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Two-level system coupled to phonons: Full analytical solution
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We propose an analytical procedure to fully solve a two-level system coupled to phonons. Instead of using the
common formulation in terms of linear and quadratic system-phonon couplings, we introduce different phonons
depending on the system electronic level. We use this approach to recover known results for the linear-coupling
limit in a simple way. More importantly, we derive results for the quadratic coupling induced by a phonon
frequency change, a problem considered up to now as not analytically solvable.
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Coupling between a system and its environment is of
primordial importance in science and emerging technologies,
but its description at the microscopic level is extremely com-
plicated [1–7]. Any consistent study of a quantum system calls
for an open description which includes the large, often poorly
known environment that interacts with it.

A paradigmatic example of open systems is the “spin
boson” model [2,8], that describes a two-level system coupled
to a vibrational environment. In its simpler version, known as
the “independent boson” model [9], the system excited level
is suddenly populated or depopulated through its coupling to
a photon field. While very simple, this model is not trivial and
already allows studying a variety of phenomena that include
spectral line shapes [9], electron transfer [10,11], electron-
phonon interaction in quantum dots [12,13], and quantum
control [1,14–22].

The independent boson model fundamentally deals with
the consequences of electronic excitations that induce a spatial
shift in the vibrational modes [23–25], and in some materials
like aromatic hydrocarbons, a frequency change [26–32].
Instead of using the physically relevant phonons that depend
on the occupied level of the electronic system, i.e., a diagonal
representation, the common approach to this problem resorts
to only using ground phonons—the vibrations physically rel-
evant when the system is in its ground level—even when the
system is in its excited level. This off-diagonal representation
gives rise to a linear coupling associated with the atom (or
molecule) spatial shift and a quadratic coupling associated
with the phonon frequency change. These couplings are then
commonly eliminated using a polaron transformation [9].
Since then and until now, a plethora of studies follows this
polaron procedure to address a diversity of problems, includ-
ing “open systems,” which presently is a very active field.

Although the polaron transformation can formally
eliminate both linear and quadratic couplings, it involves
calculations so tedious that to date, analytical results have
been found for the linear limit only. This representation leads
to the idea that after its sudden excitation, the electronic
system is dressed by a cloud of ground phonons, whereas our

treatment suggests interpreting the vibrations as dependent
on the system excitation.

Approaches relying on cumulant expansion and diagram-
matic Green’s functions have also been used to study the
broadening of the zero-phonon line when the quadratic
coupling is included. However, these results were obtained
through a weak-coupling expansion [33–36], through a long-
time expansion [37–41], or numerically [32].

In this paper, we propose a totally different procedure that
relies on level-dependent phonons: the ground phonons and
the excited phonons that describe the vibrational environment
when the electronic system is, respectively, in its ground
and excited level. Compelling evidence demonstrating the
strength of this alternative approach is that (i) all the results for
the linear limit become easy to derive, and more importantly,
(ii) the same straightforward algebras make possible the
handling of the quadratic coupling induced by a phonon
frequency difference, a configuration considered up to now as
not analytically solvable.

The hidden difficulty incurred by considering different
phonon frequencies comes from the fact that the destruction of
an excited phonon not only corresponds to the destruction but
also the creation of a ground phonon, making the phonon sub-
space associated with the excited level infinitely large when
written in terms of ground phonons. We will show that this dif-
ficulty is simply accounted for in the excited-phonon vacuum.

The two relevant phonon bases. We consider a two-level
system coupled to phonons, which for simplicity are taken
as one-dimensional harmonic oscillators. When the electronic
system is in its ground level |g〉 with energy εg , the Hamilto-
nian reads in first quantization as

Hg =
(

εg + p2
x

2m
+ mω2

g

2
x2

)
|g〉〈g|, (1)

where m and ωg are the mass and frequency of the oscillator.
By introducing the ground-phonon destruction operator

bg =
√

mωg

2h̄

(
x̂ + i

p̂x

mωg

)
, (2)
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that fulfills [bg, b
†
g] = 1, we obtain the well-known second-

quantization form

Hg = [εg + h̄ωg (b†gbg + 1/2)]a†
gag, (3)

with a
†
g|v〉 = |g〉 where |v〉 is the electronic system vacuum.

