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Spin-charge separation effects in the low-temperature transport of one-dimensional Fermi gases
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We study the transport properties of a one-dimensional spinful Fermi gas, after a junction of two semi-infinite
subsystems held at different temperatures. The ensuing dynamics is studied by analyzing the space-time profiles
of local observables emerging at large distances x and times t , as a function of ζ = x/t . At equilibrium, the
system displays two distinct species of quasiparticles, naturally associated with different physical degrees of
freedom. By employing the generalized hydrodynamic approach, we show that when the temperatures are finite
no notion of separation can be attributed to the quasiparticles. In this case, the profiles can not be qualitatively
distinguished by those associated to quasiparticles of a single species that can form bound states. On the contrary,
signatures of separation emerge in the low-temperature regime, where two distinct characteristic velocities
appear. In this regime, we analytically show that the profiles display a piecewise constant form and can be
understood in terms of two decoupled Luttinger liquids.
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I. INTRODUCTION

Hydrodynamic approaches provide the skeleton of our un-
derstanding of many-body quantum physics. This is especially
true in generic situations, when a full microscopic description
is out of reach. In particular, quantum hydrodynamics has
proved to be extremely powerful in one dimension, where
seminal works by Haldane [1] have set the basis for the de-
velopment of the well-established theory of Luttinger liquids
[2,3]. This approach consists in describing the excitations over
the ground state of the system as a gas of noninteracting
particles with linear dispersion. Quantitative predictions can
be obtained for large-distance correlations [4], which are fully
determined by the low-momentum and low-energy modes.
Further progress was made by also taking into account effects
of nonlinearity [5], resulting, for instance, in the predictions of
universal properties beyond the linear approximation [6–9].

Even though information on the microscopic, short-scale
structure of the system is lost, the Luttinger theory has proven
to be an excellent tool to quantitatively describe many gen-
uinely quantum effects [2]. A prominent example is given
by the well-known phenomenon of spin-charge separation
[2,3,10–21]. In a one-dimensional system of interacting quan-
tum particles with spin, the spin and charge of its constituents
might effectively split and propagate separately with different
velocities. The explanation of this effect lies in the collective
nature of the elementary excitations, which can not be under-
stood uniquely in terms of the physical degrees of freedom.

Recently, a different hydrodynamic approach has been
introduced in the context of quantum integrable systems
[22,23]. Within this framework, often called generalizd hy-
drodynamics, one is still interested in a large-scale description
of the system, but its scope is not restricted to the low-
energy sector. This approach provides exact predictions in
the limit of infinite distance and timescales [22–24], but it

also gives extremely good approximations for large but finite
scales [25–29], and it has successfully been employed to study
spreading of entanglement and correlations [30–37]. The
crucial ingredient of this approach is the existence of stable
quasiparticles: this makes it possible to adopt a description
in terms of space- and time-dependent local quasistationary
states [38], which are fully determined by their quasimomenta
distribution functions. The evolution of such distributions is
obtained by following the motion of the quasiparticles and
results in a set of differential (or continuity) equations. As
shown in Ref. [27], the description of large-scale properties
given by GHD supersedes that of conventional (quantum)
hydrodynamics [39–46]; this is also confirmed by the recent
cold atomic experiment [47].

Analogously to the conventional hydrodynamics, the gen-
eralized hydrodynamics of integrable systems is able to dure
several hallmarks of collective quantum phenomena. To ana-
lyze them, it is often convenient to consider minimal settings
where a detailed study can be carried out. The most popu-
lar consists of taking two semi-infinite subsystems initially
held at different temperatures and suddenly joined together
[48,49], which corresponds to the so-called bipartition pro-
tocol. Note that before the introduction of generalized hy-
drodynamics, this setting could be studied only numerically
[50–55], while analytical understanding was restricted to free
systems [56–72] and conformal field theories [48,73–81]. In
the bipartition protocol, at large distances x from the origin
and times t , a different local quasistationary state emerges for
each “ray” ζ = x/t . Accordingly, each physical quantity is
associated with a nontrivial profile function of ζ .

Systematic inspection of the profiles provides nontrivial
information on the system and in particular on its quasi-
particle content; in the XXZ Heisenberg chain, for instance,
different bound states of spin excitations are associated to
distinct points of nonanalyticity in the profile functions of
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local observables [24]. It is natural to wonder whether gen-
eralized hydrodynamics can be employed to study effects
of separation in systems with nontrivial internal degrees of
freedom. In general, however, signatures of this underlying
structure are difficult to obtain. A simple example is provided
by the recent study [82], where spreading of entanglement
and mutual information after a global quench was analyzed
in an SU(3)-invariant spin chain by means of the techniques
introduced in Ref. [83]. Such spin chain is characterized
by two species of quasiparticle excitations carrying different
physical information and exhibits spin-charge separation at
zero temperature. This structure, however, can not be observed
in the spreading of information after the quench. While traces
of different quasiparticles can be observed in the time evolu-
tion, the resulting picture can not be distinguished by the one
where there is a single species of quasiparticles forming bound
states. In other words, all quasiparticles are observed to carry
the same physical information. This scenario is also expected
for the spreading of local correlations and is ultimately due
to the general belief that separation effects vanish at finite
energy density: they can not be observed beyond the regime
of validity of the Luttinger theory [10].

In this work, we investigate these questions by studying
the transport properties of an interacting spinful Fermi gas in
one dimension. Specifically, we consider the repulsive Yang-
Gaudin model: a prominent example of nested-Bethe-ansatz-
integrable system [84–86] where spin and charge degrees of
freedom are associated to distinct species of quasiparticles.
Using the generalized hydrodynamics theory we show that for
generic temperatures there is no trace of spin-charge separa-
tion in the profiles of local observables while a spin-charge-
separated structure can be identified in the low-temperature
regime. We develop an analytical low-temperature expansion
of the profiles of local observables, pinpointing qualitative
features that could not be observed in models with a single
quasiparticle species.

The paper is organized as follows. In Sec. II, we introduce
the Yang-Gaudin model of spinful fermions and its thermody-
namic Bethe ansatz description. In Sec. III, we describe the
setting considered and review the generalized hydrodynam-
ics treatment. In Sec. IV, we consider the profiles of local
observables at generic temperatures and show that no sign
of separation can be discerned. In Sec. V, we consider low
temperatures and identify the signatures of spin-charge sepa-
ration in the profiles of local observables. Section VI contains
our conclusions while a number of technical details of the
low-temperature expansion are reported in the appendices.

II. THE YANG-GAUDIN MODEL

The Yang-Gaudin model describes a system of spin-1/2
fermions interacting via a repulsive delta-function potential.
The Hamiltonian for the system in a finite volume L reads as

Ĥ = −
∫ L/2

−L/2
dx

[∑
α=±

ψ†
α (x)

(
∂2
x + A + αh

)
ψα (x)

]

+ c

∫ L/2

−L/2
dx

⎡
⎣ ∑

α,β=±
ψ†

α (x)ψ†
β (x)ψβ (x)ψα (x)

⎤
⎦. (1)

Here, h is an external magnetic field, A is a chemical potential,
and c is the interaction strength. The fermionic fields ψ†

α (x)
and ψα (x), respectively, create and destroy a fermion with
spin α = ↑,↓ at position x and fulfill the canonical anticom-
mutation relations

{ψ†
α (x), ψβ (y)} = δα,βδ(x − y). (2)

In this paper, we consider repulsive interactions, namely, we
take c > 0.

Considering the sector of N fermions, M of which have
spin down, the Hamiltonian can be written in the following
first-quantized form:

HN,M = −
N∑

j=1

(
∂2

∂x2
j

+ A

)
− h(N − 2M )

+ 2c

N∑
k �=j=1

δ(xk − xj ). (3)

The model is integrable and can be solved by nested Bethe
ansatz [87,88]. In this framework, one writes the exact many-
body wave function ψk,λ(x1, . . . , xN ) of every eigenstate of
HN,M . The eigenfunctions are labeled by a set of physi-
cal wave numbers k = {k1, . . . , kN }, corresponding to the
physical particles, and a set of rapidities λ = {λ1, . . . , λM},
corresponding to spin waves. Imposing periodic boundary
conditions forces wave numbers and rapidities to fulfill the
following algebraic equations:

eikj L =
M∏

α=1

kj − λα + ic/2

kj − λα − ic/2
, (4)

N∏
j=1

λα − kj + ic/2

λα − kj − ic/2
=

M∏
β=1
β �=α

λα − λβ + ic

λα − λβ − ic
, (5)

known as nested Bethe equations. These equations contain all
the necessary information to study the thermodynamics of the
system.

