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We study the bulk and edge properties of a driven Kitaev chain, where the driving is performed as
instantaneous quenches of the on-site energies. We identify three periodic driving regimes: low period, which
is equivalent to a static model, with renormalized parameters obtained from the Baker-Campbell-Hausdorff
(BCH) expansion; intermediate period, where the first order BCH expansion breaks down; and high period
when the quasienergy gap at ω/2 closes. We investigate the dynamical localization properties for the case
of quasiperiodic potential driving as a function of its amplitude and the pairing strength, obtaining regimes
with extended, critical, and localized bulk states, if the driving is performed at high frequencies. In these we
characterize wave-packet propagation, obtaining ballistic, subdiffusive, and absence of spreading, respectively.
In the intermediate period regime, we find an additional region in the phase diagram with a mobility edge between
critical and localized states. Furthermore, we investigate the stability of these phases under time aperiodicity on
the drivings, observing that the system eventually thermalizes: It results in featureless random states which can
be described by the symmetry of the Hamiltonian. In a system with open edges, we find that both Majorana and
fermionic localized edge modes can be engineered with a spatially quasiperiodic potential, in similarity with the
case of homogeneous on-site energies. Besides, we demonstrate the possibility of creating multiple Majorana
0 and π modes in a driven setting, even if the underlying static Hamiltonian is in its trivial phase. Lastly, we
study the robustness of the Majorana modes against the aperiodicity in the driving period, showing that the ones
created via quasiperiodic potential are more robust to the decoherence. Moreover, we find an example where a
Majorana mode displays high robustness, provided that it is chosen from a special point in the topological region.
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I. INTRODUCTION

The important role of topology in condensed matter
physics was seminally pointed out in the description of the
quantum Hall effect [1]. The number of conducting edge states
is a topological invariant of the system, protected from im-
perfections that are not sufficient to close the bulk band gaps
nor to change the symmetry of the Hamiltonian describing the
system, ultimately leading to the striking conductance quanti-
zation observed [2]. Recently, the interest in topological states
of matter grew enormously [3,4] and one may generically
classify the known topological systems in topological insula-
tors and topological superconductors [5]. In one-dimensional
(1D) systems composed by spinless fermions, a representative
model of the former is the Su-Schrieffer-Heeger (SSH) [6], or
equivalent Shockley model [7], whose nearest neighbor (NN)
hopping amplitudes are staggered. In the latter, the Kitaev
chain, a model manifesting triplet (p-wave) superconducting
pairing, is another key example [8]. In both cases, they may be
interpreted as minimal models describing the topological edge
states in experiments involving graphene nanoribbons [9] or in
both semiconducting nanowires [10] or adatom chains on top
of a superconductor [11], respectively.
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New phenomena emerge when forcing a quantum system
to change with time and one of the simplest ways to do so
is to either suddenly or slowly change—quench—some of the
parameters of the Hamiltonian [12,13]. This is connected to
important question of thermalization of an isolated quantum
system [14]. The study of quenches in topological systems
showed that the topological order can survive quenches across
the topological phase transitions in (infinitely) long systems
[15]. In finite systems however revivals occur, as signaled by
the Lochschmidt echo and fidelity [16].

In parallel, another exciting topic of research is quantum
localization, which can be studied either in time-independent
systems [17–20] or in time-periodic cases [21,22]. The latter,
often referred as dynamical localization [23], has been studied
in a variety of contexts as, e.g., in two-level systems [24],
in quantum kicked-rotors [25,26], or with a charged particle
in a lattice subjected to a sinusoidal force in time [23,27]. It
can be generically realized by systems that fail to indefinitely
absorb energy from an external drive at some regime. Recently
it has been a focus of extensive research also in the context of
ergodic properties of driven interacting systems [28,29].

Here our goal is to bridge these two aspects, dynamical
localization and topological order, by studying their interplay.
In fact, in the context of quantum driven systems, one can
point out the growing interest on the experimental realization
of topological states of matter via periodic modulation [30].
Many other theoretical studies have also highlighted the pos-
sibility of creating topological edge states under a periodic
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TABLE I. Presence of Majorana modes in various settings: T
and N refer to Majorana modes created from topological and trivial
regions of the undriven Hamiltonian and the star refers to Majorana
zero mode created from the flat band point.