The Hamiltonian eigenset reads

|ψg,p〉 = |g〉 ⊗ |pg〉, Eg,p = εg + h̄ωg (p + 1/2), (4)

where |pg〉 = (1/
√

p!) b
†p
g |0g〉 contains 〈pg|b†gbg|pg〉 = p

ground phonons, the state |0g〉 being the ground-phonon vac-
uum defined as bg|0g〉 = 0.

When the system is in its excited level |e〉 with energy
εe, the Hamiltonian is the same, except for a spatial shift
l related to the dipolar nature of the excited level, and a
possibly different frequency, which, as shown below, induces
a quadratic coupling mostly neglected in the absence of a
known procedure to handle it,

He =
[
εe + p2

x

2m
+ mω2

e

2
(x − l)2

]
|e〉〈e|. (5)

The relevant “excited-phonon” operator then reads

be =
√

mωe

2h̄

[
(x̂ − l) + i

p̂x

mωe

]
, (6)

that also fulfills [be, b
†
e] = 1. This gives the He Hamiltonian

in second quantization as

He = [εe + h̄ωe(b†ebe + 1/2)]a†
eae, (7)

with a
†
e |v〉 = |e〉, its eigenset being

|ψe,p〉 = |e〉 ⊗ |pe〉, Ee,p = εe + h̄ωe(p + 1/2), (8)

where |pe〉 = (1/
√

p!) b
†p
e |0e〉 contains 〈pe|b†ebe|pe〉 = p

excited phonons provided that |0e〉 is the excited-phonon
vacuum defined as be|0e〉 = 0.

Equations (2) and (6) that relate (x̂, p̂x ) to (bg, be ) give the
link between these operators as

γ+bg + γ−b†g = be + �e, (9a)

γ+be − γ−b†e = bg − �g, (9b)

where the dimensionless prefactors are

γ± = 1

2

(√
ωe

ωg

±
√

ωg

ωe

)
, �e,g = l

√
m ωe,g

2h̄
. (10)

When the two frequencies (ωg, ωe) are equal, γ+ reduces to
one, γ− to zero, and �g = �e.

Equation (9) allows switching back and forth from ground
and excited phonons, depending on which basis is more
convenient to perform calculation.

The usual independent-boson Hamiltonian. By noting that
in a two-level system, |g〉〈g| + |e〉〈e| is the identity operator,
we can rewrite Hg + He as

H = (εg|g〉〈g| + ε′
e|e〉〈e|) +

(
p2

x

2m
+ mω2

g

2
x2

)

−
(

mω2
e lx + m

ω2
g − ω2

e

2
x2

)
|e〉〈e|, (11)

with ε′
e = εe + mω2

e l
2/2 = εe + h̄ωe�

2
e . As, from Eq. (2), x̂

is proportional to (bg + b
†
g ), the above Hamiltonian reads in

terms of ground-phonon operators as

H = He + Hg = εga
†
gag + ε′

ea
†
eae + h̄ωg (b†gbg + 1/2)

− h̄ωe[λ1(bg + b†g ) + λ2(bg + b†g )2]a†
eae , (12)

the “coupling” constants being given by λ1 = �e

√
ωe/ωg and

λ2 = (ω2
g − ω2

e )/4ωeωg , which cancels for ωg = ωe.
The usual procedure starting from the Hamiltonian (12)

is to follow Huang and Rhys [42] and use the “polaron”
transformation eSHe−S with S = −a

†
eae (b†g − bg )λ1 in the

case of “linear” coupling, that is, λ2 = 0 and λ1 = �g =
�e ≡ �. The excited-level eigenstate then appears as [15]

∣∣� (pol)
e,p

〉 = ea
†
eae (b†g−bg )λ1

b
†p
g√
p!