For large L, the solutions to (4) and (5) follow the well-
known string hypothesis [85], according to which the wave
numbers kj are real, while the rapidities λα form patterns in
the complex plane called strings. An n string consists of n

rapidities distributed symmetrically around the real axis, with
the j th rapidity in the string being

λn
α,j = λn

α + i(n + 1 − 2j )c′. (6)

The real number λn
α is known as the string center and satisfies

a set of algebraic equations following from (4) and (5).
In the thermodynamic limit,

L → ∞, N/L = const., M/L = const., (7)

the wave numbers kj and the string centers λn
α characterizing

a generic eigenstate become infinite in number and densely
distributed. In this case, instead of using these quantities, it is
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useful to parametrize eigenstates using their “root densities”:

ρ
(1)
1 (kj ) ∼ 1

L

1

kj+1 − kj

, (8)

ρ (2)
n

(
λn

α

) ∼ 1

L

1

λn
α+1 − λn

α

. (9)

In general, a large number of eigenstates correspond to the
same set of densities. This fact is usually referred to by saying
that the root densities specify a macrostate of the system,
while the eigenstates of the Hamiltonian correspond to its
microstates. Quantitatively, in a large finite volume L there
are ∼exp (LsYY[ρ]) eigenstates approximately described by
the same set of densities ρ = {ρ (1)

1 , ρ
(2)
n }. Here, we introduced

the Yang-Yang entropy density [85]

sYY[ρ] =
∑
r=1,2

sr∑
n=1

s (r )
n [ρ], (10)

where s1 = 1, s2 = ∞, and

s (r )
n [ρ] ≡

∫ ∞

−∞
dλ ρ (r )

n (λ) ln
[
1 + ρ

(r )
n,h(λ)

/
ρ

(r )
[n] (λ)

]

+
∫ ∞

−∞
dλ ρ

(r )
n,h(λ) ln

[
1 + ρ (r )

n (λ)
/
ρ

(r )
n,h(λ)

]
. (11)

The hole densities ρ
(1)
1,h, ρ

(2)
n,h appearing in these equations

describe the densities of unoccupied momenta, and can be
written in terms of ρ

(1)
1 , ρ (2)

n as follows:

ρ
(1)
1,h(λ) = 1

2π
− ρ

(1)
1 (λ) +

∞∑
m=1

am � ρ (2)
m (λ), (12)

ρ
(2)
n,h(λ) = an � ρ

(1)
1 (λ) −

∞∑
m=1

(Inm + Anm) � ρ (2)
m (λ). (13)

Here, f � g denotes the convolution

f � g(λ) =
∫ ∞

−∞
dμf (λ − μ)g(μ), (14)

while

an(x) ≡ 1

π

2nc

(nc)2 + 4x2
, (15)

Inm(x) ≡ δnmδ(x), (16)

Anm(x) ≡ (1 − δnm)a|n−m|(x) + 2a|n−m|+2(x)

+ 2a|n−m|+4(x) + · · · + 2an+m−2(x) + an+m(x).

(17)

Equations (12) and (13) are known as Bethe-Gaudin-
Takahashi equations and follow from (4) and (5).

Even if an exponential number of eigenstates correspond
to the same densities ρ

(1)
1 , ρ (2)

n it is generally accepted that the
latter fully specify the thermodynamic limit of the expectation
value of any physical observable in any of those eigen-
states. For example, the expectation values of particle density,

magnetization density, and Hamiltonian density in an eigen-
state characterized by ρ are given by

n[ρ] = d (1)[ρ] =
∫ ∞

−∞
dλ ρ

(1)
1 (λ), (18)

m[ρ] = d (1)[ρ]/2 − d (2)[ρ], (19)

e[ρ] =
∫ ∞

−∞
dk ρ

(1)
1 (k) e(k) − 2m[ρ]h, (20)

where we introduced the bare energy e(λ) = λ2 − A and

d (2)[ρ] =
∞∑

n=1

∫ ∞

−∞
dλ ρ (2)

n (λ) n. (21)

Note that the particle density depends only on the density of
particle 1 and n[ρ]/2 − m[ρ] depends only on the densities
of particle 2. Explicit formulas for the expectation values of
the currents associated to these quantities can be obtained
by generalising to the nested case the expressions found in
Refs. [22,23] and read as

jn[ρ] =
∫ ∞

−∞
dλ v

(1)
1 (λ)ρ (1)

1 (λ), (22)

jm[ρ] = jn[ρ]/2 −
∞∑

n=1

∫ ∞

−∞
dλ v(2)

n (λ)ρ (2)
n (λ) n, (23)

je[ρ] =
∫ ∞

−∞
dk v

(1)
1 (k)ρ (1)

1 (k) (k2 − A) + 2hjm[ρ]. (24)

Here, the velocities of excitations v = {v(1)
1 , v

(2)
n } on the state

characterized by ρ are computed in terms of the root densities.
In particular, they can be obtained by solving the system of
linear integral equations [89]

v
(1)
1 ρ

(1)
1,t (λ) =e′(λ)

2π
+

∞∑
m=1

am � v(2)
m ρ (2)

m (λ), (25)

v(2)
n ρ

(2)
n,t (λ) = an � v

(1)
1 ρ

(1)
1 (λ) −

∞∑
m=1

Anm � v(2)
m ρ (2)

m (λ),

(26)

where we introduced the total root densities

ρ
(r )
n,t (λ) ≡ ρ

(r )
n (λ) + ρ

(r )
n,h(λ). (27)

Expressions similar to (18)–(24) hold for the expectation val-
ues of density and current of each one of the local conserved
charges related to the integrability of the model. For a generic
charge Q, we have

q[ρ] =
∑
r=1,2

sr∑
n=1

∫ ∞

−∞
dk ρ (r )

n (k) q (r )
n (k), (28)

jq[ρ] =
∑
r=1,2

sr∑
n=1

∫ ∞

−∞
dk v(r )

n (λ)ρ (r )
n (k) q (r )

n (k), (29)

where {q (r )
m (λ)} are some known functions (which depend

on Q).
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A. Homogeneous thermal state

Let us consider the system in a homogeneous thermal state

ρ̂th = e−βH

tr[e−βH ]
, (30)

where H is the Hamiltonian (1) and β−1 = T is the tempera-
ture of the state. In this case, in the thermodynamic limit, one
can adopt a microcanonical description and replace (30) with a
single eigenstate of the Hamiltonian in the expectation values
of local observables. The root densities ρT , corresponding to
this particular eigenstate, are determined by minimizing the
free energy functional [85]

fT,A,h[ρ] = e[ρ] − T sYY [ρ]. (31)

This yields the following set of “thermodynamic Bethe
ansatz” (TBA) equations:

ε
(1)
1,T (λ) = e(λ) − h − T

∞∑
n=1

an � ln
(
1 + e−ε

(2)
n,T /T

)
(λ), (32)

ε
(2)
n,T (λ) = 2nh − T an � ln

(
1 + e−ε

(1)
1,T /T

)
(λ)

+
∞∑

m=1

Anm � ln
(
1 + e−ε

(2)
m,T /T

)
(λ), (33)

where we introduced the thermal dressed energies
ε

(r )
m,T (λ) ≡ T ln(ρ (r )

m,h,T (λ)/ρ (r )
m,T (λ)). We can write the

velocities of the excitations on the thermal state in terms
of these dressed energies:

v
(r )
n,T (λ) = ε

(r )′
n,T (λ)

2πρ
(r )
n,t,T (λ)

, (34)

where the prime denotes the derivative with respect to λ

and ρ
(r )
n,t,T (λ) are the total root densities [cf. Eq. (27)] of the

thermal state. Equation (34) follows from the definition of the
group velocity

v
(r )
n,T (λ) = ∂ε

(r )
n,T (λ)

∂p
(r )
n,T (λ)

, (35)

where p
(r )
n,T (λ) is the dressed momentum of the nth bound state

of the rth species, and the observation

p
(r )′
n,T (λ) = 2πρ

(r )
n,t,T (λ), (36)

see, e.g., Ref. [24]. Note that it is straightforward to see
that (34) is equivalent to the implicit definition given by the
solution to (25) and (26).

III. BIPARTITE SETTING AND GENERALIZD
HYDRODYNAMIC TREATMENT

The goal of this paper is to analyze the time evolution of a
bipartite state of the form

ρ̂0 = 1

Z
e−βL(ĤL−ALN̂L−hLM̂L )

⊗
e−βR (ĤR−ARN̂R−hRM̂R ), (37)

where N̂ and M̂ are, respectively, the operators corresponding
to the number of particles and the magnetization. Here op-
erators with the subscript L and R are defined by restricting

t

TL TR

FIG. 1. Pictorial representation of the quench protocol. After
the sudden junction of the two halves in two thermal states at
temperatures TL and TR a nontrivial light-cone region emerges from
the junction.

the integrals of their density, respectively, to x < 0 and x > 0,
while Z is an appropriate normalization constant.

Using the same dephasing arguments [90] adopted in the
case of homogeneous quantum quenches [91], it is natural to
conjecture that at large enough times the time-evolving state

ρ̂(t ) = e−iH t ρ̂0e
iHt , (38)

can be replaced by a quasistationary state in the expectation
values of local observables [38]. Namely,

tr[ρ̂(t )O(x)] ∼ tr[ρ̂S(x, t )O(0)], (39)

where x is the distance between the position of the local ob-
servable and the junction. Differently from the translationally
invariant case, in the bipartite setting under examination the
state ρ̂S(x, t ) retains some “weak” dependence on x and t .

In systems with a maximal velocity for the propagation of
information vmax, one can rigorously prove that observables
at distance >tvmax(<−tvmax) from the junction are always
described by the right (left) thermal state [38]. This means
that the regions where the state locally looks thermal remain
macroscopically large for every t > 0 and play the role of
effective thermal baths, while a third region emerges around
the junction. This region is where nontrivial transport phe-
nomena can be observed [48,49] (see Fig. 1). This picture does
not strictly hold for nonrelativistic field theories as the Yang-
Gaudin model because there is no bound in the propagation of
signals. In this case, however, an effective maximal velocity is
set by the state (37) as the fastest modes have an exponentially
small occupation (a similar mechanism has been discussed in
Refs. [22,72]). This light cone becomes sharp in the zero-
temperature limit where the role of light-cone velocity is
played by the maximal Fermi velocity.

This picture is generic and is believed to describe the
dynamics from bipartite states in both integrable and nonin-
tegrable systems: the main difference between the two classes
arises when one looks at how the nontrivial region around
the junction scales with time. While for nonintegrable models
one expects a subballistic scaling, for integrable systems, the
scaling is ballistic and the nontrivial region occupies a proper
light cone emanating from the junction [22,23,38].