Space: Quasiperiodic
Time

Static T yes
N no

Periodic T yes
N yes

Aperiodic T yes∗

N no

drive, in a process dubbed Floquet topological engineering
[31–43].

In our case, the starting point is the superconducting Kitaev
chain, where the driving in some of the parameters of the
Hamiltonian, namely on the chemical potential [37,38], on the
superconducting phases [39], or the tunneling [38], leads to
a multitude of topological (Majorana) modes. Their number
specifically depends on the symmetries of the driving and
on its frequency. One may also argue that other types of
driving can be considered, as the ones that are intrinsically
inhomogeneous in real space. An example is the case of
quasiperiodic potentials, which can lead to localization either
in noninteracting [18,44] or interacting [45] time-independent
Hamiltonians. When the quasiperiodic potential varies with
time, single-particle [46,47] or many-body [48] localization
are still robust at high frequencies of the driving.

Thus the questions we address here are: (i) Can Majorana
modes be engineered with a time-periodic potential that leads
to localization? (ii) What are the conditions for their creation?
Namely, periods of the driving, range of parameters, etc.
(iii) Are other driving protocols, as in the case of aperiodic
drivings, robust on the stabilization of Majorana modes? Ta-
ble I summarizes the presence or absence of Majorana modes
in various settings for quasiperiodic potential (we obtain a
similar table with the same entries for homogeneous poten-
tials). We find that one can obtain Floquet edge modes with
time-periodic spatially quasiperiodic potentials, but generi-
cally these are not robust to aperiodicities in the driving
period. The exception is the special case where the Majorana
modes are perfectly localized at the edges and the bulk static
spectrum is flat. We also demonstrate that Majorana modes
created using spatially quasiperiodic driving are more robust
to decoherence due to aperiodicity in the driving period than
the Majorana modes created using spatially homogeneous
driving. This result is in agreement with a recent study,
showing that spatial disorder protects topological edge states
against the decoherence [49]. In addition to the investigation
of the zero- and finite-quasienergy edge states, we also present
detailed analysis of localization properties on the bulk of the
spectrum, together with the effects it has on the propagation
of initially localized wave packets, either for homogeneous or
quasiperiodic kicks in space.

The paper is organized as follows: We first introduce
the model, a kicked Kitaev chain of spinless fermions and

describe the basics on Floquet theory in Sec. II. Section III
reviews the spatially homogeneous static and time-periodic
case. Then we present the detailed analysis of the bulk proper-
ties of the spatially quasiperiodic periodically kicked system.
Next we study the results of aperiodic kicking in Sec. IV.
The time evolution of initially localized state is presented in
Sec. V before focusing on the edge states in Sec. VI. Lastly,
we summarize our findings in Sec. VII.

II. MODEL AND METHODS

A. Kitaev chain model

We consider a 1D Kitaev chain model [8] of spinless
fermions [50], in a lattice of size L with either open or
periodic boundary conditions, whose Hamiltonian reads

Ĥ = Ĥ0J + Ĥ0� + Ĥ0μ + Ĥ1, (1)

where Ĥ0J = −∑
i (Ji ĉ

†
i ĉi+1 + H.c.) is the kinetic energy,

Ĥ0� = −∑
i (�i ĉ

†
i ĉ

†
i+1 + H.c.) is the superconducting p-

wave pairing, and Ĥ0μ = −μ
∑

i ĉ
†
i ĉi is the chemical po-

tential and H.c. stands for the Hermitian conjugate of the
preceding terms. The fermionic creation (annihilation) op-
erator at site i is ĉ

†
i (ĉi); Ji and �i are the hopping and

superconducting p-wave pairing between sites i and i + 1,
respectively. Hereafter, we choose homogeneous hoppings
(Ji = J ) and pairings (�i = �), with J = 1 setting the en-
ergy scale of the problem. The last term in the Hamiltonian
Ĥ1 = −λ

∑
τ δ(t − tτ ) V̂ , where V̂ = ∑

i Vi ĉ
†
i ĉi , is the po-

tential which is applied onto the system at times tτ and the
integer τ counts the number of applied kicks. These act as
kicks in time by quenching the on-site energies of the lattice
whose maximal amplitude is given by λ. In the periodic case
tτ = τT and we employ the Floquet formalism to construct
effective time-independent Hamiltonians whose stroboscopic
dynamics is equivalent to the one for the original problem.

