrons and holes in the UF and LF bands, respectively. The
shaded region in upper panel denotes a regime where the fits are
sensitive only to the value of T ∗ (and are insensitive to the value
of μ∗

+).

explained above, we expect κph � 1. For weak interactions,
we may also have κ22, κ31 � 1. Within this limit, the excita-
tion density in the steady state will be small, n � 1. To lowest
order in n, the heating rate in Eq. (7) arising from electron-
electron scattering is W ee

22 . Therefore, if κ22 � κph, electron-
electron scattering provides the main source of heating and we
find n∗ ∼ √

κ22. When electron-phonon scattering dominates
the heating rate, κph � κ22, we expect n∗ ∼ √

κph.

IV. RESULTS

We now discuss numerical results for the solution of the
full Floquet Boltzmann equation, Eq. (5), and their compari-
son with the predictions of the simple model described above.
In Fig. 2 we show the full momentum-resolved steady-state
populations in the UF band, for several ratios of the electron-
phonon (G0) and electron-electron (V0) coupling strengths
[see Eq. (2) and text below Eq. (4)].

To start from a conceptually simple case, in Fig. 2 we take
a restricted phonon bandwidth �D < �B (see Fig. 1), which
ensures that phonon-mediated Floquet-Umklapp processes
are energetically forbidden. Under this condition, the only
source terms for excitation density (i.e., “heating processes”)
are electron-electron-mediated Floquet-Umklapp processes
and thermally activated phonon absorption. The rates of the
latter are suppressed by a factor e−�A/Tph ≈ 5 × 10−5 for
Tph = �A/10, as used in the simulations. To a very good
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FIG. 3. Left: Excitation density n = n+, Eq. (6), as a function of
the (normalized) phonon bandwidth �D/�A and G2

0/V 2
0 . For large

G2
0/V 2

0 , the phonon bath effectively cools the system, and the steady-
state excitation density is low (blue color). The cutoff �D controls
the phase space for electron-phonon scattering; the cooling effect of
the phonon bath is strongest for intermediate values of �D where
many relaxation processes are allowed, and heating due to phonon-
mediated Floquet-Umklapp processes is relatively suppressed. Note
that �B/�A = 2.25 and �/�A = 8.25. Right (from top to bottom):
Line cuts at �D/�A = 8.5, 5.5, 2.2. Blue lines show results from the
effective model [Eq. (7)] using rates computed by direct application
of the uniform approximation. Red lines indicate the results of the
effective model with fitted parameters (see main text). For �D/�A =
8.5, 5.5, the average rates are quite close to the best fit curves and also
give a good approximation to the exact FBE data. For �D/�A = 2.2,
the scattering phase space is highly restricted and the simple model
does not provide a good description of the FBE results.

approximation, in this regime, G0 controls cooling and V0

directly controls heating.
As a function of the ratio G2

0/V 2
0 we observe a clear

transition from a “hot” state with nearly uniform populations,
Fk± ≈ 0.5 for all k, to a “cold” state in which the LF (UF)
band is nearly completely filled (empty). The “cold” state
hosts a small density of excitations near the band extrema
around E = 0. We fit the populations Fk± using two separate
Floquet-Fermi-Dirac distributions, with independent chemical
potentials μ∗

+ and μ∗
− for electrons and holes in the upper and

lower Floquet bands, respectively. By particle-hole symmetry,
μ∗

− = −μ∗
+. The fits are shown as solid lines in Fig. 2. The

effective temperature T ∗ and chemical potential μ∗
+ extracted

from these fits are shown in the upper and lower panels on the
right of Fig. 2. Note that without phonon-mediated Floquet-
Umklapp processes and in the V0 = 0 limit, the “global”
Floquet-Gibbs state with populations Fkα = (eEkα/Tph + 1)−1,
i.e., with μ∗

− = μ∗
+ = 0, is an exact solution to the FBE (see

Appendix A and Refs. [32,35–37,41]). In particular, in this
limit and for Tph = 0, the steady-state is an ideal Floquet insu-
lator state with Fk− = 1 and Fk+ = 0 for all k. We emphasize
that the “double Floquet-Fermi-Dirac distribution” that fits
our data does not correspond to a Floquet-Gibbs distribution.

Going beyond the restricted scenario of Fig. 2, we now
examine how the steady state is affected by phonon-mediated
Floquet-Umklapp processes when the phonon bandwidth �D

is increased. The excitation density n [Eq. (6)] as a function
of �D and G2

0/V 2
0 is shown in Fig. 3. Although increasing

G0 increases the rates of both phonon-mediated cooling and
heating processes, the blue color on the right side of Fig. 3
indicates that increasing G0 (for fixed V0) has the overall
effect of decreasing the excitation density. This can be un-
derstood by recalling that, for �D < Egap, phonon-mediated
Floquet-Umklapp transition rates are suppressed with respect
to direct transitions by a factor of (S/�)4.