The ballistic scaling in integrable models is due to the
presence of stable quasiparticle excitations that propagate in-
formation throughout the system with different velocities [89].
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At the leading order in x and t , these quasiparticles can be
assumed to move as free classical particles: the effects of the
interactions are taken into account by letting their velocity
depend on the state. The x and t dependence of expectation
values of local observables can be explained by noting that
varying x and t , the observables “measure” different amounts
of quasiparticles from the two sides. This immediately ex-
plains the ballistic spreading of the light cone: the expectation
value of a local observable moving away from the junction
at fixed velocity v starts to deviate from the thermal value
as soon as it starts to receive quasiparticles coming from the
opposite side. This picture leads to a simple scaling form of
the quasistationary state ρ̂S(x, t ) = ρ̂S(x/t ). In other words,
everything depends only on the scaling variable ζ = x/t ,
which is usually called ray.

At any fixed ray ζ , the state ρ̂S(ζ ) can be characterized
microcanonically in terms of a single set of root densities ρζ ,
which can be thought of as the rapidity distributions of the
quasiparticles in the state. The main result of Refs. [22,23]
was to determine the differential equation fulfilled by these
root densities, which in our case reads as

∂tρ
(r )
n,ζ (λ) + ∂x

(
v

(r )
n,ζ (λ)ρ (r )

n,ζ (λ)
) = 0. (40)

Here, vζ = {v(1)
1,ζ , v

(2)
n,ζ } are the velocities of the quasiparticle

excitations over the state ρζ . Equation (40) is in full agreement
with the quasiparticle picture given above: the rapidity dis-
tributions change because the quasiparticles are moving with
state-dependent velocities vζ .

Introducing the so-called filling functions

ϑ
(r )
n,ζ (λ) = ρ

(r )
n,ζ (λ)

ρ
(r )
n,t,ζ (λ)

, (41)

we can rewrite Eq. (40) as follows:(
ζ − v

(r )
n,ζ (λ)

)
∂ζϑ

(r )
n,ζ (λ) = 0. (42)

This equation is implicitly solved by

ϑ
(r )
n,ζ (λ) = ϑ

(r )
n,TL

(λ)�H

(
v

(r )
n,ζ (λ) − ζ

)
+ϑ

(r )
n,TR

(λ)�H

(
ζ − v

(r )
n,ζ (λ)

)
, (43)

where �H (x) is the step function such that �H (x) is nonzero
and equal to one only if x > 0, while ϑ

(r )
n,T are the filling

functions of a thermal state at temperature T : they are written
in terms of the thermal dressed energies ε

(r )
n,T (λ) [cf. Eqs. (32)

and (33)] as follows:

ϑ
(r )
n,T (λ) = 1

1 + eε
(r )
n,T (λ)/T

. (44)

The solution (43) is implicit because the velocities vζ depend
on ϑζ = {ϑ (1)

1,ζ , ϑ
(2)
m,ζ }, and to determine the filling functions

one normally needs to resort on a numerical solution by
iteration: one starts with an initial guess for the velocities
vζ , finds ϑζ using (43) and then uses Eqs. (12), (13), (25),
and (26) to find the new velocities. As we will see in the
following, an exception is represented by the low-temperature
case, where an explicit analytic solution can be achieved.

Once the filling functions ϑ ζ are known, one can determine
the root densities by solving (12) and (13) and use them
to compute the profiles of conserved charges densities and
currents. In particular, in this paper, we will always con-
sider the profiles of the densities (18)–(20) and the currents
(22)–(24).

IV. PROFILES AT GENERIC TEMPERATURES

Let us start by studying the profiles of the densities and
currents at generic temperatures by numerical evaluation of
the implicit solution (43). Our results are reported in Figs. 2
and 3, where two representative examples are considered.

As it was observed in [24], nonanalyticities in the profiles
are expected at the rays ζ±

n corresponding to the maximal
(minimal) velocity of the n-spin bound states, which are
identified as the solution to the equations

ζ−
n = min

[
vn,ζ−

n
(λ)

]
, (45)

ζ+
n = max

[
vn,ζ+

n
(λ)

]
. (46)

These rays are reported in Figs. 2 and 3 as vertical lines. We
see that these mathematical nonanalyticities are difficult to
observe from our numerical solution. We verified that this
is due to the fact that for the thermal quenches we have
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FIG. 2. Profiles of energy density (left) and current (right) as a function of the ray ζ = x/t at infinite times after a quench from the bipartite
state (37). These plots are obtained by a numerical solution of Eq. (43). The parameters of the Hamiltonian (3) are chosen as c = 1, h = 0.1,
A = 5, while the parameters of the initial state (37) are βL = 0.5, AL = −2, hL = 0.1, and βR = 5, AR = 0, hR = 0.3.
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FIG. 3. Profiles of the density of particles of the first (left) and second species (right), as a function of the ray ζ = x/t at infinite times
after a quench from the bipartite state (37). The parameters of the Hamiltonian (3) are chosen as c = 1, h = 0.1, A = 5, while the parameters
of the initial state (37) are βL = 0.5, AL = −2, hL = 0.1 and βR = 5, AR = 0, hR = 0.3.

considered, the occupation numbers of the second species
are small in correspondence of the modes with the maximal
(minimal) velocity.

Note, instead, that the quasiparticles associated to the
physical rapidities do not have a maximal velocity: as we
already mentioned, it is effectively set by the occupation
numbers of the initial state, which are exponentially vanishing
for large quasimomenta. From Figs. 2 and 3, one can identify
the effective maximum (minimum) velocity of the first species
of quasiparticles in correspondence of the point where the
profiles start to deviate from a constant value.

In general, the profiles are determined by both species
of quasiparticles. This is true for any observable, including,
for instance, the density of the second species displayed in
Fig 3. Indeed, even if the expectation value of the latter only
involves the spin rapidity distribution function, cf. (21), the
Bethe equations (12) and (13) couple the two species, so that
variations of the charge root density bring about a variation of
the spin one. More physically, this means that whenever there
is a finite density of particles of the two species, the way in
which the velocity of one of the species is dressed depends
also on the density of the other species. As a consequence
of this coupling, the profiles of all charges and currents
display the same qualitative structure of those observed in the
XXZ spin-1/2 chain [24], and in fact cannot be distinguished
from those of a model with a single species of quasiparticles
forming bound states. We conclude that no sign of the nested
structure of the system emerges in this setting.

V. PROFILES AT LOW TEMPERATURES

Let us now move our attention to the case where the tem-
peratures TL and TR are very small and show that in this case
some signatures of spin-charge separation can be observed.
We develop a low temperature expansion of the profiles by
generalizing to the multiple species case the treatment put
forward in Ref. [92] for the XXZ spin-1/2 chain.

To warm up, let us consider the low temperature expansion
of the (constant) profiles in the homogeneous case, namely
when TR = TL ≡ T . This helps developing some concepts

and strategies that are directly applied to the inhomogeneous
case. The calculations in the low-temperature regimes, will
always be performed for initial states (37) with AL = hL =
AR = hR = 0 [while the parameters A and h of the driving
Hamiltonian (1) are left arbitrary].

A. Low-temperature expansion in the homogeneous system

We start by summarizing Takahashi’s procedure to obtain
the leading order in the low temperature description of the
model [93], obtaining the ground-state expectation values in
Eqs. (18)–(24). The ground-state root densities and velocities
are found by taking the zero-temperature limit of (12), (13),
(32), (33), (25), and (26). The limit is taken by starting from
the equations (32) and (33), which determine the thermal
dressed energies. Noting that the dressed energies of the
bound states ε

(2)
n�2,0(λ) are always positive (see Appendix A 1),

we can write the zero-temperature limit as follows [93]:

ε
(1)
1,0(λ) = λ2 − h − A + a1 ∗ ε

(2)
1,0(λ)

∣∣
2, (47)

ε
(2)
1,0(λ) = 2h + a1 ∗ ε

(1)
1,0(λ)

∣∣
1 − a2 ∗ ε

(2)
1,0(λ)

∣∣
2, (48)

where we introduced the notation

f ∗ g(λ)|r ≡
∫ B (r )

−B (r )
dμf (λ − μ)g(μ). (49)

In writing (47) and (48), we used that ε
(r )
1,0(λ) are monotonic

functions of λ2 (see Fig. 4 for an illustration and Appendix
of Ref. [93] for a proof). The intervals [−B (r ), B (r )] are the
intervals in which ε

(r )
1,0(λ) are negative. In other words, the

rapidities B (r ) are the “Fermi rapidities” bounding the Fermi
sea at zero temperature.

These equations can be used to determine the ground state
phase diagram of the system, which we report in Fig. 5. The
main features of the diagram are as follows. At zero magnetic
field B (2) = ∞ and the magnetization is zero. Increasing the
magnetic field B (2) becomes finite and the magnetization
increases. There is a critical magnetic field hcrit (A) above
which B (2) = 0 and the ground state becomes fully polarized.
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and A = 2. The values B (1) and B (2), corresponding to the Fermi
rapidities, are highlighted with vertical dotted lines. The pseudoen-
ergies are monotonous in λ2.

Since ε
(2)
1,0(λ) has its global minimum in zero, this critical field

is found by imposing ε
(2)
1,0(0) = 0, which yields

0 = 2hcrit + 1

2π

[
2c

√
A + hcrit − (4A + c2 + 4hcrit )

× arctan

(
2
√

A + hcrit

c

)]
. (50)

The critical line hcrit (A) implicitly defined here is shown in
the phase diagram of Fig. 5.