B. Floquet basics

The Floquet formalism states that the time-evolution op-
erator describing the dynamics at stroboscopic times of a
time-periodic Hamiltonian Ĥ (t + T ) = Ĥ (t ) is captured by
Û (nT ) = e−iĤeff nT , where Ĥeff is a time-independent Hamil-
tonian, often referred as the Floquet Hamiltonian [51–53].
Following one period, the time-evolution operator can be
written in terms of its eigenstates |θm〉 and the quasienergies
εm, connected to its actual eigenvalues, as Û (T ) = e−iĤeff T =∑

m e−iεmT |θm〉〈θm| [54]. As will become clear in the fol-
lowing sections, the quasienergies εm and the corresponding
eigenvalues |θm〉 will provide the basis to study the localiza-
tion aspects of Eq. (1).

In general, it is not guaranteed that a closed form of the
Floquet Hamiltonian is always obtainable [53], i.e., if one is
able to find an effective time-independent Hamiltonian written
in terms of local operators. This is related to the convergence
of the Magnus expansion, regularly employed to obtain Ĥeff

in the high-frequency regime (T � 1). Here we will deal
with a driving protocol that is time symmetric, i.e., Ĥ (t ) =
Ĥ (T − t ), and in the case considered here, the time evolution
operator can be written as Û (T ) = eiλV̂ /2e−iĤ0T eiλV̂ /2, with
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Ĥ0 = Ĥ0J + Ĥ0� + Ĥ0μ. Using this simple form, we can
write down the Floquet Hamiltonian by making use of the
analog of the Baker-Campbell-Hausdorff (BCH) formula ap-
plied to time symmetric problems [28], exp Ŷ exp X̂ exp Ŷ =
exp{X̂ + 2Ŷ − 1

6 [[X̂, Ŷ ], Ŷ ] + 1
6 [X̂, [X̂, Ŷ ]] + · · · }, as

Ĥeff = Ĥ0 + λ

T
V̂ − T λ

12
[Ĥ0, [Ĥ0, V̂ ]]

+ λ2

24
[[Ĥ0, V̂ ], V̂ ] + · · · . (2)

In the limits of high-frequency (T � 1) and small kick-
amplitudes (λ � 1), one can truncate the effective Hamilto-
nian in the first order as (see Appendix)

Ĥeff = Ĥ0 + λ

T
V̂ . (3)

Such expansion tells us that the small period regime is equiv-
alent to the static problem, with an appropriately renormal-
ized potential. Although the BCH formula gives us insights
on the physics in the small period and kick-amplitude lim-
its, for general parameter values, we use exact diagonaliza-
tion of the time-evolution operator to probe bulk and edge
localization.

III. PERIODICALLY KICKED SYSTEMS

A. Review of spatially homogeneous kicking

From the high frequency and small kick strength expan-
sion (see Appendix), we can write down the effective static
Hamiltonian, which has the general form

Ĥeff =
∑

i

∑
r

[−(Jr ĉ
†
i ĉi+r + �r ĉ

†
i ĉ

†
i+r + H.c.) + μ̃ ĉ

†
i ĉi],

(4)

where the hoppings and pairings between the sites separated
by distance r emerge and μ̃ is the renormalized chemical
potential. In the case that the driving kicks are homogeneous
in space, V̂ = V

∑
i ĉ

†
i ĉi , it leads to spatially homogeneous

parameters Jr , �r , and μ̃, rescaled by the period, intensities of
the kicks, and the original parameters in Ĥ0. Generically, the
static long-ranged Hamiltonian (4) has been already studied
in the literature (see, e.g., Refs. [55–58]) and here we briefly
revisit some of its main results.

