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Fokker-Planck equation for lattice vibration: Stochastic dynamics and thermal conductivity
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We propose a Fokker-Planck equation (FPE) theory to describe stochastic fluctuation and relaxation processes
of lattice vibration at a wide range of conditions, including those beyond the phonon gas limit. Using the
time-dependent, multiple state-variable probability function of a vibration FPE, we first derive time-correlation
functions of lattice heat currents in terms of correlation functions among multiple vibrational modes, and subse-
quently predict the lattice thermal conductivity based on the Green-Kubo formalism. When the quasiparticle
kinetic transport theories are valid, this vibration FPE not only predicts a lattice thermal conductivity that
is identical to the one predicted by the phonon Boltzmann transport equation, but also provides additional
microscopic details on the multiple-mode correlation functions. More importantly, when the kinetic theories
become insufficient due to the breakdown of the phonon gas approximation, this FPE theory remains valid to
study the correlation functions among vibrational modes in highly anharmonic lattices with significant mode-
mode interactions and/or in disordered lattices with strongly localized modes. At the limit of weak mode-mode
interactions, we can adopt quantum perturbation theories to derive the drift/diffusion coefficients based on the
lattice anharmonicity data derived from first-principles methods. As temperature elevates to the classical regime,
we can perform molecular dynamics simulations to directly compute the drift/diffusion coefficients. Because
these coefficients are defined as ensemble averages at the limit of 6t — 0, we can implement massive parallel
simulation algorithms to take full advantage of the paralleled high-performance computing platforms. A better
understanding of the temperature-dependent drift/diffusion coefficients up to melting temperatures will provide
new insights on microscopic mechanisms that govern the heat conduction through anharmonic and/or disordered

lattices beyond the phonon gas model.

DOI: 10.1103/PhysRevB.99.014306

I. INTRODUCTION

The phonon Boltzmann transport equation (BTE) [1,2]
has gained some renewed interests as the default choice of
transport theory to compute lattice thermal conductivity (k)
of crystalline solids from first principles [3-9]. The theoretical
foundation of the phonon BTE is the so-called phonon
gas (PG) model [10-13], which assumes that interactions
among vibrational modes are weak enough that the
numbers of phonons of each mode follow the single-particle
Bose-Einstein distribution at equilibrium. As a kinetic theory,
the phonon BTE further assumes that (1) each quasiparticle
phonon travels at a group velocity U,, and (2) the lifetime 7
of every phonon is finite because of the scatterings by lattice
anharmonicity, lattice defects/disorder, or other particles. For
electronic insulators, the necessary inputs for a phonon BTE
calculation are the harmonic phonon spectra and the phonon-
scattering terms, both of which can be numerically calculated
using first-principles methods [4,14-22]. Multiple imple-
mentations of the phonon BTE methods have been reported
in recent years [23-27], and the calculated results adopting
various theoretical and numerical approximations have been
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systematically bench-marked among themselves and
compared with available experimental data. The overall
good agreement between the first-principles computational
results and available experimental data for a large amount
of crystals at moderate temperatures (7') establishes the
phonon BTE as a practical and robust computational tool to
design advanced technology materials with optimized thermal
transport properties.

Meanwhile, concerns have been raised about the validity
of the phonon BTE beyond the PG limit, where interactions
among vibrational modes are significant and the weakly
interacting quasiparticle approximation becomes insufficient
[28]. A schematic plot of a typical temperature dependence
of kprae in crystals is shown in Fig. 1. Within the PG
approximation, the phonon BTE predicts that 4 of a crystal
decays to zero with increasing 7 at the rate of 1/T or
faster. However, experimental measurements [29,30] reveal
that the deviation from the 1/7 scaling become noticeable
as T approaches the melting temperature (7y,ey) of the
lattice, with «p,y eventually reaching a low constant value.
The omnipresence of these minimal thermal conductivities
(kmin) [31] in all crystalline lattices suggests that as a lattice
approaches its Ty, the increasingly strong anharmonic
coupling among vibrational modes causes the breakdown
of the PG model. Such breakdown might occur at moderate
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FIG. 1. Schematic plot of lattice thermal conductivity xp, as a
function of temperature 7', up to the melting temperature Ty,

temperatures in relatively soft solids with large thermal
expansion [32-34] or in the high temperature phases of solids
whose 0 K phonon spectra contain imaginary frequencies
[35]. In addition, the phonon BTE incorporates the concept
of phonon group velocity, which is not properly defined
in nonperiodic solids such as alloys, glass, or amorphous
semiconductors [36], even at the conditions where all the
vibrational modes remain quasiharmonic [37].

When the accuracy of the phonon BTE theory is in ques-
tion, the statistical linear response transport theory [38] is
often combined with equilibrium molecular dynamics (MD)
simulations to predict thermal transport properties [39-42].
For example, the Green-Kubo (GK) formalism states that
thermal conductivity is proportional to the time-integral of
the auto-correlation function of heat flux [43,44]. Although
the GK method is theoretically rigorous and valid beyond the
PG approximation, its current implementations, based on
the evaluations of atomic trajectories, i.e., displacements and
velocities, over a long period of time, usually require much
more intensive computational loads. When no reliable empiri-
cal force-field interatomic potentials exist, ab initio MD simu-
lations are necessary to simulate the complex lattice vibration.
Yet, in practice, typical ab initio MD simulations are often
carried out with only relatively short simulation periods (i.e.,
on the order of a few picoseconds) and using relatively small
supercell models (i.e., on the order of a couple of hundred
atoms) because their computational loads scale as order N 3
where N is the number of atoms in a supercell model. These
numerical finite-size artifacts sometimes impose relatively
large uncertainties in the ab initio MD simulation results. Ad-
ditional approximations are often needed to extract potential
energy of each atom from the ab initio total energies of the
supercell models to evaluate the correlation function of heat
currents using the ab initio MD simulation results [45-49].

More importantly, all the atomic trajectories in MD sim-
ulations have to be calculated numerically, even at the weak
scattering limit of the PG model. This lack of analytical
solutions of atomic trajectories in MD simulations hinders
the development of quantitative theoretical models to interpret

the simulated current-current correlation functions because it
provides little insight on improving/correcting the PG model
beyond the weak scattering limit. Ladd et al. [50] proposed
a normal mode analysis (NMA) approach to evaluate the
phonon lifetimes t based on the damped oscillator approx-
imation (DOA). Using the extracted phonon lifetimes, they
derived the so-called Peierls phonon-transport expression of
Krait, Which is understood to be only an approximate solu-
tion of the phonon BTE theory. Nevertheless, these types
of NMA methods have been useful to interpret the phonon
scattering in a MD simulation, and these methods have been
implemented and further developed in recent years by many
groups using both empirical potentials and ab initio methods
[51-54]. However, both the DOA and the concept of phonon
lifetime/relaxation-time should be adopted only as semiquan-
titative models because the cross-correlations among different
vibrational modes can not always be neglected. More robust
theoretical models or concepts are needed to quantitatively
interpret the NMA results of numerical MD simulations.