a†
e |v〉 ⊗ |0g〉, (13)

the physical meaning of this state being hard to catch.
This state simply is |e〉 ⊗ |pe〉 given in Eq. (8). To
show it, we first split e(b†g−bg )λ1 as e−�2/2e�b

†
g e−�bg and

note that e−�bg b
†p
g e�bg = (b†g − �)p = b

†p
e , which leads to

|� (pol)
e,p 〉 = |e〉 ⊗ e−�2/2 b

†p
e√
p!

e�b
†
g |0g〉. To end the identification,

we write the excited-phonon vacuum |0e〉 in terms of ground-
phonon states. From its definition, be|0e〉 = 0, we get |0e〉 =∑

p
�p√
p!

up|pg〉 through a recursion relation up+1 − up = 0
that for 〈0e|0e〉 = 1 yields

|0e〉 = u0

∞∑
p=0

�p

√
p!

|pg〉 = e�b
†
g

e�2/2
|0g〉, (14)

from which it is easy to see that |� (pol)
e,p 〉 is indeed equal to

|e〉 ⊗ |pe〉.
The above excited-phonon vacuum |0e〉 has some inter-

esting insights: It is made of states having an arbitrarily
large number of ground phonons. Yet, the number of ground
phonons it contains is finite,

〈0e|b†gbg|0e〉 = �2, (15)

which directly follows from Eq. (9b). So, the square of the
interaction parameter λ1, known as the Huang-Rhys’s fac-
tor, just corresponds to the ground-phonon number in the
excited-phonon vacuum. The ground-phonon vacuum energy,
〈0e|h̄ωb

†
gbg|0e〉 = h̄ω�2, is commonly known as the “reorga-

nization energy,” and often added to the exited level through a
modified energy ε′

e as in Eq. (12).
Effect of spatial shift. Let us first focus on linear coupling,

ωe = ωg ≡ ω, and study the time evolution of the initial state
|e〉 ⊗ |pg〉, obtained from a sudden photon absorption in the
ground-level eigenstate |ψp,g〉 = |g〉 ⊗ |pg〉, namely

|φe,p;t 〉 = e− i
h̄
Het |e〉 ⊗ |pg〉 = e− i

h̄
εet |e〉 ⊗ |pg;t 〉 (16)

with |pg;t 〉 = e−iωt (b†ebe+1/2)|pg〉.
The best way to perform calculations is to switch back and

forth from ground phonons to excited phonons using Eq. (9),
and to use be−iωtb†b = e−iωt (b†b+1)b, valid for b = (bg, be )
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since [be, b
†
e] = 1 = [bg, b

†
g]. This leads to

bge
−iωtb

†
ebe = e−iωt (b†ebe+1)(bg−�t ), (17)

the time-dependent linear coupling being

�t = �(1 − eiωt ). (18)

This readily gives the number of ground phonons in the |φe,p;t 〉
state as

〈pg;t |b†gbg|pg;t 〉 = p + |�t |2 = p + 4�2 sin2(ωt/2). (19)

It oscillates between its initial value, p, and p + 4�2. By
contrast, the number of excited phonons in this state stays
constant, 〈pg;t |b†ebe|pg;t 〉 = p + �2, making the Hamiltonian
mean value of the |φe,p;t 〉 state, 〈φe,p;t |He|φe,p;t 〉, constant and
equal to εe + h̄ω(p + �2 + 1/2), in spite of the oscillation of
the ground-phonon number. This is an additional supportive
point that ground phonons have no physical relevance when
the electronic system is in its excited level.