Considering periodic boundary conditions, after
Fourier transforming into momentum space (using
ĉ
†
k = 1√

L

∑
j eikj ĉ

†
j ), one can rewrite the effective

Hamiltonian (4) as

Ĥeff = 1/2
∑

k

(ĉ†k, ĉ−k )Hk

(
ĉk

ĉ
†
−k

)
, (5)

where Hk = hx (k)τx + hy (k)τy + hz(k)τz, with τα (α =
x, y, z) being Pauli matrices in the Nambu space. By solving
the Bogoliubov–de Gennes equation Hkψk = Ekψk , where
eigenstates ψk = (uk, v−k )T , with uk, v−k being particle
and hole coefficients in momentum space, respectively,
one obtains the energy-momentum dispersion relation via
diagonalization as E2

k = hx (k)2 + hy (k)2 + hz(k)2, from
which the lines in the space of parameters where the gap

closes can be trivially determined. In the case of real hopping
and pairing coefficients, hx (k) = 0 and the spinless fermion
Hamiltonian Hk belongs to the BDI symmetry class [59],
with particle-hole and (generalized) time reversal symmetries
P = τxK and T = K , respectively, and K is the complex
conjugation operator. The bulk topological invariant is a
winding number W [55,60], which in 1D takes Z values and
gives the number of Majorana zero energy edge states in
the open system. The winding number can be calculated as
W = 1/(2π )

∫
dk ϑ (k), with ϑ (k) = arctan[hz(k)/hy (k)].

For the case of finite range R of hoppings and/or pairings,
the highest possible winding number is R. An example of
an effective static Hamiltonian with next-nearest neighbor
(NNN) hoppings and pairings is presented in Appendix.
Recently there has been an interest also in the infinite
range case where the pairing (and/or hopping) decreases
either exponentially or as a power law. In the latter, if
the power-law exponent is smaller than a threshold value,
denoting a regime of extremely long-ranged hoppings (and/or
pairings), the so called massive Majorana modes are present
[56,58,61].These are described by localized edge states
which are gapped from the bulk but their energy is finite
in the thermodynamic limit. Finally, in the case of broken
time reversal symmetry (complex hopping and/or pairing
coefficients) the 1D Hamiltonian Hk belongs to the symmetry
class D [59] with a Z2 valued topological invariant [8] that
can be defined as ν = sgn[hz(0)hz(π )], indicating that the
parity of the Majorana modes is protected.

Now, in the case of time periodic driving of topological
systems, due to the periodicity of the Bloch-Floquet band,
additional topological states might appear at the band edge
[32–43], where quasienergy is ω/2 or even within other
quasienergy gaps [62,63]. To obtain the correct dynamical
bulk-boundary correspondence, the micromotion of the time
evolution operator, i.e., its full time evolution throughout
the driving cycle, has to be accounted for [35,63,64]. In
the case of the periodically driven Kitaev chain considered
here, 0 or π Majorana edge modes can occur [37–39,65]. In
the presence of time reversal symmetry, the corresponding
topological invariants are Z × Z allowing for a multitude of
Majorana edge modes [37,39]. In contrast, for broken time
reversal symmetry there can be at most one Majorana of each
quasienergy 0 and π .

B. Spatially inhomogeneous kicking: Localized,
critical, and extended Floquet states

In this subsection we first review the static system, before
presenting our results on the periodically kicked case. Here we
consider spatially inhomogeneous potentials, focusing on the
quasiperiodic (Aubry-André-Harper) potential [18,66]. This
potential is of the form Vi = cos(2παi + ϕ), where we take
α as the inverse golden ratio (

√
5 − 1)/2, which renders

its incommensurability with the lattice [67]. We have also
included an additional phase ϕ ∈ [0, 2π ) that allows for a
“disorder” average, thus reducing the statistical and finite-size
effects. In the absence of superconducting pairing (� = 0),
the quasiperiodic potential, for example, arises in the study of
free electrons in a 2D square lattice with irrational magnetic
fields and it has a striking influence on the spectrum and the
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FIG. 1. (a) A schematic phase diagram of spinless fermions in
quasiperiodic potential with strength λ in the presence of supercon-
ducting pairing �. There are three distinct phases, where the bulk
states are either localized, critical, or extended. In the last two cases,
localized zero energy edge modes are present in finite (open) systems
(marked by T), while the first case is topologically trivial (marked by
N). (b), (c), and (d) Contour plots of the logarithm of the average
mean NPR R/L as a function of the strength λ of the quasiperiodic
kicks on the on-site energies and of the superconducting pairing
�, at fixed chemical potential μ = 0, for various kicking periods:
T = 0.01, 0.5, and 2.0, corresponding to high, intermediate, and low
frequencies, respectively. The system size is L = 500 and each point
is averaged over ten disorder realizations (r = 10).