In this paper, we present a time-dependent statistical the-
ory to quantitatively describe the thermal fluctuation and
correlation properties of vibrational modes using a Fokker-
Planck equation [55] for lattice dynamics. First, this vibration
FPE theory does not treat the interactions among different
vibrational modes as small perturbations. Instead, our theory
includes two general sets of parameters, the drift A and
the diffusion B coefficients, to explicitly characterize the
mode-mode interactions. The results of this vibration FPE,
expressed in terms of a time-dependent probability function
of multiple-variable vibrational microstates, provide details
of the dynamic relaxation processes of lattice vibration, and
are readily used by the linear response transport theory to
compute k| o beyond the quasiharmonic PG model.

Second, this vibration FPE provides detailed information
on the time-correlation properties of physical quantities with-
out requirement of long-time MD simulations. The proposed
vibration FPE derives the correlation functions based on the
probability function governed by the drift A and diffusion B
coefficients, which are defined in terms of ensemble averages
at the §+ — O limit. It is important to emphasize that no
a priori forms of correlation functions are assumed in a
FPE calculation of correlation functions. As a result, when
implemented with first-principles methods, this vibration FPE
is promising to be both accurate and efficient to predict «p
of novel and complex solids at wide-ranging conditions.

Finally, the ki, predicted by the vibration FPE converges
to the one from the conventional phonon BTE within the PG
model. Because the FPE’s parameters of a lattice vibration
can be evaluated with either perturbative methods or simu-
lation methods at the PG approximation, our vibration FPE
theory establishes a systematical computational methodology
to analyze errors of the simple PG model and to delineate the
breakdown conditions of the PG approximation.

II. STOCHASTIC DYNAMICS OF LATTICE VIBRATION
A. Fokker-Planck equation

The first fundamental assumption of this proposed Fokker-
Planck equation for lattice vibration is that thermal lattice
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dynamics is a stochastic process at the microscopic level,
and the probabilistic transition dynamics from one vibration
microstate I" to other thermally accessible microstates can be
modeled with a statistical master equation [38,55]. When a
specific microstate T'? is sampled at time ¢ = 0, the initial
probability function is simply

P, t =0|T% =80 —TIY%. (D)

Regardless of the dynamic details of a stochastic process,
the equilibrium ensemble theory constrains that at the long-
time limit of # — 00, the probability function evolves into the

canonical distribution function:
—E()
e kT

Zeg(T)

P(T,t — 0o|l%) — Poy(I') = )

where kg is the Boltzmann constant, 7' represents tempera-
ture, E(I") denotes the energy of any microstate I', and Zeq(T)
denotes the equilibrium canonical partition function of the
lattice vibration. The evolution of this probability function
P(T", t|T"%) provides a general and quantitative description of
lattice thermal relaxation processes, from a single initially
sampled microstate T'° to a set of the thermally accessible
microstates that correspond to an equilibrium distribution
governed by the equilibrium statistics. Here, the ergodic con-
dition in lattice vibration is assumed.

We further adopt the Born-von-Karman periodic boundary
condition [10] to specify the vibrational microstates with
total N vibration modes, with N — oo for an infinitely large
crystal. When the «oth vibrational mode is occupied by n,
phonons, the vibrational mode is thermally excited to the
quantum number n,, which is often referred as the num-
ber of phonons at the oth mode. We can further specify a
vibrational micro-state with a set of N-dimensional state-
variables I' = {ny,ny,--- ,ny} that represent the number
of phonons at each of the N vibrational modes. Through
the Kramers-Moyal expansion of the master equation, the
time-evolution of this probability function P(T",#|T'%) =
P(ny,ny, -+ ,ny, t|n?, ng, . ,n?\,) can be expressed in the
form of a FPE [38,55]:

2

N
opP 0 1 d
— = Ag(D) - PlH= Y ———[By(I) - PI.
o ;ana[ (I) ]+2§anaanﬁ[ p(I) - P]

3)

The assumption of a FPE is that the third-order expansion
coefficients are approximately zero. According to the Pawula
theorem, all the higher order expansion coefficients are zero
if the third-order expansion coefficients are zero [55]. Within
this theoretical framework, the drift A,(I") and diffusion
B,g(I") coefficients manifest the interactions among vibra-
tional modes, and they are defined as

1o , ,
Ay(D) = lim —f dT 8ng(C, TP, 81|1),
81—0 8t Jy

1 , , ,
Bus(T) = lim()a/ dT 8ng (T, T )éng(T, T )P(I", 8t|T).
0

St—
)

In the case that a stochastic lattice vibration can be modeled as
arandom process of transition from one vibrational microstate
[ to another microstate I with a known rate of transition
wr_1, Egs. (4) can be approximated as

Ay(D) ~ / dT [ng(T') — ng (D] - wr_ v,

By (T) ~ / dT [n,(I') — ng ()]
ng(T) — ng(D)] - wr_ . ®)

Within this statistical probability theory [Eq. (3)], the
dynamic details of a stochastic lattice vibration rely on the
knowledge of both drift A and diffusion B coefficients. As
formulated in Eqs. (4), both A and B coefficients can be
numerically calculated based on an ensemble of microscopic
simulations over a short period of simulation time §¢. Because
of the short simulation periods for the parameter evaluation,
it becomes practical to implement the numerical simulations
using accurate first-principles methods. The overall computa-
tional loads of ensemble averages, although still intensive, can
be, in principle, distributed over a cluster of computer nodes
to take full advantage of the state-of-the-art parallel high-
performance computing platforms. Choosing an appropriate
simulation period 8¢ for the parameter calculations is not
merely a numeric issue. The length of §¢ reflects the level of
temporal coarse-graining. For example, in a bulk system, §¢
should be larger than the oscillating periods, as well as the
ballistic time periods, to ensure the assumption of a thermal
relaxation process. In addition, different values ¢ might be
needed when there are more than one drift/diffusion mech-
anism. In an amorphous lattice, the drift/diffusion timescale
for an extended vibrational mode likely differs significantly
from that of a strongly localized vibration mode. Extensive
future studies are needed to gain a better understanding these
coefficients of a vibration FPE.