Let us now take the zero-temperature limit of (12), (13),
(25), and (26), which determine the root densities and the

-8
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FIG. 5. Ground-state phase diagram of the repulsive Yang-
Gaudin model. The critical line between the partially and fully
polarized phase is given by (50).

velocities of excitations. The zero-temperature limit of (12)
and (13) reads as

ρ
(1)
1,t,0(λ) = 1

2π
+ a1 ∗ ρ

(2)
1,t,0(λ)

∣∣
2, (51)

ρ
(2)
1,t,0(λ) = a1 � ρ

(1)
1,t,0(λ)

∣∣
1 − a2 ∗ ρ

(2)
1,t,0(λ)

∣∣
2. (52)

To obtain the system (51) and (52), we used

ρ
(r )
n,T (λ) = ρ

(r )
n,t,T (λ)

1 + eε
(r )
n,T (λ)/T

. (53)

This implies that in the zero-temperature limit only the root
densities for n = 1 are not vanishing. In particular they are
nonzero only in the intervals [−B (r ), B (r )], where ρ

(r )
1,0(λ) =

ρ
(r )
1,t,0(λ). Proceeding analogously, we find the following ex-

pression for the zero-temperature limit of (25) and (26):

ρ
(1)
1,t,0v

(1)
1,0(λ) = λ

π
+ a1 ∗ ρ

(2)
1,t,0v

(2)
1,0(λ)

∣∣
1, (54)

ρ
(2)
1,t,0v

(2)
1,0(λ) = a1 ∗ ρ

(1)
1,t,0v

(1)
1,0(λ)

∣∣
1 − a2 ∗ ρ

(2)
1,t,0v

(2)
1,0(λ)

∣∣
2.

(55)

Note that the above equations imply ρ
(r )
1,t,0(−λ) = ρ

(r )
1,t,0(λ)

while v
(r )
1,0(−λ) = −v

(r )
1,0(λ).

The ground-state expectation values are found plugging
the solutions of (51)–(55) into (18)–(24). In particular, one
immediately finds that the expectation values of the currents
(22)–(24) are zero because the integrand is odd in λ. This can
be immediately understood using reflection symmetry: even
charges have odd currents and their thermal expectation value
is always zero because the Hamiltonian is even. Since we are
taking the limit T → 0 after the thermodynamic limit this
property continues to hold in the limit.

Let us now determine the first finite-T correction to those
values. We start by introducing the short-hand notation

δf (λ) = f (λ) − f0(λ), (56)

to denote the difference between a quantity and its ground
state value. At small but finite temperature, the modes with
ε

(n)
m,0(λ) > 0 are still exponentially suppressed. Therefore we

can describe the state using the thermal dressed energies
ε

(r )
1,T (λ): the bound states of the particles of the second species

can be neglected from the integral equations. Following
Refs. [92,94], we find the leading finite-T corrections by
writing a linear system of integral equations for δε

(n)
1,T (λ). The

derivation is reported in Appendix A, while the result reads as

δε
(1)
1,T (λ) = π2T 2

6 ε
(2)′
1,0 (B (2) )

U (1)(λ) + O(T 4), (57)

δε
(2)
1,T (λ) = π2T 2

6 ε
(2)′
1,0 (B (2) )

U (2)(λ) + O(T 4), (58)

where the functions U (r )(λ) satisfy

U (1)(λ) = d
(1)
U (λ) + a1 ∗ U (2)(λ)

∣∣
2, (59)

U (2)(λ) = d
(2)
U (λ) + a1 ∗ U (1)(λ)

∣∣
1 − a2 ∗ U (2)(λ)

∣∣
2. (60)
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The driving functions appearing here can be written in the
following convenient form:

d
(1)
U (λ) = a1 ∗ z

(2)
U (λ)

∣∣
2, (61)

d
(2)
U (λ) = a1 ∗ z

(1)
U (λ)

∣∣
1 − a2 ∗ z

(2)
U (λ)

∣∣
2, (62)

where we introduced

z
(r )
U (λ) =

∑
σ=±

z
(r )
U,σ (λ), (63)

and finally

z
(r )
U,σ (λ) ≡ z(r )(C (r )

U,σ ,D
(r )
U,σ , λ)

= C
(r )
U,σ δ(λ − σB (r )−) + D

(r )
U,σ δ′(λ − σB (r )−). (64)

Here, δ(x) and δ′(x) are, respectively, the Dirac delta
and its first derivative, B (r )− = B (r )e−ε for infinitesimal
ε > 0, and the constants are given by C

(2)
U,σ = −1, C

(1)
U,σ =

ε
(2)′
1,0 (B (2) )/ε(1)′

1,0 (B (1) ), and D
(r )
U,σ = 0.

Let us now sketch how to find the correction to the total
root densities, while we refer to Appendix A for the full
derivation. Neglecting the contribution of bound states, we can
rewrite (12) and(13) on a thermal state as follows:

ρ
(1)
1,t,T (λ) = 1

2π
+ a1 � ϑ

(2)
1,T ρ

(2)
1,t,T (λ), (65)

ρ
(2)
1,t,T (λ) = a1 � ϑ

(1)
1,T ρ

(1)
1,t,T (λ) − a2 � ϑ

(2)
1,T ρ

(2)
1,t,T (λ). (66)

These equations feature many Sommerfeld-like integrals of
the form ∫ ∞

−∞
dλ ϑ

(r )
1,T (λ)f (λ) (67)

with appropriate functions f (λ). The expansion of such in-
tegrals is carried out in Appendix A of Ref. [92] [there the
expansion is carried out in the gapless phase of the XXZ spin-
1/2 chain but it applies to all TBA-solvable models where
ε

(r )
1,0(λ) has two symmetric zeros] and reads as

I
(r )
f =

∫ B (r )

−B (r )
dλ

[
1 + π2T 2

6
z

(r )
I (λ)

]
f (λ) + O(T 4), (68)

where z
(r )
I (λ) is of the form (63) and (64) with the coefficients

D
(r )
I,σ = −σ(

ε
(r )′
1,0 (B (r ) )

)2 , (69)

C
(2)
I,σ

D
(2)
I,+

=
[

ε
(2)′′
1,0 (B (2) )

ε
(2)′
1,0 (B (2) )

+ U (2)(B (2) )

]
, (70)

C
(1)
I,σ

D
(1)
I,+

=
[

ε
(1)′′
1,0 (B (1) )

ε
(1)′
1,0 (B (1) )

+ Ũ (1)(B (1) )

]
, (71)

where we introduced

Ũ (1)(B (1) ) = U (1)(B (1) )
ε

(1)′
0 (B (1) )

ε
(2)′
0 (B (2) )

. (72)

Using this expression we can turn (65) and (66) into a set of
linear integral equations for the corrections to the total root
densities. At the leading order in T , we find

δρ
(1)
1,t,T (λ) = π2T 2

6
R(1)(λ) + O(T 4), (73)

δρ
(2)
1,t,T (λ) = π2T 2

6
R(2)(λ) + O(T 4), (74)

where R(r )(λ) fulfill the system (59) and (60) with drivings
d

(r )
R (λ). The drivings are given by (61) and (62), where

z
(r )
U (λ) is replaced by z

(r )
R,I (λ) of the form (63) and (64) and

coefficients

D
(r )
R,σ = −σ

ρ
(r )
1,t,0(B (r ) )(

ε
(r )′
1,0 (B (r ) )

)2 , (75)

C
(2)
R,σ

D
(2)
R,−

=
[

ρ
(2)′
1,0 (B (2) )

ρ
(2)
1,t,0(B (2) )

− ε
(2)′′
1,0 (B (2) )

ε
(2)′
1,0 (B (2) )

− U (2)(B (2) )

]
, (76)

C
(1)
R,σ

D
(1)
R,−

=
[

ρ
(1)′
1,0 (B (1) )

ρ
(1)
1,t,0(B (1) )

− ε
(1)′′
1,0 (B (1) )

ε
(1)′
1,0 (B (1) )

− Ũ (1)(B (1) )

]
. (77)

Similarly, we obtain the following expression for the correc-
tions to the velocities:

δρ
(1)
1,t,T v

(1)
1,T (λ) = πT 2

6
W (1)(λ) + O(T 4), (78)

δρ
(2)
1,t,T v

(2)
1,T (λ) = πT 2

6
W (2)(λ) + O(T 4). (79)

The functions W (r )(λ) fulfill the system (59) and (60) with
drivings d

(r )
W (λ) again given by (61) and (62). This time the

function z
(r )
U (λ) is replaced by z

(r )
W,I (λ) of the form (63) and

(64) and coefficients

D
(r )
W,σ = −1

ε
(r )′
1,0 (B (r ) )

, (80)

C
(2)
W,σ

D
(2)
W,−

= σU (2)(B (2) ), (81)

C
(1)
W,σ

D
(1)
W,−

= σŨ (1)(B (2) ). (82)

We see that the driving functions d
(r )
W (λ) are odd, implying

that also the functions W (r )(λ) are odd.
Using these expressions we can finally write the first non-

trivial corrections to the densities (18)–(20) at finite temper-
ature. In particular, let us consider the first finite-temperature
correction to the energy density

δe =
∫ ∞

−∞
dλ

[
δρ

(1)
1,T (λ) e(λ) + 2h

∞∑
n=1

δρ
(2)
n,T (λ)n

]

=
∫ ∞

−∞
dλ

[
δρ

(1)
1,T (λ) e(λ) + 2hδρ

(2)
1,T (λ)

]
, (83)

where in the second step we neglected exponentially small
corrections in 1/T . Using the expansion (68) and the
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expressions (73) and (74) we have

δe = π2T 2

6

∫ ∞

−∞
dλ

(
R(1)(λ) + z

(1)
R,I (λ)

) · e(λ)