The excitation density exhibits a nonmonotonic depen-
dence on �D , which we interpret as follows: In the regime
�A < �D < �B , as considered in Fig. 2, phonon-mediated
interband relaxation (cooling) is possible, but the correspond-
ing FU processes are forbidden. However, for low values of
�D the scattering phase space is restricted and cooling is
inefficient. As �D is increased, the phase space for electron-
phonon scattering increases and the bath is able to cool the
system more effectively. When �D > �B , phonon-mediated
FU processes are allowed and compete with the cooling effect
of the bath. This competition leads to an optimal value �

opt
D >

�B where the excitation density is minimized for a given
value of G2

0/V 2
0 .

We now compare the results for the numerical solution
of the FBE to the predictions of the simple effective model
described above (right three panels of Fig. 3). We consider
two approaches for determining the effective rate parameters
in Eq. (7). In the first approach, we average the bare rates over
momentum as per the uniform approximation in Eqs. (A10)
and (A14), and use them to predict the steady-state (ṅ = 0)
for each case of �D and G2

0/V 2
0 . The second approach builds

on the first. For a given �D , the average rates W
ph
in , W ph

out, W
ee
31 ,

and W ee
22 form four separate functions of G2

0/V 2
0 . We introduce

a scaling prefactor for each of these functions, which we use
as fitting parameters. (Note that a global rescaling of all four
functions leaves the steady state invariant; hence there are
three independent fitting parameters.) These three parameters
are fitted using the method of least squares for the difference
between the predicted densities from the effective model and
the exact densities computed from the FBE (taken over all
values of G2

0/V 2
0 ).

The simple model in Eq. (7) is based on a “uniform”
approximation, in which the crystal momentum dependen-
cies of the transition rates and populations are ignored. As
such, we expect the simple model to work well in the “hot”
regime where the distribution approaches a uniform, infinite-
temperature-like form. Interestingly, when the phonon band-
width is large, �B < �D < Egap, we observe good agreement
between the effective model and the full FBE even well out-
side the hot regime, where the total excitation density becomes
small (see the upper two line cuts in Fig. 3). Furthermore,
in this regime, we see that the two methods for determining
the effective rates in Eq. (7) give very similar results. For
lower values of �D (lowest panel, with �A < �D < �B), the
phase space for electron-phonon scattering becomes highly
restricted and we observe significant deviations between the
solution of the FBE and the simplified model.

V. DISCUSSION

Our motivation in this work was to study the appli-
cability of Floquet band engineering in the presence of
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electron-electron interactions. In particular, we were inter-
ested in the situation occurring in Floquet topological in-
sulators, where a resonant drive induces a band inversion
in the Floquet spectrum. We find the regime where cooling
by the phonon bath effectively counters the heating mediated
by the interactions, thereby stabilizing an insulator-like steady
state with a small density of excitations.

To identify the experimentally relevant regime, we now
relate our model parameters to typical timescales observed
in driven semiconductors. The shortest timescale is asso-
ciated with elastic electron-electron interactions, τ elastic

ee ∼
10–100 fs, while the cooling timescale due to electron-phonon
scattering is on the order of τph ∼ 0.1–1 ps [42]. As dis-
cussed above, in the low-excitation-density regime, Floquet-
Auger II processes dominate the heating rate. These processes
are of Floquet-Umklapp type, and we thus estimate the as-
sociated time scale to be τ FU

ee = (W ee
22 )−1 ∼ (S/�)−2τ elastic

ee .
Therefore, a rough estimate for the dimensionless parameter
controlling the excitation density is κ22 = (S/�)2τph/τ

elastic
ee .

For (S/�) � 0.1, a regime of low excitation density can be
reached.

To simplify the analysis in this work, we did not consider
electron-hole radiative recombination processes, which also
contribute to heating [32]. These processes can be straightfor-
wardly incorporated to the model. At the level of the effective
model in Eq. (7), recombination processes only renormal-
ize the parameters W

ph
out, W

ph
in . The radiative recombination

timescale is on the order of τr ∼ 0.1 ns � τ elastic
ee . Thus, the

contribution of radiative recombination to heating will be
dominant only for (S/�)2 � 1.

A further simplification in our model was the choice of
band structure parameters to allow only a single-photon res-
onance; see Fig. 1. Floquet gaps resulting from an nth-order
resonance would be suppressed by a factor of (S/�)n. Thus,
in many experimental realizations, we expect these gaps to be
smaller than the scattering rates in the steady state. Therefore,
the primary role of the higher-order resonances would be
to add additional heating channels, whose rates would be
suppressed by corresponding powers of (S/�). Their effect
would be subdominant, and would not change our results
qualitatively. The effect of higher-order resonances for strong
driving is an interesting direction for future work.