On one hand, the general forms for the A and B coeffi-
cients defined in Eqgs. (4) imply that our proposed vibration
FPE theory does not limit the magnitude of the mode-mode
interactions in a lattice to be perturbatively small, nor does
it require each mode correspond to a traveling wave with a
specific group velocity v,. Consequently, this vibration FPE,
as formulated in Eq. (3), is valid for lattice vibration with
a broad range of mode-mode interactions, including lattice
vibration with strong anharmonic modes and/or disorder-
induced spatially localized modes. On the other hand, in
the weak scattering case that both initial (I") and final (T
quantum vibration states can be represented by the phonon
representation |ny, np, n3, --- , ny >, and AV denotes pertur-
batively small deviations in the vibration Hamiltonian from
that of the ideal PG, we can simply adopt Egs. (5) to evaluate
the A and B coefficients based on the rates of transition
derived from the Fermi’s golden rule:

2T .

wl"»l"’:7|( 1Ry gy e ey
! (7 2
nylAViny, ny, n3, - 0yl (6)
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B. Thermal relaxation: Fluctuation and correlation

At thermal equilibrium, the instantaneous value of a quantity X, either macroscopic or microscopic, fluctuates around its
equilibrium value X.q. The dynamical process that brings the fluctuating value of X(¢) back toward the X4 is commonly
referred as a thermal relaxation process. A self-correlation function of X,

Cxx (1) = (6X(0) - 6X(1))eq = ((X(0) — Xeg) - (X (1) — Xeg))egs (N

is often used to quantify the properties of this thermal relaxation process. When X can be expressed in terms of microstate
variables X (I"), we can define a time-dependent expectation value X (¢|I"°) based on the probability function P (T, ¢|T"°) in the
vibration FPE, staring with the initial probability function shown in Eq. (1):

X r') = /drp(r,z|r0)-X(r),

dX(t|T°) _ /dF AP(T, t|T%) LX)
- ot

dt

B 0 X 0
Z o |70 + 5 Z P (UL ®)
/3 o

Clearly, X (t) starts at its initial value of X(I'°) = f dT'8(I' — T X(T), and eventually relaxes back to its equilibrium value
of Xeqg = f dIl' X(I") Peq(I") when P(T, o)y — Pey(I") at the limit of + — oo. Similarly, the corresponding time-dependent
statistical variance, defined as Ax(¢|To) = X2(¢|To) — Y(tIFo)z, relaxes from its initial value of O to its equilibrium value
Axeq = [dT(X(T) — Xeq)? - Peg(I') > 0.

By sampling the initial microstates I'’ with the equilibrium probability function Peq(I'°), we can rewrite the time-correlation
function of X, defined in Eq. (7), as

Cxx(t) = (8X(T'0) - 8X(t|T0))eq
= / dT0 Peq(To)(X(To) — Xeq) / dTP(I, t|To)(X(I) — Xeq), ©

where Cxx(f = 0) = Ax eq, and Cxx(t — 00) = [ [ dTo(X(To) — Xeq) + Peq(T0)]1 - [ dT Peg(T") - (X(T') — X¢q)] = 0. A con-
cept of an effective relaxation time (ty) of X is frequently adopted as the time integration of the normalized self-correlation
function cx x(t) = Cxx(f)/AX’qu

Yy = /oo cxx(t)dt, (10)
0

based on the approximation that cxx (t) ~ e~/
The dynamical correlation between two different quantities X and Y that fluctuate around their prospective equilibrium values
(Xeq and Yeq can be quantitatively formulated in terms of a cross-correlation function Cxy (¢):

Cxy () = (6X(0) - §Y ())eq = ((X(0) — Xeg) - (Y (#) — Yeq))eqs (11)
and this cross-correlation function can be rewritten using the probability distribution function P (T, ¢|T"y) of Eq. (3):

Cxy(t) = (8X(T'0) - 8Y (|T0))eq

(12)
_ / AT Pog(T0)(X(T) — Xeq) / AT P(T, 1|Fo)(Y(T) — Y,

where  Cxy(t — 00) = [[dTo(X(Ig) — Xeq) - Peg(To)] - [[ dT Peg(T) - (Y(I') — Yeq)] = 0. Since Cxy(r =0) = [dIy
Peq(FO)(X(FO) - Xeq) (Y (Ty) — qu) =((X — Xeq) (Y = qu))eqa the ratio cxyy = Cxy(t = 0)/\/ Axeq Ay,eq is often
referred as the correlation ratio, with cxy = 0 being interpreted as that the fluctuations in X and Y are statistically uncorrelated
at thermal equilibrium. It is important to emphasize that even at the condition of uncorrelated fluctuation at r =0, i.e.,
Cxy(t =0) =0, a time-dependent cross-correlation function defined in Eq. (12) is not always zero at ¢ > 0. An example is
shown in Eq. (28) of Sec. II C.

Because the self-correlation function formula in Eq. (9) is a special case of the cross-correlation function formula in Eq. (12)
with X = Y, we present only the results of the time derivative of the cross-correlation function here based on Eqs. (8) and (12):

dCxy(t) dsY (t|To)
dt

A0 / AT Poy(T)8X ()

Y o 1 2y 0
=/dropeq(ro)5x(ro)' Do o A | 4 2 30 | e B |17, (13)
P n w wnOMy
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where A and B are the parameters [Eqs. (4)] of the vibration FPE [Eq. (3)]. Using the definitions of y, = % <A, and y,, =

%Y

sam * Buv, we can rewrite Eq. (13) in terms of the cross-correlation functions between X and y, and those between X and y,,,:
dn,

dCyxy(t) _

1
yr DX yueg + 5 D BXO) - yun(1))eq

I v

1
= D BX(0) - 8yu(D)eg + 5 D {OX(0) - 8y,()eg
"

A"
1
=2 Cxn @)+ 5 3 Cxy, 0. (14)
" ny

Furthermore, all the higher order time derivatives of Cyy (#) functions can also be derived from Eq. (14) in a recursive fashion.

Next, we summarize some key results in the case that X and Y are simply the «th and Sth state variables n, and ng, with more
details on the mathematical derivation given in Appendix A. The commonly adopted concept of phonon occupation number
of a vibrational mode can be generalized as the time-dependent expectation value of the state variable n, during a thermal
relaxation process, i.e., 1 (t|T°) = [ dTny P(T, t|T?), with 714 (1|T%) — ngeq and Ay (|T0) = n2(1|T°) — 15 (tIT°)? — Ag eq
at the ¢+ — oo limit. At the weak phonon-scattering limit of the PG model, the thermal equilibrium values of 74 ¢q follow the
Bose-Einstein distribution, and the corresponding statistical variances are Ay cq = g, eq(fa,eq + 1). Applying the vibration FPE
[Eq. (3) to Eq. (8)], we derive the time derivatives of 7z, (t|T"°) and A, (¢|T"°) as

in_(t|I‘0)=/dI‘A (D)P(T,t|T%) = A, (1|T'%)
dl o o £ o £ (15)

d [ - _
T 8atIT?) = Beo(1I1%) 4 2 [1g Ag (t]1) = g (1|T°) - Aa (1] T)].