+ π2T 2

6

∫ ∞

−∞
dλ

(
R(2)(λ) + z

(2)
R,I (λ)

) · 2h

= π2T 2

6

∑
r=1,2

∑
σ=±

{
C

(r )
R,σ ε

(r )
1,0(σB (r ) ) − D

(r )
R,σ ε

(r )′
1,0 (σB (r ) )

}

= π2T 2

3

∑
r=1,2

ρ
(r )
1,t,0(B (r ) )

ε
(r )′
1,0 (B (r ) )

= πT 2

6

∑
r=1,2

1

v
(r )
1,0(B (r ) )

. (84)

Here in in the second step, we used the identity∑
r=1,2

∫ ∞

−∞
dλ

(
R(r )(λ) + z

(r )
R,I (λ)

)
q (r )(λ)

=
∑
r=1,2

∑
σ=±

{
C

(r )
R,σ f (r )

q (σB (r ) ) − D
(r )
R,σ f (r )′

q (σB (r ) )
}
,

(85)

where the functions f (r )
q (λ) fulfill

f (1)
q (λ) = q (1)(λ) + a1 ∗ f (2)

q (λ)
∣∣
2, (86)

f (2)
q (λ) = q (2)(λ) + a1 ∗ f (1)

q (λ)
∣∣
1 − a2 ∗ f (2)

q (λ)
∣∣
2. (87)

The identity (85) is proven by inverting the integral system for
R(r )(λ), see Appendix A for the detailed proof. In the third
step of (84), we noted that, for q (1)(λ) = e(λ) and q (2)(λ) =
h, Eqs. (86) and (87) coincide with (47) and (48), namely,
f (r )

q (λ) = ε
(r )
1,0(λ). In the last step, we used the definition (34)

of the velocities.
The finite temperature correction (84) agrees with that of

two independent conformal field theories (CFTs) [95,96] with
central charge equal to one and velocity of light respectively
equal to v

(1)
1,0(B (1) ) and v

(2)
1,0(B (2) ): the “Fermi velocities” of the

two components. This is in accordance with the well-known
fact that the low energy description of (1) is in terms of two
decoupled CFTs.

Before concluding our analysis of the homogeneous case
we note that one can repeat this calculation for the other
densities (18) and (19) finding an analogous result: finite
temperature corrections proportional to T 2 and written as a
sum of the spin and charge component. We also note that the
corrections to the currents are all zero, because W (r )(λ) and
d

(r )
W (λ) are both odd. This is again in accordance with the fact

that the expectation values of the currents vanish in a thermal
state.

B. Low-temperature expansion in the inhomogeneous system

Let us now move to consider the inhomogeneous case.
More precisely, we take TL ≡ T , TR ≡ rT and expand for
small T (with AR = hR = 0, AL = hL = 0). At the lowest
order, we again find that all the relevant quantities attain
their ground-state value. To find the first finite temperature
corrections, we use the form of the implicit solution (43). Both
terms in (43) are multiplied by a filling function ϑ

(r )
1,T of a

homogeneous thermal state. We can then use the reasoning

above and conclude that all bound states of the spin rapidities
can be neglected, as they give exponentially small corrections
in T . We are then left to consider reduced systems of integral
equations as (65) and (66) for ρ

(r )
1,t,ζ (the same system, with a

different driving, is found for v
(r )
1,ζ ρ

(r )
1,t,ζ ). In order to find the

leading low-temperature contribution to this system, we need
to expand integrals of the form

I
(r )
ζ,f =

∫ ∞

−∞
dλ ϑ

(r )
1,ζ (λ)f (r )(λ), (88)

for some appropriate functions f (r )(λ). The expansion of (88)
up to O(T 3) is thoroughly carried out in Appendix A of
Ref. [92]; below we discuss the main features. As a function
of ζ , two different regions appear where the integral behaves
very differently. For rays O(T 0) far from the lightcones of
both particle species, i.e., when

lim
T →0

∣∣ζ − v
(r )
1,0(B (r ) )

∣∣ �= 0, (89)

the expansion reads as

I
(r )
ζ,f =

∫ B (r )

−B (r )
dλ f (r )(λ)

[
1 + π2T 2

6
z

(r )
I,ζ (λ)

]
, (90)

where we neglected O(T 4) and introduced

z
(r )
I,ζ (λ) = z

(r )
I (λ)�H

[−v
(r )
1,0(B (r ) ) − ζ

]
+ (

r2z
(r )
I,−(λ) + z

(r )
I,+(λ)

)
�H

[
v

(r )
1,0(B (r ) ) − |ζ |]

+ r2z
(r )
I (λ)�H

[
ζ − v

(r )
1,0(B (r ) )

]
. (91)

The functions z
(r )
I and z

(r )
I,± are, respectively, of the form

(63) and (64) and are specified by the coefficients (69)–(71).
In other words, far away from the light cones, the O(T 2)
correction to the integral is piecewise constant, consisting of
three plateaux. In the region

ζ ± v
(r )
1,0(B (r ) ) ∼ O(T ), (92)

we instead have

I
(r )
ζ,f =

∫ B (r )

−B (r )
dλ f (r )(λ)

[
1 + π2T (1 − r2)

6
z

(r )
II (λ, ζ )

]
, (93)

where we neglected O(T 2) and introduced the function

z
(r )
II (λ, ζ ) =

∑
σ=±

z
(r )
II,σ (λ)Dr

[
ζ − σv

(r )
1,0(B (r ) )

v
(r )
1,0(B (r ) )T |m(r )

∗ |−1

]
. (94)

In this equation we introduced the effective mass

m(r )
∗ = ∂2ε

(r ) ′
1,0 (λ)

∂p
(r )
1,T (λ)2

∣∣∣∣
λ=B (r )

= ε
(r ) ′
1,0 (B (r ) )v(r )

1,0(B (r ) )

v
(r ) ′
1,0 (B (r ) )

, (95)

where p
(r )
n,T (λ) is the dressed momentum (36), and the function

Dr[z] ≡ 6 ln(1 + ez)

π2(1 − r2)
− 6r ln(1 + ez/r)

π2(1 − r2)
. (96)

This function is positive and peaked around z = 0, in particu-
lar, we have

lim
T →0+

1

T
Dr[z/T ] = δ(z). (97)
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Finally, we also introduced the functions z
(r )
II,σ (λ), which are of the form (64) with coefficients C

(r )
II,σ = σ sgn(v0 ′

1 (B (r ) )/ε′
1(B (r ) )

and D
(r )
II,σ = 0.

We see that in the region (92) the first correction to the integral (88) is O(T ). As a function of ζ it has a peaked form described
by the function Dr[z].

Using the expansions (90) and (93) it is possible to write linear equations for the first-order corrections to ρ
(r )
1,t,ζ and

ρ
(r )
1,t,ζ v

(r )
1,ζ (λ) as we did in the previous section for the homogeneous case. Proceeding as in (84), these expressions can be used to

find the first correction to the profiles of local observables. Since the procedure is very similar to the one outlined in the previous
section, we omit it here (it is reported for completeness in Appendix B). In the region (89) the result up to O(T 2) reads as

δq(r, ζ ) = π2T 2

6

{
2∑

r=1

ν (r )(r, ζ )
∑
σ=±

[
C

(r )
R,σ f (r )

q (σB (r ) ) − D
(r )
R,σ f (r )′

q (σB (r ) )
]}

, (98)

δjq (r, ζ ) = π2T 2

6

{
2∑

r=1

ω(r )(r, ζ )
∑
σ=±

[
C

(r )
W,σ f (r )

q (σB (r ) ) − D
(r )
W,σ f (r )′

q (σB (r ) )
]}

, (99)

where ν (r )(r, ζ ) and ω(r )(r, ζ ) are piecewise constant functions,

ν (r )(r, ζ ) ≡ 1 + r2 − 1

2

[
�H

[
ζ + v

(r )
1,0(B (r ) )

] + �H

[
ζ − v

(r )
1,0(B (r ) )

]]
, (100)

ω(r )(r, ζ ) ≡ 1 − r2

2
�H

[
v

(r )
1,0(B (r ) ) − |ζ |], (101)

and f (r )
q (λ) is defined via the integral equations (86) and (87). The coefficients C

(r )
R,σ ,D

(r )
R,σ , C

(r )
W,σ ,D

(r )
W,σ are defined in (75)–(77)

and (80)–(82). Note that the charge density expression (98) is similar to the homogeneous case (84)–(85), the only difference
being the appearance of the profile function ν (r )(r, ζ ).

In the region (92), instead, the profiles up to O(T ) read as

q(r, ζ ) =
2∑

r=1

∑
σ=±

σ
πT sgn

(
v

(r ) ′
1,0 (B (r ) )

)
12v

(r )
1,0(B (r ) )

(1 − r2)fq (B (r ) )Dr

[
ζ − σv

(r )
1,0(B (r ) )

v
(r )
1,0(B (r ) )T |m(r )

∗ |−1

]
, (102)

jq (r, ζ ) =
2∑

r=1

∑
σ=±

πT sgn
(
v

(r ) ′
1,0 (B (r ) )

)
12

(1 − r2)fq (B (r ) )Dr

[
ζ − σv

(r )
1,0(B (r ) )

v
(r )
1,0(B (r ) )T |m(r )

∗ |−1

]
, (103)

where Dr[z] is defined in (96). These results hold for the pro-
file of any reflection symmetric charge density and the relative
current, namely, for conserved charges Q characterized by
bare charges q (r )

n (λ) [cf. Eqs. (28) and (29)], which are even
functions of λ.