eigenstates [69]. In 1D, contrasting the case of an uncorrelated
disordered potential [17], the quasiperiodic case induces a
metal-insulator transition at a finite value of the potential
strength (λ = 2) [18]. In turn, if this potential is used as a kick
[70], a sharp transition occurs at λ/T = 2 up to intermediate
kicking periods (T ∼ 0.5), where both the critical exponent
ν, which describes the behavior of localization near the tran-
sition, and the fractal dimension are unaltered in comparison
to the static case [47].

Now, turning on the pairing term �, we notice that the
static Hamiltonian (which, as we previously described, corre-
sponds to the high frequency limit of the kicked case) has been
already investigated on what concerns its topological [71,72]
and bulk properties [73]; the corresponding phase diagram
is shown in Fig. 1(a). There are essentially three phases,
classifying the states in the bulk: (i) localized, (ii) critical
or multifractal, and (iii) delocalized states. If open boundary
conditions are used, regions (ii) and (iii) host Majorana edge
modes and are topologically nontrivial. We emphasize two
special points in the phase diagram: AA highlights the duality
point [18], where the metal-insulator transition occurs for
� = 0, while FB marks the flat band point, where all the states
are degenerate (with energy 2) in a periodic, translationally
invariant system, whereas two perfectly localized Majorana
zero energy states appear in the open system.

Localization of the bulk states can be studied via the
nonergodic properties of the system’s eigenvalues and eigen-
vectors [25]. To quantify the level of ergodicity, we use the

participation ratio (PR) of the eigenvectors of the Hamiltio-
nian. In that case, we define the PR as Rm = 1/

∑
i (p

m
i )2,

where the occupation of the Bogoliubov quasiparticle m on
site i is given as pm

i = |um
i |2 + |vm

i |2 and um
i , vm

i are the
corresponding particle and hole coefficients, respectively. The
average PR is then R = 〈Rm〉r , where we first average over
all the eigenstates m and then take an average over differ-
ent disorder realizations r . The average PR thus quantifies
localization of the eigenvectors in real space. A completely
localized state has R = 1, while a perfectly delocalized state
(such as a plane wave) has R = L. In contrast, critical states
scale with the multifractal dimension of the wave function
[74–77]. The three distinct regions of the phase diagram will
thus be: (i) localized with the average normalized PR (NPR)
R/L ∼ O(1/L), (ii) critical with O(1/L) < R/L < O(1),
and (iii) delocalized with R/L ∼ O(1).

However, when dealing with a time-periodic problem one
instead investigates the level of ergodicity of the eigenstates
of the time-evolution operator after one period—the Floquet
operator—Û (T ), with similar definitions for the PR. We
report in Fig. 1(b) the phase diagram in the regime of high
frequency of the kicks (T = 0.01); one can easily infer its
similarity with the case of the static problem [71–73] that
persists up to periods T ∼ 0.1. At this period, a second plateau
of intermediate mean average NPR, R/L, starts to emerge at
high pairing (� ∼ 2) in the large λ side of the transition line
between the critical and localized regions. By increasing the
period, the second plateau grows into what was originally a
localized region in the high frequency limit. This can be seen
in Fig. 1(c), where we show the phase diagram for period
T = 0.5. When further increasing the period, the second
plateau region moves towards lower values of the pairing
� (until it reaches � = 0 at T ∼ 0.7—not shown), while
simultaneously breaking down at higher �, where the average
mean NPR indicates localization, as also seen in Fig. 1(c).
This breakdown eventually destroys also the critical region
(at T ∼ 1) and starts moving into the delocalized region as
can be seen from Fig. 1(d) for the period T = 2. The absence
of a sharp metal-insulator transition for large periods of the
kicks was also seen in other contexts, as for instance, when the
superconductivity is not present [46,47]. Lastly, it is important
to point out that finite-size effects do not substantially change
this picture: we have observed qualitatively the same phase
diagrams for smaller system sizes, down to L = 20 (not
shown) [78].