Furthermore, using Egs. (11) and (12), we define the cross-correlation functions between the fluctuating phonon numbers of
the arth mode and the Bth mode (also referred to as two-mode correlation functions) as Cy,,,, (¢) = (614(0) - 6ng(t))eq = (14(0) -
ng(t))eq — Naeq - Npeqs With Cp (1 = 0) = (8ny - dngleq = (Mo - Ngleq — Naeq - Npeq- We can further define the normalized
two-mode correlation functions as

Crrany (1 dT0 Peg(T°)8n4 (1) - S (1|T°
o () = @ [ eq(T)0na (I7) - dnp (tIT7) (16)
VBaeq Apeq VABaeq Apeq
Since X =ny and Y = ng, we have y, = Ag - §,4 and y,, = 0. Using Eq. (14), we can show that
deap(®) _ Cuaay() (310 (0)As(1))eq _ [ dTOPeg(T)Sna(I°) - Ap(t|T°) a7

dt \/Aa,eq ’ Aﬂ,eq a \/A(mq : Aﬂ»eq v Aa,eq . Aﬂ,eq '

Multiple-mode correlation functions can be defined in a similar fashion. For example, there is only one type of three-mode
correlation function among the wth, Bth, and yth modes:

(8n4/(0) - 8ng(0) - ny (1))eq = / AT Peg(T*)8n4 (T°) - 8np(I°) - 8n,, (1|T°)

= / dT0 Peg (T (g (T°) — Ny eg) - (g (1) — g eq) / dUP(T, t|T) (1, (T) — n,.eq), (18)

and there are three types of four-mode correlation functions among four (¢, 8, i, and v) modes:

(01 (0)5n4(0)5n,,(0)8n,(1))eq

= [dFOPeq(FO)(Sna(FO) 8ng(T0) - 8n, (1% - 8, (1|T°)

= / AT Peg(T) (g (T°) — ngeq) - (np(T°) — npeq) - (n,(T0) = 1y q) [ dUP(L, T, (T) — nyeq)s  (19)
(Sna(o)gnﬂ(o)anu(t)anv(t))eq

= /dFOPeq(FO)Sna(FO) 8ng(T°) - 8n, - o, (1|T°)
= / AT Peg(T0) (e (T°) — ngeq) - (np(T'°) — npeq) / dTP(T, T (n,(T) — nyeq) - (1,(D) —nyeq)y  (20)
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(8nq (0)8npg(1)dn, (1)5n, (1))eq

= /dFOPeq(FO)Sna(FO) Sng - dn,, - o, (1|T°)

= / dT0 Peg(T) (16 (T°) — 1y eq) / dTP(T, tIT")(ng(T) — ngeq) - (M (T) = nyeq) - (ny(T) — 1y eq). (21)

Within the PG model, the fluctuations of phonon occupation numbers at two different modes are considered to be statistically
independent at a thermal equilibrium, i.e., < 1y - Bg >eq= Ng.eq - Np,eq fOr o # B. As aresult, the values of the normalized time-
correlation function at # = 0 are simply c,g(f = 0) = 8,4, where 8,4 is the Kronecker-6 symbol. Yet, the PG model does not state
the value of a cross-correlation function [Eq. (16)] at any other time ¢ # 0, except that cog(#) — 0 as t — oo. Multiple-mode
correlation functions remain poorly understood, even within the PG model.

C. Ornstein-Uhlenbeck processes

The FPE for a well-studied class of stochastic processes, the so-called Ornstein-Uhlenbeck (OU) processes [56], can be
solved analytically. To demonstrate the properties of these OU processes, we start with a new set of zero-mean and unit-variance
stochastic variables ' = (x1, x2, x3, -+ , xn), L.€., (X3.)eq = 0 and (xkz)eq = 1. The OU processes are defined in terms of their
specific form of drift and diffusion coefficients: A (D) = —y3x; and B,/ T = 2y,.8;. ;1> with y; > 0. Consequently, the Fokker-
Planck equation for OU-type processes can be rewritten in a separable multiple-variable partial differential equation:

P, 11" 3 ol I
—_— = 14+x, - — +— | P, tT), 22
o ;n gt PO (22)
and its solution can be expressed as
_ g -moP?
P, 1|F) = ﬂ o (23)

«/27[Ak(t

where, X3 (t) = x,(I'?) - e and A, () = 1 — e~ 2. More details on the solution of an OU-type FPE can be found in
Appendix B. Here we highlight one key result of the time-correlation between any two state variables x; and x;  of an OU-type
process:

Con (1) = (x5(1) - X0t + 1))eq = 8, e 7. (24)

More interesting results on the multiple variable correlation functions, such as the three-variable correlation functions: (x,(¢) -
X (£ - xon(t + ))eqs (x)\(t') cx(F 1) xn(F + 1))eq, and the four-variable correlation functions (xx(t') cxa () xn () -
X (t 4 1))eq and (x(8) - xp () - xun (8 1) - x0(t + 1)) eqs (Xa(t) - X3 (t +1) - xp0(t +1) - x30(t +1))eq, are presented in
Appendix B.

For a lattice vibration to be classified as an OU process, its set of drift coefficients A(I") in the vibration FPE [Eq. (3)] must
satisfy the following conditions:

12
Au(T) = ZDaﬁ< Oteq) (nﬂ - nﬁ,eq)a

dnu,(t|l“° e\
=- Z Da,s (E(tIT)) — npeq)- (25)
Here D,p are matrix elements of the normalized drift matrix D, ny oq and Ag ¢4 are, respectively, the equilibrium average value
of the phonon number at oth mode and the corresponding statistical variance at the equilibrium withe, 8 =1,2,3,--- , N.
The D matrix, as defined in Eq. (25), is a semipositive definite, real, and symmetric N x N matrix with a set of N eigenvalues
v, and corresponding normalized eigenvectors written as as i, = (u;_ 1, Uy 2, U3, - ,Usn) for A =1,2,3,--- , N. We then
can transform the N-dimensional phonon number state variables I' = {n|, ny, - - - , ny} into an equivalent set of zero-mean and
unit-variance state variables I' = (x1, x7, x3, - - - , Xy ) using this set of eigenvectors:
N
12
Ng = Ngeq T (Ageq) / Zxkuk,ou
A=1
n Ng.e
6=y S . (26)
a=I A""eq
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The linear transformation in Egs. (26) also shows that the diffusion B,g(I") coefficients for an OU-type lattice vibration are
related to its drift coefficients A, (T") through the D matrix:

N

Baﬁ(r) = 2(Aot,eq ' Aﬂ,eq)l/z Z Vildy Uy p = 2(Aot,eq ' Aﬂ,eq)l/zpaﬁ~ (27)
=1

In the rest of the paper, the D matrix is referred as the normalized drift/diffusion matrix.
Combining the results in Egs. (16), (24), and (26), we can show that the normalized two-mode correlation functions cqg(t)
[Eq. (16)] in this OU-type lattice vibration are simply

N
Cap(t) = Y € Uy s g, (28)

A=l

with ceg(t =0) = Zivz | Uty g = Sap. We can generalize the normalized two-mode correlation functions in Eq. (28) in an
integral form:

Caﬂ(t)=/0 dy Xap(y)e™"", (29)

with x8(y) = Zf\vzl uy oy p - 6(y — v5.). Equation (29) indicates that a mode correlation function c,g(#) can be viewed as the
t-space Laplace transformation of the y-space function x,g(y). We refer to xqs(y) as the Laplace spectral function of c.g(t).
At the N — oo limit, a Laplace spectral function x.g(y) converges to a continuous function defined in the spectral regime of
[0, ¥max]. The kth moment of a xqs(y ) function, defined as pqap(k) = [, dy xap(v) - ¥*, is given as

N
Map(k) =Y " us atty pya* = (@|DF|B) = (DN)ap. (30)

A=l

The results in Eqgs. (28) and (29) clearly demonstrate that in general the normalized mode self-correlation functions of lattice
vibration do not decay as an exponential function of time, and the time-integral of the cross-correlation functions are not zero for
two different modes. Some recent simulation studies [53] have reported their implementation based on fitting the MD simulated
mode self-correlation functions based on an assumed formula of Cog(f) & Ay eq - 8a,p - e %! and they reported the fitted decay
factors y, as the inverse of phonon lifetimes 7, = y, ! in the PG model. For such a simplification to be valid, the normalized
drift/diffusion matrix D has to be close to a diagonal matrix:

m 0 0 ... 0 nw 0 0 ... 0
0 » 0 ... 0 0 » 0 ... 0

D~| . . . . e it e GD
0 0 0 ... yy 0 0 0 ... 1ty

However, the off-diagonal terms in the D matrix characterize the phonon-phonon mode scatterings, and they are usually not zero
even within the approximation of the PG model. Similarly, the cross-correlation functions between two vibrational modes are
usually not zero even within the approximation of the PG model.

The analytical solution of the probability function of an OU-type vibration FPE also predicts the time-correlation functions
of multiple vibrational modes. For example, based on the derivation in Appendix B, all the correlation functions of odd-number
vibrational modes are zero for an OU-type lattice. There are three types of four-mode correlation functions:

(0ny (O)snﬂ (O)Snu(o)anv(t))eq = (Aa,quﬂ,quu,quu,eq)% : Z (”A,auk’,ﬂux”,uuk’”,v) ~(x2(0) - x,(0) - x;32(0) - xk”’(t))eq
AN

= (Aa,quﬁ,quu,quv,eq)% : [aaucﬁv(t) + aﬂ/xcav(t) + Saﬁc;w(l)]s (32)

1
(8na(0)511’9(1‘)871#([)511”(2‘))6(1 = (Atx,quﬂ,quu,eqAv,eq)2 : Z (”)\,au}\/,ﬂuk”,uuk”’,u) (2 (0) - x5 (2) - X (2) - x)\’”(t))eq
A)\/)\//)\J//

1
= (Aa,qu/S,qu;L,quv,eq)z . [8;/.vc(x/3(t) + (Sﬂvcam(t) + 5l3ucau(t)]a (33)

(51’10,(0)5?15(0)31’1,,_(1‘)51’1”(l‘))eq = (Aa,quﬁ.qup_,quv.eq)% : Z (u)\,au)\’,ﬁuk”,uuk’”,v) “{(x2(0) - %, (0) - Xy (2) - x)»”’(t»eq
AN

1
= (Aa,quﬁ,quM,quv,eq)z : [805/38;1.1) + Cap ()- Cﬂv(t) + Can(t) - Cﬂu(t)]a (34)
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with cqg(#) being the normalized time-correlation function between oth mode and S-mode [Eqgs. (16), (28), and (29), and the

initial values of the four-mode time-correlation functions derived as (814 (0)dng(0)dn,,(0)61,(0))eq = (Ag,eqApeqA ,t,quU,eq)% .

[801/38#\) + 80{/1,8/3\) + 8av5ﬂu]~

III. LATTICE THERMAL CONDUCTIVITY
A. Green-Kubo theory

The fluctuation-dissipation theorem provides a general sta-
tistical theory to connect the equilibrium fluctuation processes
of a macroscopic quantity, e.g., the total heat current vector
J = (Jx, Jy, J;) in a solid and the related irreversible trans-
port processes, such as heat conduction at nonequilibrium
conditions. Within the statistical linear response transport the-
ory, the thermal conductivity tensor «;;, with I, J =x,y, z
labeling the Cartesian axes, is expressed in the GK formula
in terms of the time integral of the current-current correlation
functions [43,44],

1

[o¢]
=— dt(Jr(0)J;(t))eqs 35
K1y kBTzﬁNcen/o (J1(0)J(1))eq (35)

where 2 and N, are, respectively, volume of the unit cell and
total number of cells in a supercell model with the Born-von
Karman periodic boundary.