The form of the profiles (98), (99) and (102), (103) can be
reproduced by considering two decoupled nonlinear Luttinger
liquids in the spirit of Ref. [97]. In particular, in the region
(89), the structure is that given by two decoupled linear
Luttinger liquids, namely, two decoupled CFTs. The profiles
are piecewise constant functions of ζ , and change value every
time that the absolute value of the ray equals one of the
two Fermi velocities v

(r )
1,0(B (r ) ). This generically results in a

five step form, as it can be seen from Figs. 6 and 7. In the
following, we discuss our results displayed in these figures.

Let us first focus on the important profiles of the energy
density and current. In this case, we have f (r )

q (λ) = ε
(r )
1,0(λ), so

that f (r )
q (B (r ) ) = ε

(r )
1,0(B (r ) ) = 0. Plugging this in (98), (99),

(102), and (103), we see that the leading contribution to the
profiles comes only from the region (89) and reads as

e(ζ, r) = e0 + πT 2

6

2∑
r=1

ν (r )(r, ζ )

v
(r )
1,0(B (r ) )

, (104)

je(ζ, r) = πT 2

6

2∑
r=1

ω(r )(r, ζ ). (105)

This result is compared with the numerical solution of the
generalized hydrodynamic equations in the left panels of
Figs. 6 and 7. It is of interest to write down explicitly these
functions for ζ = 0, which corresponds to the celebrated
nonequilibrium steady state (NESS)

e(0, r) − e0 = π
(
T 2

L + T 2
R

)
12

2∑
r=1

1

v
(r )
1,0(B (r ) )

, (106)

je(0, r) = π
(
T 2

L − T 2
R

)
6

. (107)

We note that the dependence on the temperatures of the two
halves is the one expected from the CFT analysis of the
bipartition protocol [48,75]: the results correspond to the sum
of two CFTs with central charge equal to 1. This is, of course,
consistent with the description in terms of two decoupled
Luttinger liquids.

Next, we compare these profiles with those of other generic
observables, focusing in particular on the quasiparticle density
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n
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)

ζ

FIG. 6. Profiles of energy (left) and particle (right) densities as a function of the ray ζ = x/t at infinite times after a quench from the
bipartite state (37). Full lines are obtained as a numerical solution of Eq. (43) while dashed lines are the result of the analytical low-temperature
expansion (104) and (105). The parameters of the Hamiltonian are set to c = 1, h = 0.5, and A = 2, while those of the initial state (37) are
βL = 25 and βR = 50 (with AR = hR = 0, AL = hL = 0).

and current. These are displayed in the right panels of Figs. 6
and 7, and immediately show visible qualitative differences.
Indeed, in the transition region between two plateaux, the
nonlinearity of the dispersion relations (quantified by 1/m(r ))
becomes relevant [97]: the profiles have a peaked form deter-
mined by the function Dr[z]. Note that the width of the peak
around ζ = v

(r )
1,0(B (r ) ) depends on the species r . This form of

the profiles was first described in [97] for a single Luttinger
liquid, where it was shown to be a remarkable example of
universality beyond the linear Luttinger approximation [7].
The calculations presented in this work give a nontrivial test of
the validity of this prediction in the case of interacting nested
systems.

The peculiar structure of the profiles described above, five-
steps with peaks in correspondence of the transitions, gives
an indication of a spin-charge separation. Indeed, observing
profiles with this structure one can argue that they are pro-
duced by two decoupled nonlinear Luttinger liquids. Note,
however, that the local observables couple the two theories:
it is impossible to find an observable sensitive to a single
Luttinger liquid only. This means that one cannot determine

the physical content of the two separated degrees of freedom
and distinguish them by looking at the profiles: the signature
of spin-charge separation that one can obtain from the profiles
is only an indirect one. Still these are qualitatively different
from the profiles that one would obtain in the low-temperature
regime of non-nested systems, such as the XXZ Heisenberg
chain [92,97], and highlight that the model has two species of
quasiparticles.

VI. CONCLUSIONS

We have considered the transport properties of a one-
dimensional spinful Fermi gas, after junction of two semi-
infinite subsystems held at different temperatures. We have
analyzed quantitatively the space-time profiles of local ob-
servables emerging at large distances x from the junction
and times t , as a function of ζ = x/t . By employing the
generalized hydrodynamic approach, we have shown how an
indirect signature of spin-charge separation emerges in the
transport properties of the model at low temperatures. In this
regime, profiles are qualitatively different from those that can

0

0.0002

0.0004

0.0006

−4 −3 −2 −1 0 1 2 3 4
0

0.001

0.002

−4 −3 −2 −1 0 1 2 3 4

J
e
(ζ

)

ζ

J
n

(ζ
)

ζ

FIG. 7. Profiles of energy (left) and particle (right) currents as a function of the ray ζ = x/t at infinite times after a quench from the
bipartite state (37). Full lines are obtained as a numerical solution of Eq. (43) while dashed lines are the result of the analytical low-temperature
expansion (104) and (105). The parameters of the Hamiltonian are set to c = 1, h = 0.5, and A = 2, while those of the initial state (37) are
βL = 25 and βR = 50 (with AR = hR = 0, AL = hL = 0).
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be obtained in non-nested systems, and a description in terms
of two decoupled Luttinger liquids can be employed, yielding
exact results in the limit T → 0. Among other results, we have
seen how the universal predictions of Ref. [97] are recovered
analytically from the generalized hydrodynamic equations.
The calculations presented in this work generalized to nested
systems those of Ref. [92], and together provide a compre-
hensive analysis of low-temperature transport properties in
nonrelativistic integrable systems.
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APPENDIX A: LOW-TEMPERATURE EXPANSION
OF THE HOMOGENEOUS TBA

In this Appendix, we derive of the formulas of the homo-
geneous low-temperature expansion appearing in Sec. V A.

1. The absence of bound states

In the low-temperature limit, the bound states of the sec-
ond species are absent. These states have a strictly positive
pseudoenergy ε(2)

n (λ), and therefore their occupation numbers

ϑ
(2)
n,T (λ) = 1

1 + e−ε
(2)
n,T /T

(n � 2) (A1)

are exponentially suppressed.
The positivity of the pseudoenergies ε

(2)
n,T (λ) is seen from

the decoupled version [85] (Chap. 12) of the TBA equations

(32) and (33):

ε
(1)
1,T = (λ2 − A) − T

[
r � ln

(
1 + e−ε

(1)
1,T /T

)
− s � ln

(
1 + eε

(2)
1,T /T

)]
, (A2)

ε
(2)
1,T = T

[
s � ln

(
1 + eε

(2)
2,T /T

1 + e−ε
(1)
1,T /T

)]
, (A3)

ε
(2)
n�2,T = T

[
s � ln

((
1 + eε

(2)
n−1,T /T )(1 + eε

(2)
n+1,T /T

))]
, (A4)

lim
n→∞

ln ε
(2)
n,T

n
= 2h

T
, (A5)

where

s(x) ≡ 1

2c
sech

(πx

c

)
, r (x) = a1 � s(x). (A6)

Equation (A4) shows that the pseudoenergies of the
bound states are always positive. Indeed, both s(x) and
ln(1 + eε

(2)
n,T (x)/T ) are strictly positive functions.

2. Expansion of the pseudoenergy

In the following, we present the derivation of the expan-
sions (57) and (58) of the pseudoenergies. We start from the
TBA equations (32) and (33):

ε
(1)
1,T (λ) = e(λ) − h − T

∞∑
m=1

am � ln
(
1 + e−ε

(2)
m,T /T

)
(λ),

ε
(2)
n,T (λ) = 2nh − T an � ln

(
1 + e−ε

(1)
1,T /T

)
(λ)

+ T

∞∑
m=1

Anm � ln
(
1 + e−ε

(2)
m,T /T

)
(λ). (A7)

Since the pseudoenergy of the bound states is always positive
[see (A4)], the n � 2 terms of the sums are exponentially sup-
pressed at small temperatures. After subtracting the ground-
state equations (47) and (48), we have

δε
(1)
1,T (λ) = −T a1 � ln

(
1 + e−ε

(2)
1,T /T

)
(λ) −

∫ B (2)

−B (2)
dμ a1(λ − μ)ε(2)

1,0(μ) + O(e−A1/T ), (A8)

δε
(2)
1,T (λ) = − T a1 � ln

(
1 + e−ε

(1)
1,T /T

)
(λ) −

∫ B (1)

−B (1)
dμ a1(λ − μ)ε(1)

1,0(μ) + T a2 � ln
(
1 + e−ε

(2)
1,T /T

)
(λ)

+
∫ B (2)

−B (2)
dμ a2(λ − μ)ε(2)

1,0(μ) + O(e−A2/T ), (A9)

with some α(r ) > 0. Now we plug in the relation
ln(1 + e−f (λ) ) = −f −(λ) + ln(1 + e−|f (λ)|), (A10)

where
f ±(λ) = (f (λ) ± |f (λ)|)/2, (A11)

obtaining

δε
(1)
1,T (λ) = −

∫ B (2)

−B (2)
dμ a1(λ − μ)δε(2)

1,T (μ) −
∫ −B (2)

−B (2)′
dμ a1(λ − μ)ε(2)

1,T (μ) −
∫ B (2)′

B (2)
dμ a1(λ − μ)ε(2)

1,T (μ)

+ T

∫ ∞

−∞
dμ a1(λ − μ) ln

(
1 + e−|ε(2)

1,T (μ)|/T
) + O(e−A1/T ), (A12)
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δε
(2)
1,T (λ) = −

∫ B (1)

−B (1)
dμ a1(λ − μ)δε(1)

1,T (μ) −
∫ −B (1)

−B (1)′
dμ a1(λ − μ)ε(1)