Our demonstration that the populations of the Floquet
bands can be controlled in the presence of electron-electron
interactions leaves many directions for future research: In the
regime of low excitation density, an important goal is to find
experimental probes for extracting the topological properties
of the Floquet band structure. For higher excitation densities,
we have shown that it is possible to reconstruct the results of
the full FBE with a simple, nonlinear rate equation, Eq. (7).
The effective model opens an interesting route for exploring
the interplay between nonlinear phenomena such as bistability
and hysteresis with the physics of Floquet-engineered band
structures.
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APPENDIX A: FLOQUET-KINETIC EQUATIONS

In this section, we outline the derivation of the kinetic
equations for the Floquet single-particle correlation function
F

αp

βp = 〈f †
αp(t )fβp(t )〉, where f

†
αp(t ) is the creation operator

for a single particle in a Floquet state with band α and
momentum p. For notational convenience, we use the label
order αp here in the appendix instead of kα as used in the
main text. Note that h̄ = 1 as before.

We begin by moving to the free Floquet basis via the
transformation (see main text) cνp = ∑

α〈νp|ψαp(t )〉fαp(t )=∑
αn e−i(Eαp+n�)t 〈νp|φn

αp〉fαp(t ), where in the second equal-
ity we have expanded the periodic part of the Flo-
quet state |φαp(t )〉 in terms of its harmonics. Defining
U0(t, t ′) as the time-evolution operator from t ′ to t as-
sociated with the free part of the model, H0(t ), we
take note of the important property of Floquet states,
f

†
αp(t ) = U0(t, t ′)f †

αp(t ′)U †
0 (t, t ′). This immediately leads

to the fact that i ∂
∂t

[f †
i1

(t ) · · · f †
im

(t )fim+1 (t ) · · · fim+n
(t )] =

[H0(t ), f †
i1

(t ) · · · f †
im

(t )fim+1 (t ) · · · fim+n
(t )], where i = (α, p)

is a compressed index used for brevity. Hence, from con-
sidering both the time derivative of the state and the time
derivative of the creation/annihilation operators, we obtain
i ∂

∂t
〈f †

i1
(t ) · · · f †

im
(t )fim+1 (t ) · · · fim+n

(t )〉 = 〈[f †
i1

(t ) · · · f †
im

(t )
fim+1 (t ) · · · fim+n

(t ),H − H0(t )]〉, where H = H0(t ) + Hint +
Hel-ph is the full Hamiltonian of the driven many-body prob-
lem. Using the above properties, we perform the cluster
expansion to second order, treating doublets at the scattering
level [32,43]. The major approximation in this procedure is
that we factorize higher-order correlators (“doublets”) into
two-point functions (“singlets”)

〈
f

†
i1
f

†
i2
fi3fi4

〉 ≈ F
i1
i4

F
i2
i3

− F
i1
i3

F
i2
i4

,〈
f

†
j1
f

†
i1
fj2fi2b

†
qbq ′

〉 ≈ (
F

j1
i2

F
i1
j2

− F
j1
j2

F
i1
i2

)〈b†qbq ′ 〉. (A1)
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The truncation at second order is the usual statement of
weak (electron-electron and bath) interactions, as is com-
monly used in the perturbative kinetic description of non-
driven systems, but after the coherent effects of the periodic
driving have been taken into account by moving to the Floquet
basis. Furthermore, we assume that the bosons are thermal,
〈b†qbq ′ 〉 ≈ δqq ′Nωq , where Nωq = (eβphωq − 1)−1 is the Bose-
Einstein distribution with inverse temperature βph = 1/Tph

(we set kB = 1). Finally, we assume the bath interactions and
electron-electron interactions are Markovian (and also drop
principle-value terms). The justification for the Markovian
approximation in the Floquet setting is based on the same
conditions as in the case of nondriven systems. In particular,
in this work we are interested in the steady state of the system
(not considering the transient dynamics), in the presence of
short-ranged weak interactions. Furthermore, the steady states
that we find are characterized by high effective temperatures
compared to possible quasiparticle binding energies. There-
fore, effects for which a non-Markovian treatment would be
necessary [44–46], such as ultrafast transient dynamics or
bound state formation, are not expected to be important here.

At this level of approximation, one obtains the Floquet-
Redfield equation (FRE) [47] which couples the kinetic equa-
tions of the off-diagonal Floquet-“polarizations” (or single-
particle coherences) and the diagonal Floquet occupations.
The FRE requires care in its simulation as it is explicitly time
dependent and oscillatory. To obtain an intuitive closed set of
kinetic equations for the dominant Floquet occupations alone,
we keep only the occupation terms and perform the secular
approximation on the remaining explicit time-dependence
to obtain the Floquet-Boltzmann equation (FBE) [23,24,32]
(note that ωq = ω−q for the acoustic phonons used here). This
kinetic equation is what one would obtain if considering a
“Floquet-Fermi golden rule” approach where the time deriva-
tive of the occupations is given by collision integrals involving
scattering of electrons with each other and with phonons:

∂tFαp = Gαp
scat,+ + Gαp

scat,− + Vαp
scat, (A2)

where Gαp
scat,+ and Gαp

scat,− denote the two pieces of the colli-

sion integral encoding electron-phonon scattering, I
ph
αp{F } =

Gαp
scat,+ + Gαp

scat,−, and I ee
αp{F } = Vαp

scat denotes the collision in-
tegral encoding electron-electron scattering. Explicitly,

Gαp
scat,+ = 2π

∑
α2p2qq⊥

∑
n

∣∣Gαp
α2p2q

(n)
∣∣2

δ(Eαp − Eα2p2 − ωq + n�)[Fα2p2 (1 − Fαp )Nωq − Fαp(1 − Fα2p2 )(1 + Nωq )], (A3)

Gαp
scat,− = 2π

∑
α2p2qq⊥

∑
n

∣∣Gαp
α2p2q

(n)
∣∣2

δ(Eαp − Eα2p2 + ωq + n�)[Fα2p2 (1 − Fαp )(1 + Nωq ) − Fαp(1 − Fα2p2 )Nωq ], (A4)

Vαp
scat = 4π

∑
α2α3α4

∑
p2p3p4

∑
n

∣∣V αpα2p2
α3p3α4p4

(n)
∣∣2

δ(Eαp + Eα2p2 − Eα3p3 − Eα4p4 + n�)

× [(1 − Fαp )(1 − Fα2p2 )Fα3p3Fα4p4 − FαpFα2p2 (1 − Fα3p3 )(1 − Fα4p4 )], (A5)

where the α indices denote Floquet bands and the p indices denote electronic momenta. As before, q denotes the phonon
momentum along the direction of the system, Eαp denotes the quasienergy of Floquet band α and momentum p, and n is an
integer characterizing the number of drive quanta exchanged in the scattering process. Moreover, G

αp
α2p2q (n) and V

αpα2p2
α3p3α4p4 (n) are

the dressed matrix elements which arise from changing basis to the Floquet states, given by

Gαp
α2p2q

(n) =
∑
mνν ′l

Mν ′pq
νp2

δ(p − p2 − q + 2πl/a)
〈
φn+m

αp

∣∣ν ′p
〉〈
νp2

∣∣φm
α2p2

〉
,

V αpα2p2
α3p3α4p4

(n) =
∑

ν1ν2ν3ν4

∑
n′mm′

V ν1pν2p2
ν3p3ν4p4

〈
φn−n′+m+m′

αp

∣∣ν1p
〉〈
φn′

α2p2

∣∣ν2p2
〉〈
ν3p3

∣∣φm
α3p3

〉〈
ν4p4

∣∣φm′
α4p4

〉
, (A6)

where ν, ν ′ are the undriven band indices, and where we have assumed that the bare coupling in Eq. (4) does not depend on
q⊥, for simplicity. Crystal-momentum conservation is explicitly shown with l ∈ Z. Since we are interested in the case of a 3D
bosonic bath coupled to the 1D system, we integrate out the bath degrees of freedom transverse to the system and replace the
energy/momentum conservation in the FBE with a partial density of states (pDOS) defined as

∑
qq⊥

[·] = ∑
q

∫
dω ρ(q, ω)[·].

Evaluating the pDOS for the kinematic constraints yields the replacement rule (with momentum conservation up to reciprocal
lattice vectors implicity assumed)

∑
qq⊥

δ(p − p2 − q )δ(ω − �E) → ρ(p − p2,�E) in the FBE. For the case of linear
dispersion, ωq = C|q|, the pDOS is given by

ρ(q, ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2A⊥
(2π )2

πω
C2 , C

√
q2 � ω < C

√
q2 + (

π
ab

)2
,

2A⊥
(2π )2

2ω
C2

[
sin−1

(√ (
π
a

)2(
ω
C

)2
−q2

)
− sin−1

(√
1 −

(
π
a

)2(
ω
C

)2
−q2

)]
C

√
q2 + (

π
ab

)2 � ω < C

√
q2 + 2

(
π
ab

)2
,

(A7)

where C(
√

3π/ab ) = �D , where �D is the Debye frequency cutoff (see main text), and A⊥ is the transverse area of the bath.
With these definitions, we may further define the overall electron-phonon scattering strength

Bαp,±
α2p2

(n) = ∣∣Gαp
α2p2,p−p2

(n)
∣∣2

ρ(p − p2,±(Eαp − Eα2p2 + n�)), (A8)
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to obtain

Gαp
scat,± = 2π

∑
α2p2

∑
n

Bαp,±
α2p2

(n)

[
Fα2p2 (1 − Fαp )

(
1

2
∓ 1

2
+ Nω±

)
− Fαp(1 − Fα2p2 )

(
1

2
± 1

2
+ Nω±

)]
,

where ω± = ±(Eαp − Eα2p2 + n�), i.e., the Bose-Einstein distribution is evaluated at the energy argument of the pDOS. The
scattering strength in Eq. (A8) scales as 1/N in system size and is independent of A⊥ as Gν ′k′