At the atomistic level, the heat current J is a function
of atomic forces, displacements, and momenta, and various
approximations have been proposed and discussed [57].
Assuming the heat current vector is also a function
of phonon numbers of modes, i.e., J=17 qry =
J(ni,np,n3,--- ,ny), we can use Eq. (9) to evaluate
the current-current correlation functions. Under the condition
of small thermal fluctuation, the Cartesian components of the

J

f At (71 0V (1)eq
0

(

heat current vector can be simplified as

Jp ~ Z aj’ Ana =Y ArgAn,. (36)

Ihe seminal Peierls formula of the heat current of a PG,
J = Za Anglhiwy vy, is an approximation of this class, with
Ay = hwyve. When the higher order terms (also referred as
the nonharmonic terms) in the J formula are included as the
corrections to the linear terms formulated in Eq. (36), we can
rewrite the J; as J; = Zi Ajq Ang + 8J;. Consequently, the
current-current correlation functions can be expressed as

<J1(O)JJ(I)>eq = Z AIotAJ/S (An(x(o)Anﬂ([))eq
off

+ Z A,a(Ana(OﬁsJJ(f))eq

+ ZA,O,(SJI(O)Ana(f»eq

+(8J7(0)85(1))eq- (37)

Wherever the nonharmonic §J terms in the vibrational heat
current in a lattice are not negligible, time-correlation func-
tions of multiple modes, such as the four-mode correlation
functions shown in Egs. (32), (33), (34), are needed to evaluate
the current-current correlation function shown in Eq. (37). At
the condition that the general linear approximation of Eq. (36)
is valid, the time integral of (J;(0)J;(#))eq is approximated in
terms of time integrals of normalized two-mode correlation
functions cqg(?):

ZA,aAm f d1{Any(0)Ang(1))eq

N (38)
= ZAIaAJ/S(Aa,eq . Aﬂ,eq)l/zf dlcaﬂ(t)-
off 0
Based on the GK formula, we now express ki, in the form of
1 12 o
_ AjaAjg(DAgeq - A dtcyp(t). 39
Kpj = ks T2 New Z Ta N jg(Ageq - Dpeq) /o cap(t) (39)

As shown in Eq. (28) of Sec. I C, when a lattice vibration can be approximated as an OU process, the lattice thermal

conductivity is simply

1

N )
Kij=—= —F—— A[ AJ (A eq” A , )1/2 f dtefy”u)\, Uy,
kpT2QNcen %: a M JplBaeq " Speq ; ) atti.p

1
kB T2QNcen

1
kB T2?QNcen

N

ZAlaAJﬁ(Aaeq Aﬂeq)/ Z(Vk) U alpp (40)

r=1

ZA,aAw(Aaeq Apeq)' P (D).
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B. Phonon Boltzmann transport equation

As a kinetic transport theory, the phonon BTE theory
is valid only within the PG approximation, i.e., at a ther-
mal equilibrium, each mode oscillates at a harmonic fre-
quency w and the ensemble-averaged number of phonons at
this mode follows the Bose-Einstein distribution neq(w) =
<n>eq = m and Aeq = <n2>eq - (n)gq =Neq * (neq +1).
In addition, the phonon BTE theory applies only to a crys-
talline solid, where each vibrational mode of this translation:
invariant periodic lattice corresponds to a reciprocal-space k
vector and a group velocity v = V().

(dna ) R
= —‘UO[ .
dt diffusion

hwy
k T?

When a constant temperature gradient ¥, T is imposed on
the periodic lattice, the ensemble-averaged phonon numbers,
ng fora =1,2,3,---, N, are no longer able to relax back to
their original equilibrium values neq as a result of thermal
diffusion. Instead, each n, approaches a space-dependent
value when a steady state is reached:

<8na) B (dna> <dna> _0
dt dt diffusion dt scattering 7

where the diffusion term at the ¥V,T — 0 limit is approxi-
mated as

(41)

T s Na eq(nct eq + 1)1)0( . vrT~ (42)

A common approximation for the scattering terms in the phonon BTE [Eq. (41)] is the so-called linearized approximation:

dng )
( dt scattering B Z

where L is referred as the linear phonon-scattering matrix.

By using the results of Eqs. (42) and (43) and the definition of ¢, =

Nyeq * (noteq + 1)

Npg.eq (nﬁm 1)

Lap - (np —ngeq), (43)

Ng—Naeq

A/ n(x.eq'(”o{.eq"’ 1) ’

the steady-state phonon Boltzmann

equation [Eq. (41)] can be rewritten as a set of linear equations for ¢, witha =1,2,3,--- , N:

Z Laﬂ ¢)ﬁ

k T2 na,eq(na,eq + l)l_ja : %rT.

(44)

Similar to what we have derived in Sec. I C, we can solve the set of linear equations using the eigenvectors and the eigenvalues

of the matrix L:
N

P

r=1
N

N
:1 r=1

N
B ho N
= v wa Y kB—Tﬁzx/nﬁ,eq(nﬂ,eq F D@ 7, Tz g
p=1

(45)

ha)/g . .
kpT? ngeq(npeq + D(Wp -V, T)

hwﬂ > -
—Z(L)a,s 77 Veelige + D - 907,

where y; and i), are the Ath eigenvalue and eigenvector of the matrix £, and (£)~' represents the inverse matrix of L.
Based on the Peierls formula for the heat current of a PG, the lattice thermal conductivity predicted by the linearized phonon

BTE theory can be expressed as

\/na,eq(na,eq + 1)\/nﬁ,eq(n,8,eq + l)hwahwﬂ

1
= L -1 : al *
KrJg QNCell O[Eﬂ ( )aﬂ kBT2 Vol * VBJ
1 1 _ (46)
_ z: 2, (L))
QNean (C(xcﬁ) Uar - VgJ ( )aﬁ ,

op

where ¢ = kp - (L2 )2
heat capacity. ot
To compare ki, predicted by the phonon BTE [Eq. (46)]
and the one by the OU-type vibration FPE [Eq. (40)], we
first note that in the limit of weak phonon scattering of the
PG model, the variance of the phonon number fluctuation

“Ng,eq - (Na,eq + 1) is the single-mode

(

of a mode A, has already been shown to converge to
the value of ng.eq - (Ma,eq + 1), and the Peierls formula of
heat current is valid. Furthermore, with the interpretation
of phonon occupation number n, in the phonon BTE as
the time-dependent expectation value of the phonon number
during the thermal relaxation process, we conclude that the
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normalized drift/diffusion matrix D in an OU-type vibration
FPE [Eq. (25)] is identical to the linear phonon-scattering
matrix £, i.e., D — L, at the weak phonon-scattering limit
of the PG approximation. Consequently, x, predicted by
the vibration FPE [Eq. (40)] converges to that predicted by
the conventional phonon BTE [Eq. (46)]. The so-called sin-
gle mode relaxation approximation (SMRA) or relaxation
time approximation (RTA) of a kinetic transport model cor-
responds to the cases where the phonon-scattering matrix £
(or the drift/diffusion matrix (D) can be treated as a semipos-
itively defined diagonal matrix [Eq. (31)].