1,T (μ) −
∫ B (1)′

B (1)
dμ a1(λ − μ)ε(1)

1,T (μ)

+ T

∫ ∞

−∞
dμ a1(λ − μ) ln

(
1 + e−|ε(1)

1,T (μ)|/T
) +

∫ B (2)

−B (2)
dμ a2(λ − μ)δε(2)

1,T (μ) +
∫ −B (2)

−B (2)′
dμ a2(λ − μ)ε(2)

1,T (μ)

+
∫ B (2)′

B (2)
dμ a2(λ − μ)ε(2)

1,T (μ) − T

∫ ∞

−∞
dμ a2(λ − μ) ln

(
1 + e−|ε(2)

1,T (μ)|/T
) + O(e−A2/T ), (A13)

where B (r )′ is defined by

ε
(r )
1,T (B (r )′) = 0. (A14)

Here we assume that ε
(r )
1,T (λ) remain even and have two zeros, similarly to ε

(r )
1,0(λ) (see Fig. 4). However, the locations of the

zeros are shifted from the Fermi rapidities ±B (r ) to ±B (r )′.
Let us now analyze the terms in the RHS of (A12). The first term does not explicitly depend on T . The second and third terms

will be shown later to be O(T 4). Hence (A12) is dominated by the fourth term, which can be expanded as∫ ∞

−∞
dμ a1(λ − μ) ln

(
1 + e−|ε(2) (μ)|/T

) = T

|ε′(B (2)′)|
∑
σ=±

a1(λ − σB (2)′)
∫ ∞

0
dx ln(1 + e−x ) + O(T 2)

= T π2

6|ε′(B (2) )|
∑
σ=±

a1(λ − σB (2) ) + O(T 2). (A15)

In this expansion, we used that |B (2) − B (2)′| changes smoothly in the vicinity of T = 0. After plugging (A15) into (A12), we
obtain

δε
(1)
1,T (λ) = πT 2

6
∣∣ε(2)

1,T (B (2) )
∣∣

∑
σ=±

a1(λ − σB (2) ) −
∫ B (2)

−B (2)
dμ a1(λ − μ)δε(2)

1,T (μ) + o(T 2), (A16)

where o(T 2) is such that

lim
T →0

o(T 2)

T 2
= 0. (A17)

By repeating the above procedure for δε
(2)
1,T , we obtain

δε
(2)
1,T (λ) = πT 2

6|ε(1)
1,T (B (1) )|

∑
σ=±

a1(λ − σB (1) ) −
∫ B (1)

−B (1)
dμ a1(λ − μ)δε(1)

1,T (μ)

− πT 2

6
∣∣ε(2)

1,T (B (2) )
∣∣

∑
σ=±

a2(λ − σB (2) ) +
∫ B (2)

−B (2)
dμ a2(λ − μ)δε(2)

1,T (μ) + o(T 2), (A18)

where we used that the second, third, sixth, and seventh terms on the RHS of (A13) are O(T 4). The equations (A16)–(A18) are
identical to the system (57)–(64) of the main text.

Let us now prove that the second and third terms in the right-hand side (r.h.s.) of (A12) and the second, third, sixth, and
seventh terms on the RHS of (A13) are O(T 4). By expanding these terms for B (r )′ ∼ B (r ) and using ε

(r )
1,0(B (r ) ) = 0, we have

−
∫ −B (2)

−B (2)′
dμ a1(λ − μ)ε(2)

1,T (μ) −
∫ B (2)′

B (2)
dμ a1(λ − μ)ε(2)

1,T (μ) = O((B (2)′ − B (2) )2), (A19)

−
∫ −B (1)

−B (1)′
dμ a1(λ − μ)ε(1)

1,T (μ) −
∫ B (1)′

B (1)
dμ a1(λ − μ)ε(1)

1,T (μ) = O((B (1)′ − B (1) )2), (A20)

∫ −B (2)

−B (2)′
dμ a2(λ − μ)ε(2)

1,T (μ) +
∫ B (2)′

B (2)
dμ a2(λ − μ)ε(2)

1,T (μ) = O((B (2)′ − B (2) )2). (A21)

We now assume that

B (r )′ − B (r ) = O(T αr ) αr > 0. (A22)
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Let us prove that αr > 0 by reductio ad absurdum. Suppose that 0 < α2 � 1. Then, using (A12), we have

δε
(1)
1,T (λ) = T 2α2F (1)(λ) + O(T 2), (A23)

for some F (1)(λ) independent of T . If we then take δε
(1)
1,T (B (1)′) and expand around λ = B (1), we get

δε
(1)
1,T (B (1)′) = −ε

(1)′
1,T (B (1) )(B (1)′ − B (1) ) + O((B (1)′ − B (1) )2) = T 2α2F (1)(λ) + O(T 2). (A24)

So we conclude α1 = 2α2. Using now (A13), we have

δε
(2)
1,T (λ) = T 2α2F (2)(λ) + O(T 4α2 ). (A25)

Expanding δε
(2)
1,T (B (2)′) for B (2)′ around λ = B (2), we then get

δε
(2)
1,T (B (2)′) = −ε

(2)′
1,T (B (2) )(B (2)′ − B (2) ) + O((B (2)′ − B (2) )2) = T 2α2F (2)(λ) + O(T 4α2 ). (A26)

This is, however, not compatible with the hypothesis because it would require ε
(2)′
1,0 (B (2) ) = 0. So we must have α2 > 1, implying

that Eq. (A16) holds. This in turn implies that α1 > 1, indeed by expanding δε
(1)
1,T (B (1)′) for B (1)′ around λ = B (1), we have

δε
(1)
1,T (B (1)′) = −ε

(1)′
1,T (B (1) )(B (1)′ − B (1) ) + O((B (1)′ − B (1) )2) = O(T 2). (A27)

Since αr > 1 for r = 1, 2 we have that Eqs. (A16) hold (A18) hold. Expanding then δε
(r )
1,T (B (r )′) for B (r )′ around λ = B (r ), we

have

B (r )′ − B (r ) = − π2T 2

6ε
(r )′
1,0 (B (r ) )2

U (r )(B (r ) ) + o(T 2), (A28)

where the functions U (r )(x) are defined in the main text [cf. Eqs. (59) and (60)]. This proves that (A19)–(A21) are O(T 4).

3. Expansion of the particle density and velocity

Now we show how the low-temperature corrections (73), (74), (78), and (79) are derived for the particle density ρ
(r )
n,T (λ) and

the particle velocity v
(r )
n,T (λ). This derivation is based the expansion (67) and (68) of the integral

I
(r )
f =

∫ ∞

−∞
dλ ϑ

(r )
1,T (λ)f (λ), (A29)

which is reported in Ref. [92]. In explicit notation, the expansion reads as

I
(r )
f =

∫ B (r )

−B (r )
dλf (λ) + π2T 2

6
(
ε

(r )′
1,0 (B (2) )

)2

[
f ′(B (r ) ) − f ′(−B (r ) ) −

(
ε

(r )′′
1,0 (B (r ) )

ε(r )′(B (r ) )
+ U (B (r ) )

)
(f (B (r ) ) + f (−B (r ) ))

]
, (A30)

where we neglected subleading contributions.
Now, considering (65) and (66) and separating the ground-state root densities ρ

(r )
1,t,0 from the corrections δρ

(r )
1,t , we have

ρ
(1)
1,t,0(λ) + δρ

(1)
1,t (λ) = 1

2π
+ a1 � ϑ

(2)
1,T ρ

(2)
1,t,0(λ) + a1 � ϑ

(2)
1,T δρ

(2)
1,t (λ), (A31)

ρ
(2)
1,t,0(λ) + δρ

(2)
1,t (λ) = a1 � ϑ

(1)
1,T ρ

(1)
1,t,0(λ) + a1 � ϑ

(1)
1,T δρ

(1)
1,t (λ) − a2 � ϑ

(2)
1,T ρ

(2)
1,t,0(λ) − a2 � ϑ

(2)
1,T δρ

(2)
1,t (λ). (A32)

Applying now (A30) to the convolutions and retaining corrections up to O(T 2), we have

ar � ϑ
(s)
1,T δρ

(s)
1,t (λ) = ar ∗ δρ

(s)
1,t (λ)

∣∣
s
, (A33)

ar � ϑ
(s)
1,T ρ

(s)
1,t,0(λ) = ar ∗ ρ

(s)
1,t,0(λ)

∣∣
s
+ π2T 2

6
ar ∗ z

(s)
U (λ)

∣∣∣∣
s

, r, s = 1, 2, (A34)

where we used the definition (49) for the ground-state convolution and the function z
(s)
U (λ) is of the form (63) with the coefficients

(75)–(77). Plugging into (A31) and (A32) the expressions (A34) for the convolutions and subtracting the ground state equations
(51) and (52), we finally obtain (73) and (74).

The low-temperature expansion for the excitation velocities is obtained in a similar manner. One has to remove the
exponentially suppressed bound state terms from the system (25) and (26), obtaining

v
(1)
1,T ρ

(1)
1,t,T (λ) = e′(λ)

2π
+ a1 � ϑ

(2)
1,T v

(2)
1,T ρ

(2)
1,t,T (λ), (A35)
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v
(2)
1,T ρ

(2)
1,t,T (λ) = a1 � ϑ

(1)
1,T v

(1)
1,T ρ

(1)
1,t,T (λ) − a2 � ϑ

(2)
1,T v

(2)
1,T ρ

(2)
1,t,T (λ). (A36)

Then by applying (A30) to the convolutions we find (78) and (79).