Another important quantity is the time-dependent correla-
tion function for spectral line shape. For a two-level system
in a phonon bath at thermal equilibrium with the system
ground state, the absorption line shape obtained from the
Fermi golden rule follows from

Gg;t =
∞∑

p=0

e−βh̄ωp

Z
Gg,p;t , (20)

where T = 1/kBβ is the temperature and Z = ∑
p e−βh̄ωp =

(1 − e−βh̄ω )−1 is the phonon partition function. Gg,p;t

is the correlation function associated with the transi-
tion dipole moment μ = a

†
eag + H.c., namely Gg,p;t =

〈ψg,p|μt μ0|ψg,p〉 with μt = e
i
h̄
H tμe− i

h̄
H t . By separating the

electronic part from the phonon part, Gg,p;t reduces to
e−it�eg eiωt (p+1/2)〈pg|pg;t 〉, the frequency �eg corresponding
to the electronic transition, (εe − εg )/h̄. We get the overlap
through 〈pg|pg;t 〉 ≡ e−iωt (p+1/2)Tp, with

Tp = 〈pg|e−iωt (b†ebe−p)|pg〉. (21)

This quantity, equal to 1 for be = bg , fulfills

0 = pTp − (2p − 1 − |�t |2)Tp−1 + (p − 1)Tp−2, (22)

which is the recursion relation for Laguerre polynomials. So,
Tp = T0Lp(|�t |2), with T0 = e−��∗

t obtained from dT0/dt .
All this yields

〈pg|pg;t 〉 = e−��∗
t e−iωt (p+1/2)Lp(|�t |2). (23)

The thermal average in (20) is easy to perform by using∑∞
p=0 zpLp(x) = e−zx/(1−z)/(1 − z). This readily gives the

established result in terms of the average phonon number
p̄ = ∑

p pe−βh̄ωp = (eβh̄ω − 1)−1, namely

Gg;t = e−i�eg t e−��∗
t (1−e−βh̄ω )

∞∑
p=0

e−βh̄ωpLp(|�t |2)

= e−i�eg t e−��∗
t e−p̄|�t |2 , (24)

as derived in far heavier ways using a combination of po-
laron transformation, Green’s function, and Feynman’s dis-
entanglement [9], or a combination of interaction picture,

cumulant expansion, and Wick’s theorem [24]. The absorption
spectrum then follows from A(w) = 2Re(

∫ ∞
0 dt eiwtGg;t ), its

zero-temperature amplitude at the pole �eg + nω being the
Poisson distribution 2π�2ne−�2

/n!. When the excited state
is at thermal equilibrium with the phonon bath, the emission
spectrum can be likewise obtained.

Spatial shift and frequency change. Ground and excited
phonons prove even more useful for different phonon frequen-
cies, ωg 
= ωe, that is, when the quadratic term is present in
Eq. (12). In this case, it is still possible to find analytical
expressions for the quantities considered in the linear limit,
by using the same commutation procedure. To catch the
consequences of different phonon frequencies, we here only
give new expressions of some relevant quantities, with a few
hints on how to obtain them. Detailed derivations will be given
in an extended version. Some consequences of having a spatial
shift, a frequency change, or both are visualized in Fig. 1.

When ωe 
= ωg , that is, γ− 
= 0, the operator bg given in
Eq. (9b) not only destroys but also creates an excited phonon.
Compared to Eq. (15), this leads to an increase of the number
of ground phonons in the excited-phonon vacuum,

〈0e|b†gbg|0e〉 = �2
g + γ 2

− . (25)

This also transforms Eq. (17) into

bge
−iωetb

†
ebe = e−iωet (b

†
ebe+1)(D̃′

t bg + Q̃′
t b

†
g−�̃′

t ), (26)

with D̃′
t = γ 2

+ − γ 2
− e2iωet , Q̃′

t = γ+γ− (1 − e2iωet ), and �̃′
t =

�e(γ+ − γ−e2iωet ) − �ge
iωet . The existence of two time-

dependent terms, eiωet and e2iωet , instead of eiωt only in the
linear limit [see Eq. (18)], brings two oscillatory terms in
the time evolution of the ground-phonon number, which now
reads

〈pg;t |b†gbg|pg;t 〉 = p|D̃′
t |2 + (p + 1)|Q̃′

t |2 + |�̃′
t |2

= p+4�2
g sin2 ωet

2
+ω2

e−ω2
g

ωeωg

×
[
�2

e+(2p+1)
ω2

e−ω2
g

4ωeωg

]
sin2 ωet. (27)

The quadratic coupling adds a faster oscillation to the time
evolution of the ground-phonon number, with an amplitude
that depends on the phonon number p. This faster oscillation,
which disappears when ωe = ωg in agreement with Eq. (19),
still exists for zero spatial shift, l = 0, that is, in the absence
of linear coupling, �e = �g = 0.