C. Discussions and future applications

A comparison chart is shown in Table I to highlight
commonality and distinction between the atomistic MD simu-
lation method and the vibration FPE. The MD simulation ap-
proach has an absolute advantage in simulating the atomistic
scale lattice heat currents at moderate and high temperature,
and it applies consistently to disordered solids, very anhar-
monic solids, as well as fluids. However, MD simulations
only provide a semiquantitative description of the fluctua-
tion properties of individual vibrational modes based on the
damped oscillator model. First, corrections to the quantized
lattice vibration have to be considered at low temperature
because of the classical nature of MD simulations. Second, the
mode lifetimes extracted from the numerical solutions of MD
trajectories over long simulation periods reflect only partial
information on the fluctuation and relaxation processes in
lattice dynamics. Because of the assumption that all the cross-
mode correlation functions between two different vibrational
modes are zero, the DOA is equivalent to the SMRA or RTA
in kinetic transport theories. The predicted «p, from these
approximate kinetic theories are known to be noticeably un-
derestimated compared to those derived from the full solutions
of the phonon BTE theory at low temperature [4,23] or in
low-dimension materials [27].

In contrast, the vibration FPE approach complements the
conventional MD simulation approach for conditions in which
the interactions among vibrational modes are moderate, and
it can be adopted to delineate the breakdown conditions of
the PG model in MD simulations. Based on vibration FPE,
we propose that the PG model applies when the OU approx-
imation of the drift and diffusion coefficients [Egs. (25) and
(27)] is valid. By considering the normalized drift/diffusion
D matrix in an OU-type vibration FPE equivalent to the
scattering £ matrix in a phonon BTE, we have proved that
the kp.y derived from the linear response transport theory
converges to that from the kinetic transport theory within the
PG approximation.

When the interactions among vibrational modes are per-
turbatively small, the normalized drift/diffusion D matrix
can be derived by using quantum perturbation theories for
lattice vibration at low temperature. As temperature ele-
vates to the semiclassical and classical regimes, we can
implement numerical algorithms to directly compute nor-
malized drift/diffusion coefficients with first-principles MD
simulations. As these coefficients are defined in the short-
time limit, high-performance parallel computer platforms can
be utilized to distribute the computational loads of such

simulations in parallel. When the temperature dependence of
the drift/diffusion coefficients are extracted and tested with
the OU approximation, we are able to not only quantitatively
determine the temperature condition in which the PG model
breaks down, but also identify the individual vibrational
modes that lead to the breakdown.

IV. CONCLUSIONS

In summary, we have developed a vibration Fokker-Planck
equation theory to describe stochastic lattice dynamics in
solids. Instead of simulating the atomic trajectories using the
MD methods, this statistical theory characterizes the fluctua-
tion and relaxation processes in terms of a time-dependent,
multiple-mode probability function, evolving from a ther-
mally sampled single microstate at t =0 [Eq. (1)] to the
equilibrium distribution over all the accessible microstates
as t — oo [Eq. (2)]. The dynamical properties that govern
the stochastic processes at atomistic scale are coarse-grained
into two sets of parameters of a vibration FPE, the drift A
and diffusion B coefficients of vibrational modes [Egs. (3)
and (4)]. At the limit of weak mode-mode interactions, these
coefficients can be derived with quantum perturbation theo-
ries, such as Fermi’s golden rule [Egs. (5) and (6)]. Beyond the
perturbation approximation, these coefficients can be directly
computed by using MD methods over short simulation time
periods (i.e., 6t =~ 0). Thus, the intensive computational loads
of sampling a large amount of initial microstates of a vibrating
lattice can be distributed in a computer platform with massive
parallel algorithms.

Our time-dependent probability theory presents a new
paradigm to compute correlation functions among vibrational
modes [Egs. (16) and (17)]. The advantage of this statis-
tical approach is clearly demonstrated at the OU condition
(Sec. IIC), in which the vibration FPE has an analytical
solution [Egs. (23)—(26)] and the correlation functions among
multiple modes [Egs. (28), (32)-(34)] can be derived in
terms of eigenvalues and eigenvectors of the normalized
drift/diffusion matrix D [Egs. (25) and (27)]. By equating the
D matrix in an OU-type vibration FPE with the conventional
phonon-scattering matrix £ [Eq. (43)] in a phonon BTE, we
have presented rigorous mathematical proof to equalize ky ay
results from both the GK theory [Eq. (40)] and the BTE theory
[Eq. (46)] with the Peierls harmonic heat current formula
[Eq. (36)].

Although both the vibration FPE theory and the phonon
BTE theory predict identical «p, results within the PG model,
the vibration FPE provides additional theoretical insight on
the heat conduction mechanism at microscopic level. First, the
vibration FPE theory quantatitively defines the contributions
to the overall kp, from both the self-correlation functions of
individual modes and the cross-correlation functions between
two different modes [Eq. (39)]. Second, the vibration FPE
further predicts all the multiple-mode correlation functions,
which can be analyzed in the future to account for effects
of anharmonic correction terms in heat flux [28,57]. Finally,
when perturbation theories become insufficient to evaluate the
phonon-scattering matrix £ of a phonon BTE, the full set
of matrix elements of £, instead of merely effective phonon
lifetimes, can be computed as the normalized drift/diffusion
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FOKKER-PLANCK EQUATION FOR LATTICE VIBRATION:
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coefficients of an OU-type FPE by using the MD simulations
over short-time periods.

To study the mechanisms of lattice heat conduction beyond
the PG model, it is critical to establish a quantatitive criterion
that delineates the breakdown conditions. The theoretical
analysis presented in this paper indicates that the OU condi-
tion of stochastic lattice dynamics [Eqs. (25) and (27)] might
serve as such breakdown criterion. We are currently imple-
menting MD methods to compute the temperature-dependent
drift/diffusion coefficients up to the melting temperature
of a lattice. Various numerical methods, such as adiabatic
elimination of variables method, matrix continued-fraction
method, or variational methods, will be examined to solve
the vibration FPE beyond the OU approximation [55]. It is
promising that this vibration FPE presents a new theoretical

J

framework to accurately and effectively predict the stochastic
vibrational processes and the thermal transport properties of
solids within and beyond the PG model.
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APPENDIX A: EXPECTATION VALUES AND STATISTICAL VARIANCES OF NUMBERS OF PHONONS

This Appendix provides some derivation details on some formulas about the expectation values and statistical variances of

the phonon numbers shown in Sec. II.

We first define the time-dependent expectation values of the following three quantities using the ensemble averaged approach

shown in Sec. II B:

A (1100 = (ng) = /drnamr;r),

T (t|TY) = (ngng) = /ananﬂP(F;t),

Aas(tIT0) = (ngng) — (ng

(AD)
(A2)

){ngp). (A3)

Using the vibration FPE shown in Eq. (3), we then prove that the first-order ¢-derivatives of these three quantities in Egs. (A1)

to (A2) have the following forms:
dny
dt

9
= /ana—P(F,ﬂFO)
ot

= —Z/dr‘na -[Ai(D) - P(T, 1T +

[B J(@@)- P(C,1|TO). (A4)

Z / ATy

i

For o # i, we have [ dT'ng7-[A;(D)P (T, t|T°)] = 0. Similarly, [ dTnq =52 [B;;(T)P(T, t|T°)] = 0 fora # i or B # j.