νk (q ) ∼ (1/
√

NA⊥) (see Ref. [32]).
The nearest-neighbor interaction considered in Eq. (2) in the band basis is

Hint =
∑

k1k2k3k4

∑
ν1ν2ν3ν4

V
ν1k1ν2k2
ν3k3ν4k4

c
†
k1ν1

c
†
k2ν2

ck3ν3ck4ν4 ,

V
ν1k1ν2k2
ν3k3ν4k4

=U (1 + ei(k2−k3 )a )R∗
k1,0ν1

R∗
k2,1ν2

Rk3,1ν3Rk4,0ν4 − U (1 + ei(k1−k3 )a )R∗
k1,1ν1

R∗
k2,0ν2

Rk3,1ν3Rk4,0ν4

− U (1 + ei(k2−k4 )a )R∗
k1,0ν1

R∗
k2,1ν2

Rk3,0ν3Rk4,1ν4 + U (1 + ei(k1−k4 )a )R∗
k1,1ν1

R∗
k2,0ν2

Rk3,0ν3Rk4,1ν4 , (A9)

where U = V0
4N

δ(k1 + k2 − k3 − k4 + 2πl/a), N denotes the
number of unit cells in the system, and Rk,sν = 〈sk|νk〉
is the rotation matrix from the sublattice to the band
basis, where s = 0, 1 corresponds to sublattice A,B

in Eq. (1). Note the fermionic symmetries V
ν1k1,ν2k2
ν3k3,ν4k4

=
−V

ν2k2,ν1k1
ν3k3,ν4k4

= −V
ν1k1,ν2k2
ν4k4,ν3k3

= V
ν2k2,ν1k1
ν4k4,ν3k3

. Hermiticity requires

V
ν1k1,ν2k2
ν3k3,ν4k4

= (V ν3k3,ν4k4
ν1k1,ν2k2

)∗ for the interaction matrix elements

and G
ν ′k′qq⊥
νk = (Gνk(−q )(−q⊥ )

ν ′k′ )∗ for the electron-phonon matrix
elements.

All of the collision integrals have three main ingredients:
dressed matrix elements, kinematic restrictions from the delta
functions containing quasienergy (and crystal-momentum
conservation hidden in the matrix elements), and phase-space
factors due to Fermi and Bose statistics (occupation func-
tions). The kinematic restrictions give crucial insight into the
structure of the FBE. The scattering of a Floquet-quasiparticle
via the absorption or emission of a phonon and the 2 → 2
scattering of Floquet quasiparticles both conserve quasienergy
up to multiples of the drive frequency. This kinematic struc-
ture is a signature of the fact that quasienergy is itself defined
modulo �.

To understand its implications further, let us choose a
gauge and define the first Floquet zone (FFZ) as shown in
Fig. 1. As in the main text, we will refer to the upper band
in the FFZ as the UF band and to the lower band in the FFZ
as the LF band. By selecting a gauge, we have set an energetic
orientation: the UF band is of higher quasienergy (positive
values) than the LF band (negative values).

We are now in a position to discuss the scattering processes
which split into two broad categories we term “normal” and
“Floquet-Umklapp” (FU), with the former encoding processes
that maintain the energetic orientation and the latter that do
not. Normal processes are those with n = 0 in the quasienergy
delta functions, and FU processes are those with n �= 0. This
concept is best elucidated via examples for both phonon scat-
tering and electron-electron interactions. Importantly, when
only n = 0 processes are present, the system maintains de-
tailed balance and the Floquet-Fermi-Dirac solution Fαp =
(eEαp/Tph + 1)−1 for the steady state is exact [32,41]; this is
mathematically the same as the case of the usual undriven
Boltzmann equation, with quasienergy replacing energy.

Let us first understand how to interpret the terms in the
Floquet-Boltzmann equation beginning with the electron-
phonon terms. On the left-hand side (LHS) of the equation,

we have the time derivative of the occupation of state αp. The
terms on the right-hand side (RHS) of the equation appearing
with positive sign denote an “incoming” transition α2p2 →
αp, which can be understood by looking at the occupation
factors. The initial state α2p2 must have some occupation
and the final state αp must have empty space; hence the rate
is proportional to Fα2p2 (1 − Fαp ). The Nωq factor denotes
phonon absorption and the 1 + Nωq factor denotes phonon
emission, since at Tph = 0 the Bose-Einstein factors vanish
but the “1” term still encodes a finite rate of spontaneous
emission into the “vacuum.” The terms with the negative sign
denote the respective Hermitian conjugate processes, i.e., the
“outgoing” processes with transition αp → α2p2.