The correlation function for the spectral line shapes re-
quires the knowledge of Tp defined in Eq. (21) with ω taken
equal to ωe. The fact that the operator bg not only destroys
but also creates an excited phonon brings a recursion relation
between four Tp’s, instead of three as in Eq. (22). For Tp ≡
D̃

′p
t T̃p, this recursion relation reads

0 = a0 pT̃p − [(p − 1)a1 + b1]T̃p−1

+ [(p − 2)a2 + b2]T̃p−2 − [(p − 3)a3 + b3]T̃p−3 (28)

for p � 3 while for p = (1, 2), it reduces to its first two
and three terms, respectively. In the linear limit, this equation
reduces to the difference of the recursion relations (22) for Tp
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(a) (b) (c)

FIG. 1. Comparison between three phonon configurations sketched on the left, from top to bottom: (i) Linear coupling (ωg = ωe, l 
= 0),
(ii) quadratic coupling (ωe 
= ωg, l = 0), and (iii) both (ωe 
= ωg, l 
= 0). We show (a) the time evolution of |〈pg|pg;t 〉|2 given in Eqs. (23)
and (31) when the initial state is the ground-phonon vacuum, p = 0; (b) the correlation function |Gg;t |2 given in Eqs. (24) and (34), for
βh̄ωe = 1; and (c) the absorption spectrum A(w) given in Eq. (35) for T = 0, the delta functions being taken as Gaussians for representation
purpose. (i) Blue curves: Linear coupling only (ωg = ωe ≡ ω and 1 = �g = �e ≡ �); (ii) black curves: quadratic coupling only (ωe = 2ωg

and 0 = �g = �e ); (iii) red curves: both couplings (ωe = 2ωg and 1 = �g = �e/
√

2).

and Tp−1; so, we do recover the “linear-coupling” result, but
in a nontrivial way.

To solve the above recursion relation (28) beyond the
linear limit, we introduce the generating function K̃ (x) =∑∞

p=0 xpT̃p. It obeys a first-order differential equation

0 = (a0−a1x+a2x
2−a3x

3)
dK̃ (x)

dx

+ (−b1+b2x−b3x
2)K̃ (x), (29)

the solution of which reads, by using the explicit (ai, bi )
values, as

K̃ (x) = T̃0

√
1 − Q̃2

t

(x−1)2 − Q̃2
t

exp

( −x �̃2
t /D̃t

(x − 1 + Q̃t )(1 − Q̃t )

)

(30)

with Q̃t = e−iωet Q̃′
t and similarly for (D̃t , �̃t ).

To get Tp, we must extract the xp coefficient of K̃ (x). We
do it by rewriting K̃ (x) as a product of two functions that are
easy to expand in powers of x. After some algebra, we end
with

〈pg|pg;t 〉 = T̃0 e−iωet/2

(
D̃t

1 + Q̃t

)p p∑
k=0

(
1 + Q̃t

1 − Q̃t

)k

×L
− 1

2
p−k (0)L

− 1
2

k

( −�̃2
t

D̃t (1 − Q̃t )

)
, (31)

with T̃0 given by

T̃0 = (γ 2
+ − γ 2

− e−2iωet )−1/2 exp

(
−�g�e

1 − e−iωet

γ+ − γ−e−iωet

)
.

(32)

This result reduces to Eq. (23) in the linear limit: Indeed, Q̃t =
0 and −�̃2

t /D̃t = |�t |2 while the sum in Eq. (31) follows
from the addition formula of Laguerre polynomials [43], i.e.,∑p

k=0 L
− 1

2
p−k (0)L

− 1
2

p (|�t |2) = Lp(|�t |2).
Consequences of spatial shift and frequency change.