As aresult, Eq. (A4) is now simplified as

dna(t|F0) / 1/ 92
—_— dlng Ay - P — | dThng————(Byo - P), AS
dt na( )+2 " 8na8na( ) (A5)
with JdTng5-(Ay P)—fdr ~(ng - Ay - P) = [d(T Ay - P) = — [dT A(T") - P(T, 1]T°) = —A,(1|T"), and
[ dTng =32 (Byo - P) = [ dT 5i-[n4 55 (Bua P)] — [ dT 55 (Boy P) = 0. We now get
da(Il% —
———= = A, (t|T7). A6
o (T%) (A6)
Similarly, we can show that
dnanﬂ(t|F ) 0 0
— 0 - ngAg(t|T°) +ngA, (t|T )+Bo,,g(t|r‘ ). (A7)
Consequently, we also have
dAgtIT%)  ditgng(t|T° dig (t)T° ding (t|T°
pU0) _ ATl aIl) oo poy dTE0IT) oo dMaGIE)
dt dt dt dt (A8)

= Bog(tIT°) + [ne Ag (t|T°) — 7ig (t|T°) - Ag(¢|T)] +

[ngAe(tIT%) — g (tIT°) - Ay (]T)].
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APPENDIX B: ANALYTICAL SOLUTIONS OF THE FPE FOR AN OU PROCESS

In this Appendix, we verify the analytical solutions of an OU-type FPE [Eq. (22)] shown in Sec. II C. For a probability
function of one stochastic variable x with zero-mean and unit variance, the corresponding OU-type FPE can be given as

0P, 1) Trx 2 P\ pn (B1)
— =y X — 4+ — X, t).
o1 4 ox | 9%x
With %f = —y7, %)7 =2y — )?), and the initial values ¥ and x2 being xo and (x()? respectively, we have
X = xpe V',
_ (B2)

A=x2—X"=1—e?".
We skip the details of derivation and only show that the analytical solution of Eq. (B1) is given as

1 =x)?
P(x,t) = —__ o 7, B3
(x. ) 21 A(t) ¢ (B3)

Using the analytical solution in Eq. (B3), we can show that % on the left-hand side of Eq. (B1) is

aP(x,1) a[\/%m] _(x;gg)))z n 1 3[67%]
T TR JV2TA() ot
[l — A (x =X()*  x-(x —%(1)
—rii=a UHP@J)+V[ A1) A }P“”)
=yl = A7H D) - (1 =xX(@) +x*) + A7) - (x = X)) 1P (x, 1), (B4)

From the analytical solution in Eq. (B2), we also have 9Pt — —A7'@)- (x = X)) - P(x,t) and PP —A7N )+

dx 0x2

A72(t) - (x —X(¢))* - P(x, t). These results give us the right-hand side of Eq. (B1) in the form of

2
y- [1 +x- % + ;—X}P(x, D=y -[1—x-AT') (x =%(1) — A" @)+ A72(@1) - (x —%(1))?]- P(x, 1)

=y - [N=A') - (I —x-T@O)+xH+ A1) - (x —X(1))*]- P(x,1). (B5)

With both Egs. (B4) and (BS5), we now verify that the probability function in Eq. (B3) is indeed the analytical solution of
Eq. (B1).

For the case N > 1, the N-dimensional probability function of an OU-type FPE [Eq. (22)] can be expressed in a separable
form P(",t) = ]_[f\vzl fo.(x5, ), and one N-variable FPE [Eq. (22)] is converted into N sets of partial differential equations:

afa(x, 1) ] 92
B (143 1), B6
Y Vi, < + X5 o, + az”)fx(x ) (B6)

where A =1,2,3,---N. Similar to the solution shown in Eq. (B3), we have the N sets of solutions of fi(x,?) =
(=752

QrA) Ve Eny , with X; = x; e "' and A; =1 — e 2", Plugging these results in the separable multiple-variable
formula, we now can verify that the analytical solution of Eq. (22) is indeed the probability function shown in
Eq. (23).

The analytical solutions of the probability function for an OU-type FPE allows us to directly derive the correlation functions
among these state variables with zero-means and unit variances. For example, the time-correlation functions between any two
stochastic variables can be shown as the following familiar forms:

() - x( +1))eq = (X2(0) - X3 (1))eq

= (x) ~x;\r)eqefy*” = 8)\’)\'67“’. (B7)

Meanwhile, we can prove that all three-variable correlation functions for a multiple variable OU process zero:

(x2(0) - x(0) - X3 ())eq = (X2 - X - Xpr)eqe” "

=0 = (B8)
(x.(t) - x0(0) - x)»”(t))eq = (X0 - X xk”)eqe_zy’\”l + (x)\>eq (1 — e—2y~Awt) XY
=0-e 2 40-(1—e ). 850 = 0. (B9)
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We can further generalize that the correlation functions of odd-number variables, such as three-variable, five-variable, etc.,
are all zero. Meanwhile, the correlation functions of even-number variables are not always zero. For example, for four-variable

correlation functions, we have the following free formula:

(62.0) - x2(0) - x27(0) - 30 (1))eq = (X3 - X = X+ Xy )eqe M

= (Sspr  Sunr + S+ S + S - 8o )e

(B10)

- ’ " Y — ’ 72 "
(0.(0) - 23 (8) - x50 (1) - X0 (1)) eq = (X3 X = X+ X hege™ PPN (06050 eq - €T (1 — €7 Sy

+ (Xxxm)eq . e*)’,wt . (1 _ 8*2)/;4) . (S)L')LW + ()C)\)C)\W)eq . e*V,\mt . (1 _ 6*2%\/[) . SA’A”

= (83« Sz + Soar + S 4 Sy - Sy ) - @ Yy vt

e [0 S (1= € Sy By - (1= €70 Sy - Sy - (1= €72

= (Bor - S 4 Sor + Sy 4 So - Sy )e P

(B11)

(20) - %30 (0) - X3 (1) - X300 (1))eq = (X5 - X - X = Xy Yeqe™ P 4 (3000 ) eq - (1= €720) - S

= (835 - Sz + Sz = Svar 4 8o - S Yo~ T TV L 5o Sy - (1 — e 20T

= Syar S 4 Biar - Savam + Sy - Syrpn Yo~ Ayt
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