We term the processes with n �= 0 as “Floquet-Umklapp”
processes since, in analogy to Bloch theory, the scattering
processes are assisted by a reciprocal lattice vector, which
here is �. In sharp contrast to the “normal” processes, these
processes appear to go against the energy orientation we have
chosen. Consider a process with Eαp � Eα2p2 , where the initial
state is α2p2 and the final state is αp. It is only possible,
assuming the appropriate energy phonon exists, to satisfy this
condition in two ways: in the phonon-absorption term (Gαp

scat,+)
with n = 0 (the normal process discussed earlier), and in the
phonon-emission term (Gαp

scat,−) with n < 0. The latter FU
process shows that it is possible to have a transition from a
lower quasienergy state, α2p2, to a higher quasienergy state,
αp, via emission of a phonon.

More generally, choosing a gauge, i.e., an energetic orien-
tation, means to specify a preferred frame to view the Floquet
bands that reside on a torus. Normal processes are those that
obey kinematic intuition in the chosen frame. In contrast, FU
processes are those that wrap around the torus. Choosing a
different gauge corresponds to choosing a different frame, and
processes that are called normal and FU in one frame will cor-
respondingly switch roles in the other. From this discussion,
it is clear that, with the phonons, energetic restrictions on �D

with respect to the gap between the bands (�A), and the gap
at the zone edge (�B) can selectively populate one or both of
the bands. In fact, it is perhaps better to select the frame based
on which band is preferentially populated, declaring that to be
the LF band.

Let us turn our attention to the interaction term Vαp
scat. We

can still segregate n = 0 terms as normal processes and n �= 0
terms as FU processes. The normal processes just encode the
usual 2 → 2 scattering obeying quasienergy conservation in
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FIG. 4. Dominant types of scattering processes that change the excitation density, classified according to their origin: phonon relaxation
or electron-electron interactions (which may be of type Auger I, Floquet-Auger I, or Floquet-Auger II, described in the main text). Recall
that Floquet-Auger processes of type I (II) change the number of excitations by one (two) particle(s), while absorbing energy from the drive.
The energy bands shown here are copies of the bands of the nondriven system (dark blue) shifted by m�, i.e., by integer multiples of the
drive frequency. Bands are labeled by m, and shown in different colors for distinct m. The Floquet states are obtained using perturbation
theory in (S/�) as superpositions of these harmonics. Here we choose our basis of Floquet states so that they have dominant harmonic
components in the Floquet zone (energy window �) highlighted in grey. Scattering processes can be decomposed into transitions between
Floquet harmonics (initial/final states denoted by red/green dots), and we only illustrate the dominant ones involving leading-order harmonics.
Transitions between Floquet states must conserve momentum and energy, up to an integer multiple n� (and up to some phonon momentum and
energy, for phonon-mediated processes). Normal processes are characterized by n = 0 (black arrows) and Floquet-Umklapp (FU) processes are
characterized by n �= 0 (red and orange arrows). The dotted lines indicate the drive-induced virtual transitions involved in a process, with each
virtual transition bringing an additional power of the small parameter S/�. The suppression factors of individual processes are indicated below
each panel. When the lower Floquet band is filled, Auger I and Floquet-Auger I processes are absent. Note that the “B” phonon relaxation
process can be O(1) if the phonon matrix elements Gν′k′

νk (q ) allow interband (off-diagonal in ν, ν ′) transitions. An analogous scenario exists,
for example, in the case of radiative recombination.

the given frame (including Auger I processes). Since these
processes do not change the total quasienergy, they only con-
tribute to the spread of total quasienergy through the system.
In contrast, the FU processes are still 2 → 2 scattering but
with exchange of drive quanta, and, hence, are the source
of energy nonconservation (when only the energies of the
electrons are taken into account). There are two classes of FU
scattering: The Floquet-Auger I (FA-I) processes are those in
which two particles start in the same Floquet band, and only
one particle switches Floquet bands with an exchange of a
drive quantum. Floquet-Auger II (FA-II) processes are those
in which two particles start in the same Floquet band, and both
switch to the other. This is only possible with the exchange of
a drive quantum (see Fig. 1). Altogether, the energy absorption
and the spread of quasienergy through the system via normal
and FU processes are the mechanisms of heating in driven
weakly interacting systems.

The last remaining ingredients of the FBE are the dressed
matrix elements. The key effect of the dressing, for weak
driving, is in suppressing the strength of high-n scattering
processes, or in other words, those that involve the exchange
of many drive quanta. This comes directly from consideration
of the Floquet-band matrix elements in the undriven band
basis. The chosen FFZ is primarily made from the undriven

conduction band and a single drive quantum shifted undriven
valence band. The higher harmonic content of the FFZ states
have less weight as they are detuned significantly in energy.
The rates of scattering processes may strongly depend on n.
See Fig. 4 for more detailed information about the scaling of
the dressed matrix elements in Eq. (A6) as functions of n.