Figure 1(a) shows |〈pg|pg;t 〉|2 for the three relevant coupling
configurations, namely, a spatial shift l 
= 0, a frequency

change ωg 
= ωe, and both, when the initial state is the ground-
phonon vacuum. We see that the likelihood that the phonon
number state remains in the initial state is much smaller when
l 
= 0 than when l = 0, that is, when the linear coupling
vanishes. Mathematically, this is due to the fact that when
�e = �g = 0, the exponential factor in T̃0 reduces to 1. We
also find that for finite �g,e’s, the likelihood for the phonon
state to remain in its initial state is smaller when ωg 
= ωe than
when ωg = ωe, that is, when the quadratic coupling vanishes.
These observations are born out by the changing distribution
of the absorption spectra, shown in Fig. 1(c).

With 〈pg|pg;t 〉 known, it becomes possible to derive the
correlation function for the absorption line shape when the
phonon bath is at thermal equilibrium, as defined in Eq. (20)
with ω taken as ωg . It reads

Gg;t = 1

Zg

e−i�eg t ei(ωg−ωe ) t
2

∞∑
p=0

(e−βh̄ωg+iωgt D̃t )
pT̃p, (33)

where Zg is the partition function calculated with ωg . This
quantity can be conveniently written in terms of the generating
function K̃ (x) given in Eq. (30), as

Gg;t = 1

Zg

e−i�eg t ei(ωg−ωe )t/2

× K̃ (e−βh̄ωg (γ 2
+ ei(ωg−ωe )t − γ 2

− ei(ωg+ωe )t )). (34)

For γ− = 0, it reduces to the linear limit, Eq. (24), while
for zero temperature, Gg;t reduces to e−i�eg t ei(ωg−ωe )t/2T̃0. By
writing T̃0 in terms of Hermite polynomials Hn(x) through the
Mehler formula, we can get the absorption spectrum at T = 0
as illustrated in Fig. 1(c) and given by

A(w) = 2π

γ+
e
− �e�g

γ+

∞∑
n=0

1

n!

(
− γ−

2γ+

)n[
Hn

(
�g√−2γ+γ−

)]2

× δ

(
w − �eg − ωe − ωg

2
− nωe

)
. (35)

The above results (34) and (35), together with Eqs. (31)
and (32), are analytical expressions that include both “linear”
and quadratic couplings for a two-level system coupled to
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phonons. The correlation function Gg;t is shown in Fig. 1(b):
Compared to the overlap 〈pg|pg;t 〉, a change in periodicity
occurs when ωg 
= ωe, due to the additional oscillatory terms
ei(ωg−ωe )t and ei(ωg+ωe )t appearing in Eq. (34). The difference
in the phonon frequencies also modifies the position and am-
plitude of the energy poles in the absorption spectrum. Even
at T = 0, the zero-point energy difference shifts the spectrum
compared to linear coupling [see Fig. 1(c)]. Increasing the
temperature will add more energy poles to the spectrum as
more ground-phonon Fock states come into play.

Conclusion. We propose a conceptually different approach
to the independent boson model. It relies on a diagonal
representation using two sets of phonons physically relevant
for the problem, namely, ground phonons and excited phonons
that depend on the level occupied in the electronic system.
By capturing the essence of the problem, this representa-
tion removes couplings in a natural way from the very first

line, without the need of any transformation. It considerably
simplifies the resolution of the problem, by solely relying
on commutation relations between the two types of phonon
operators. Besides recovering the known results in a simple
way, we are able to go further in the model complexity by
solving the problem for different phonon frequencies, that is,
quadratic coupling, and to study its intricate consequences
on the time dependence of the correlation functions for all
coupling configurations. While the independent boson model
is the simplest model to study electron-phonon interactions,
we anticipate that the physical approach presented here can
allow for simpler resolutions of more complex problems,
starting with the spin boson model.
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