4. The first correction to the energy

In this Appendix, we derive the identity (85)–(87), which is necessary to derive the low temperature correction to the energy
density, δe (84). First, it is necessary to introduce a vectorial notation for the sake of compactness. To a function w(r )(λ), we
associate the vector w, whose components are

[w]r,λ = w(r )(λ). (A37)

Operators K̂ acting on these vectors are defined as

[K̂ w]r,λ =
2∑

s=1

∫ B (s)

−B (s)
dμKrs (λ − μ)w(s)(μ). (A38)

In this notation, the low-temperature BGT equations (65) and (66) read

ρt = dρ − Âϑ̂ρt, (A39)

where

ρt =
[
ρ

(1)
1,t,T (λ)

ρ
(2)
1,t,T (λ)

]
, [ϑ̂] =

[
ϑ

(1)
1 (λ − μ) 0

0 ϑ
(2)
1 (λ − μ)

]
· δ(λ − μ), (A40)

dρ =
[ 1

2π

0

]
, [Â] =

[
0 −a1(λ − μ)

−a1(λ − μ) a2(λ − μ)

]
. (A41)

In the same notation, the first correction to the densities (73) and (74) reads

δρt,T = π2T 2

6
R, R = dR − ÂR, (A42)

where

δρt,T =
[
δρ

(1)
1,t,T (λ)

δρ
(2)
1,t,T (λ)

]
, dR = −ÂzR,I , zR,I =

⎡
⎣z

(1)
R,I (λ)

z
(2)
R,I (λ)

⎤
⎦. (A43)

The functions z
(r )
R,I (λ) are given by the coefficients (75)–(77).

To prove the identity (85)–(87), we start from the left-hand side of (85),

2∑
r=1

∫ ∞

−∞
dλ

(
R(r )(λ) + z

(r )
R,I (λ)

)
q (r )(λ). (A44)

Using the vector notation and (A42) and (A43), this correction can be written as the scalar product

q · (−(1̂ + Â)−1ÂzR,I + zR,I ) = q · (1̂ + Â)−1zR,I , (A45)

where the scalar product is defined as

a · b =
2∑

r=1

∫ B (r )

−B (r )
dλ a(r )(λ)b(r )(λ). (A46)

Since Â is symmetric, we can write (A45) as

((1̂ + Â)−1q ) · zR,I ≡ fq · zR,I , fq = q − Âfq. (A47)

Writing this result in the standard TBA notation yields exactly the identity (85)–(87).
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APPENDIX B: LOW-TEMPERATURE EXPANSION OF THE DENSITY AND CURRENT PROFILES

In this Appendix, we show the derivation of the low temperature expansions (98), (99), and (102), and (103) of the charge
and current density profiles after a bipartite quench. In other words, we will evaluate

q(r, ζ ) =
∑
r=1,2

∫ ∞

−∞
dλρ

(r )
1,t,ζ (λ)ϑ (r )

1,ζ (λ)q (r )(λ), (B1)

j (r, ζ ) =
∑
r=1,2

∫ ∞

−∞
dλρ

(r )
1,t,ζ (λ)ϑ (r )

1,ζ (λ)v(r )
1,ζ (λ)q (r )(λ), (B2)

at low temperatures. In (B1) and (B2), we have already used the fact that bound states are exponentially suppressed at small
enough temperatures.

The basis of the evaluation of (B1)–(B2) is the expansion (89)–(93), carried out in detail in Ref. [92]. This expansion has two
cases according to whether the ray ζ is close to one of the light cones ±v

(r )
1,0(B (r ) ) or not. We treat these two cases separately.

Our computations below are valid up to O(T 2).

1. The case limT→0 |ζ − v
(r )
1,0(B(r ) )| �= 0

Far away from the light cones, one can use the low temperature expansion (90). First we compute the correction to the charge
density

δq(r, ζ ) =
∑
r=1,2

∫ ∞

−∞
dλρ

(r )
1,t,ζ (λ)ϑ (r )

1,ζ (λ)q (r )(λ) −
∑
r=1,2

∫ B (r )

−B (r )
dλρ

(r )
1,t,0(λ)q (r )(λ). (B3)

The vectorial form of the O(T 2) expansion (90) is

Iζ,f = f · j + πT 2

6
f · zI,ζ , (B4)

where

Iζ,f =
[
I

(1)
ζ,f

I
(2)
ζ,f

]
, f =

[
f (1)

f (2)

]
, j =

[
1
1

]
, zI,ζ =

[
z

(r )
I,ζ

z
(r )
I,ζ

]
. (B5)

Using expansion (B4) on the BGT equations (65) and (66) yields

δρt,ζ = π2T 2

6
Rζ , Rζ = dR,ζ − ÂRζ , (B6)

where

δρt,ζ =
[
δρ

(1)
1,t,ζ (λ)

δρ
(2)
1,t,ζ (λ)

]
, dR,ζ = −ÂzR,I,ζ , zR,I,ζ =

[
z

(1)
R,I,ζ (λ)

z
(2)
R,I,ζ (λ)

]
, (B7)

and the symbol δ denotes difference from the ground state value, i.e.,

δρ1,t,ζ = ρ1,t,ζ − ρ1,t,0. (B8)

The function z
(r )
R,I,ζ (λ) is

z
(r )
R,I,ζ (λ) = z

(r )
R,I (λ)�H

[−v
(r )
1,0(B (r ) ) − ζ

] + (
r2z

(r )
R,I,−(λ) + z

(r )
R,I,+(λ)

)
�H

[
v

(r )
1,0(B (r ) ) − |ζ |] + r2z

(r )
R,I (λ)�H

[
ζ − v

(r )
1,0(B (r ) )

]
,

(B9)

with z
(r )
R,I (λ) and z

(r )
R,I,±(λ) given by the coefficients (75)–(77).

Plugging (B6) in (B3) and using the expansion (B4), we get

δq(r, ζ ) = π2T 2

6
q · (−(1̂ + Â)−1ÂzR,I,ζ + zR,I,ζ ) = π2T 2

6
q · ((1̂ + Â)−1zR,I,ζ ). (B10)

Since Â is symmetric, we can write (B10) as

δq(r, ζ ) = π2T 2

6
((1̂ + Â)−1q ) · zR,I,ζ ≡ π2T 2

6
fq · zR,I,ζ , fq = q − Âfq. (B11)

This is exactly (98) in vectorial notation, which is valid up to O(T 2). We note that the above expansion is analogous to the
homogeneous case shown in Appendix A 4. The only difference is the dependence of the vector zR,I,ζ on ζ .
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In the case of the charge current density δj (r, ζ ), the logic of the derivation is the same. We have

δj (r, ζ ) =
∑
r=1,2

∫ ∞

−∞
dλρ

(r )
1,t,ζ (λ)ϑ (r )

1,ζ (λ)v(r )
1,ζ (λ)q (r )(λ) −

∑
r=1,2

∫ ∞

−∞
dλρ

(r )
1,t,0(λ)v(r )

1,ζ (λ)q (r )(λ). (B12)

In vectorial notation, Eqs. (A35) and (A36) for the velocities become

wζ = dw − Âϑ̂ζ wζ , (B13)

with

wζ =
[
ρ

(1)
1,t,ζ (λ)v(1)

1,ζ (λ)

ρ
(2)
1,t,ζ (λ)v(2)

1,ζ (λ)

]
, dw =

[
λ/(2π )

0

]
. (B14)

Using the expansion (B4) on (B13) yields

δwζ = πT 2

6
Wζ , Wζ = dW,ζ − ÂWζ , (B15)

where

dW,ζ = ÂzW,I,ζ , zW,I,ζ =
[
z

(1)
W,I,ζ (λ)

z
(2)
W,I,ζ (λ)

]
. (B16)

The functions z
(r )
W,I,ζ (λ) are given by

z
(r )
W,I,ζ (λ) = z

(r )
W,I (λ)�H

[−v
(r )
1,0(B (r ) ) − ζ

] + (
r2z

(r )
W,I,−(λ) + z

(r )
W,I,+(λ)

)
�H

[
v

(r )
1,0(B (r ) ) − |ζ |] + r2z

(r )
W,I (λ)�H

[
ζ − v

(r )
1,0(B (r ) )

]
,

(B17)

with z
(r )
W,I (λ) and z

(r )
W,I,±(λ) given by the coefficients (80)–(82).

Plugging (B15) into (B12) and using the expansion (B4), we get

δj (r, ζ ) = π2T 2

6
q · (−(1̂ + Â)−1ÂzW,I,ζ + zW,I,ζ ) = π2T 2

6
q · ((1̂ + Â)−1zW,I,ζ ). (B18)

Since Â is symmetric, we can write (B10) as

δj (r, ζ ) = πT 2

6
((1̂ + Â)−1q ) · zW,I,ζ ≡ π2T 2

6
fq · zW,I,ζ , fq = q − Âfq. (B19)

This is exactly (99) in vectorial notation, which is valid up to O(T 2).

2. The case ζ ± v
(r )
1,0(B(r ) ) ∼ O(T )

Close to the light cones, we use the expansion (93) instead of (90) but otherwise the procedure is the same as in the far-from-
lightcone case of Appendix B 1. We can get the final results by replacing zR,I,ζ and zW,I,ζ with zII,ζ in Eqs. (B11) and (B19).
The final result is

δq(r, ζ ) = π2T (1 − r2)

6
((1̂ + Â)−1q ) · zII,ζ ≡ π2T (1 − r2)

6
fq · zII,ζ , fq = q − Âfq, (B20)

δj (r, ζ ) = π2T (1 − r2)

6
((1̂ + Â)−1q ) · zII,ζ ≡ π2T (1 − r2)

6
fq · zII,ζ , fq = q − Âfq. (B21)

These are exactly (102) and (103) in vectorial notation, valid up to O(T ).
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