Effective dynamics with bosonic reservoir

Here we derive the effective model presented in the main
text. Setting Fαp = nα to be uniform (p independent) and
using the half-filling condition

∑
α nα = 1, we obtain Eq. (7)

of the main text (reproduced here for convenience):

ṅ = W
ph
in (1 − n)2 − W

ph
outn

2 + W ee
31 [(1 − n)3n − (1 − n)n3]

+W ee
22 [(1 − n)4 − n4],

with the following definitions. The electron-phonon rates are
[using α = + for Eq. (7)]:

W
ph,α

in = 2πN
∑
m

Bα+
ᾱ (m)Nm+2πN

∑
m

Bα−
ᾱ (m)(1 + Nm)

W
ph,α
out = 2πN

∑
m

(1 + Nm)Bα+
ᾱ (m)+2πN

∑
m

Bα−
ᾱ (m)Nm.

(A10)
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where ᾱ is the opposite of α, i.e., for α = ±, ᾱ = ∓. In the
equation above, we use

Bα±
α2

(m) = 1

N2

∑
pp2

Bαp,±
α2p2

(m), (A11)

which averages the scattering strengths [Eq. (A8)] over all ini-
tial and final momenta. The average rates in Eq. (A10), while
appearing proportional to system size N , are in fact intensive
as the scattering strength scales as 1/N [see discussion below
Eq. (A8)]. In addition, we neglect the momentum/energy
dependence of the Bose-Einstein distribution factors Nωq in
the rates, using

Nm =
{N�A

, m = 0,

N�B
, |m| = 1.

(A12)

In this way, for m = 0 (normal) processes we set the energies
in all Bose-Einstein factors equal to �A, while for |m| =
1 (FU) processes we set the energies in the Bose-Einstein
factors equal to �B .

Similarly, the transition rates arising from electron-electron
interactions are

W ee
22 = 4πN3V 2

D, (A13)

W ee
31 = 8πN3V 2

F , (A14)

where the momentum-averaged electron-electron scattering
strengths are

Sαα2
α3α4

= 1

N4

∑
pp2p3p4

∑
n

∣∣V αpα2p2
α3p3α4p4

(n)
∣∣2

× δ(Eαp + Eα2p2 − Eα3p3 − Eα4p4 + n�), (A15)⎛
⎜⎜⎜⎝

V 2
1 V 2

F V 2
F V 2

2

V 2
F V 2

D V 2
2 V 2

F

V 2
F V 2

2 V 2
D V 2

F

V 2
2 V 2

F V 2
F V 2

1

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝
S00

00 S00
01 S01

00 S01
01

S00
10 S00

11 S01
10 S01

11

S10
00 S10

01 S11
00 S11

01

S10
10 S10

11 S11
10 S11

11

⎞
⎟⎟⎟⎠,

(A16)

where for notational similarity, we define the V1, V2, VF , VD

variables squared as equal to the various scattering strengths.
Note that Sαα2

α3α4
∼ 1/N3 by Eq. (A9). This is because U2

provides a factor of 1/N2 (ignoring momentum conservation)
and the momentum delta function eliminates one of the mo-
mentum sums in Eq. (A15). The remaining three sums over
momenta provide a factor of N3 and so we achieve the result
that electron-electron scattering strengths scale with system
size as 1/N3. Therefore, the electron-electron transition rates
in Eq. (A14) are intensive.

The matrix structure in Eq. (A16) directly follows from
fermionic antisymmetry, hermiticity, and particle-hole or chi-
ral symmetry. Using the matrix S we assign a single parameter
for each type of scattering process to characterize its average
strength: FA-II processes have strength VD , the sum of Auger
and FA-I processes together have strength VF , fully intraband
scattering has strength V1, and interband scattering that con-
serves band density has strength V2. As expected, only VF , VD

contribute to the effective dynamics in Eq. (7), since they are
the only process types that change the band density.

APPENDIX B: FERMIONIC RESERVOIR

In this section we modify the effective model to include
the effects of coupling to a (nondriven) Fermi reservoir. We
take a site-dependent tunnel coupling �sx

l for a lead electron
l tunneling into a (real-space, sublattice) system state (x, s).
The Hamiltonians for the lead and the lead-system coupling
are given by

Hlead =
∑

l

εld
†
l dl, (B1)

Hel−lead =
∑
axl

�sx
l (c†xsdl + d

†
l cxs ) =

∑
νkl

�νk
l c

†
kνdl + H.c.,

(B2)

where �νk
l = 1/

√
N

∑
sx e−ikx�sx

l R
†
k,νs is the tunnel coupling

in the band basis. The results are derived in the same fashion
as in Appendix A and here we just present the main results.
The corresponding collision integral that enters the FBE
[Eq. (A2)] is given by

Rαp
scat = 2π

∑
l

∑
n

∣∣�αp

l (n)
∣∣2

δ(Eαp − εl + n�)[(1 − Fαp )Dl

−Fαp(1 − Dl )], (B3)

where �αk
l (n) = ∑

ν �νk
l 〈φn

αk|νk〉 is the dressed lead coupling
and Dl is the Fermi-Dirac distribution of the lead with chem-
ical potential μres and temperature Tres.

Equation (B3) encodes the tunneling of a lead electron l

into Floquet state (α, p) with strength |�αp

l (n)|2 if the lead-
electron energy and the system quasienergy are matched up to
n�. Both normal and FU tunneling processes may be present
based on the number of drive quanta exchanged. Detailed
analysis in the context of lead engineering has been carried
out in Refs. [32] and [34]. Averaging the collision integral
in Eq. (B3) over all momenta, we obtain the system-lead
coupling contributions to the effective model:

ṅα = (1 − nα )�α
in − nα�α

out, �α
in = 2π

∑
l

Dl�̄
α
l ,

�α
out = 2π

∑
l

(1 − Dl )�̄
α
l . (B4)

Here we have defined the momentum-averaged tunneling rates
�̄α

l = 1/N
∑

p

∑
n |�αp

l (n)|2δ(Eαp − εl + n�). Note that the
lack of particle conservation in the presence of a lead requires
one to separately consider each band density nα . The “in”
rates increase the number of particles in a given band, while
the “out” rates empty those states.

We can gain intuition for the effect of the lead terms by
considering the case where μres = 0, Tres = 0, i.e., a zero-
temperature lead with chemical potential set in the center
of the gap between the two Floquet bands. In this case,
Dl = �(μres − εl ) = �(−εl ), where � is the Heaviside step
function. Focusing on the LF band, we find that �−

in �= 0 for
n � 0 and �−

out �= 0 for n > 0, since Ep− < 0 for all p. This
means that tunneling into the LF band can occur as a normal or
as an FU process (by absorbing one or more photons from the

014307-10
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drive). In contrast, tunneling out of the LF band can only occur
as an FU process. With no further restrictions, the reservoir
will generically heat the system since FU tunneling processes
involving exchange of drive quanta are present. However, if
one considers a “filtered” lead with a bandwidth less than
� (still centered between the bands), then FU processes are
kinematically forbidden and �−

out = 0. Hence, particles can
only tunnel into the LF band. In the UF band the situation
is reversed: with a filtered lead we have �+

in = 0 such that
particles may only tunnel out of the UF band. Therefore, a
filtered lead pushes the system toward the Floquet insulator
steady state with n− = 1 and n+ = 0. This scenario has been
analyzed in detail in Ref. [32].

The full effective model in the presence of both bosonic
and fermionic reservoirs is explicitly given by

ṅα = (1 − nα )�α
in − nα�α

out + W
ph,α

in nᾱ (1 − nα )

− W
ph,α
out nα (1 − nᾱ )+W ee

22

[
(1−nα )2n2

ᾱ−n2
α (1−nᾱ )2

]
+ 1

2W ee
31

[
(1 − nα )2nαnᾱ − (1 − nα )(1 − nᾱ )n2

α

+ (1 − nα )(1 − nᾱ )n2
ᾱ − (1 − nᾱ )2nαnᾱ

]
. (B5)

Equation (B5) simplifies to Eq. (7) in the case of half filling
and no fermionic reservoir.

APPENDIX C: SIMULATION DETAILS

We use the electronic hopping parameter J1/J0 = −0.425,
drive parameters S/J0 = 0.5, �/J0 = 1.65, and normalize
all length scales by the electronic lattice spacing a (i.e.,
set a = 1), corresponding to gaps in the Floquet spec-
trum of �A/J0 = 0.2, �B/J0 = 0.45. The phonons have

velocity C = (�D/
√

3)(ab/π ) (with ab = a), with spectral
cutoff (bandwidth) �D , and temperature T = �A/10. The
interaction strength is V0/J0 = 0.25.

The delta function enforcing quasienergy conservation in
electron-electron collisions, appearing in the collision integral
Vαp

scat, is approximated on the finite-size system with a Gaus-
sian of finite support:

δ(�E ) ≈
⎧⎨
⎩

Z(r )√
2πε2

e
− (�E )2

2ε2 , |�E | � rε,

0 otherwise,
(C1)

where for the standard deviation we take ε =
maxk (Eα,k+2π/(Na) − Eα,k ), i.e., the maximum adjacent
quasienergy level spacing in a single Floquet band, r = 1.5
denotes the number of deviations to include in the finite
support, and Z(r = 1.5) = 1.154 is the normalization
constant ensuring that the truncated Gaussian function
integrates to unity. By allowing finite support in quasienergy
to the delta function, one is, in a rough sense, adding a
linewidth to the quasienergy states. One must check that these
linewidths are smaller than the Floquet gaps, as otherwise the
approximation introduces unphysical interband transitions
not appearing in the FBE (e.g., one particle stays in the same
state and the other is directly excited across the gap at the
same momentum). We check that the truncated Gaussian
does not allow such anomalous transitions across the Floquet
gaps by ensuring that rε < �A,�B . In the FBE simulations
(N = 20), we scan the amplitude G0 of the phonon bath and
the cutoff �D , and perform numerical integration of the FBE
until reaching a steady state for each choice of G0 and �D .
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