To further study the various phases, we focus on the case
T = 0.5 and consider a line cut in the phase diagram with
fixed � = 0.5—a clear two plateau structure, as shown in
Fig. 2(a) is observed. To understand the nature of the states
giving rise to these plateaus, we look into representative points
in the phase diagram and instead of checking their correspond-
ing average NPR, we study the actual normalized distribution
P (R) in Fig. 2(b) for a large lattice (L = 16 000). Large and
small kick amplitudes lead to typically narrow distributions
centered around R/L ∼ O(1/L) and O(1), respectively. On
the other hand, a kick amplitude which would correspond to
the first plateau in Fig. 2(a), leads to a distribution centered
around an average NPR which is not within these previous
limits: these are essentially critical states (across the whole
spectrum). Furthermore, the distribution of NPRs associated
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FIG. 2. (a) Line cuts of the average mean NPR R/L as a function
of the strength λ of Aubry-André-Harper type kicks on the on-site
energies for various system sizes at fixed superconducting pairing
� = 0.5, period of the kicking T = 0.5, and chemical potential
μ = 0. In (b), the normalized distributions of the PRs, P (R), for
a few representative kick strengths [marked by the thin dashed lines
in (a) with corresponding colors]. The chosen kicks correspond to
phases of delocalized states (λ/T = 0.4), first plateau of critical
states (λ/T = 2.0), second plateau of a coexistence of critical and
localized states (λ/T = 4.0), and localized states (λ/T = 7.2). The
arrows in (b) point to the average mean NPR R. (c) The break-
down of plateaus for nonzero static chemical potential. We used ten
disorder realizations in (a) and (c) and a single realization in (b).
The system size used in (b) and (c) are L = 16000 and L = 4000,
respectively.

with the second plateau in Fig. 2(a) with λ/T = 4 results
in a two hump structure, with contributions from critical and
localized states.

Next, we focus on four representative points (λ/T ,�)
from the four regions of the phase diagram. These are marked
in Fig. 1(c) and correspond to: delocalized states (0.2, 0.5),
point D, critical states (2, 0.5), point P1, coexistence of criti-
cal and localized states (5, 0.8), point P2, and localized states
(5, 0.2), point L. Our goal is to investigate the interplay of
localization, as signaled by the NPR of the eigenstates, and the
quasienergies εm, that can track the presence of topological
edge states. For that purpose, we report in Figs. 3(a)–3(d)
the eigenvalues of the Floquet operator eiεmT for the four
points defined above, considering two different system sizes,
L = 500 (red) and L = 8000 (blue). Given the symmetry on
the positive and negative imaginary parts of the eigenvalues,
we only display eiεmT with positive (negative) imaginary parts
for L = 8000 (500).

A general observation is that in all regions there are
multiple quasienergy bands, which do not grow with the
system size. Points D and P1, consisting of (bulk) extended
and critical states, respectively, also host (Majorana) zero
quasienergy state and a few localized states, which are due
to open boundary conditions and quasiperiodic potential used
[79]. We discuss these further in Sec. VI. The points P2 and
L have a band in the region of quasienergy 0 and due to
the larger parameter values, the maximum quasienergy values
approach the value of ω/2. When the quasienergies reach
ω/2 at even larger values of parameters (or at larger period
T ) the bands start to mix, introducing a new regime of long
periods. To confirm the nature of the separate states in the
four representative points, we also present in Figs. 3(e)–3(h)
the values of the NPRs of each state as a function of the
quasienergy. Notice the already mentioned scaling of the
localized (point L), critical (points P1 and P2), and delocalized
states (points P2 and L). From the values of the NPRs for the
point P2 in Fig. 3(g), we clearly see a mobility edge between
critical and localized states, i.e., quasienergies at the edges
of the Floquet band possess NPR which barely decreases
with increasing system sizes, depicting critical states, whereas
at the middle of the band they have a noticeable decay,

FIG. 3. (a)–(d) Real and imaginary part of the eigenvalues of the Floquet operator for representative points of the delocalized (D), critical
(first plateau P1), critical (second plateau P2), and localized (L) regimes. The insets display a zoom-in of the region of 0 and ω/2 quasienergies.
The corresponding values of the NPR as a function of the states’ quasienergies are shown in (e)–(h). The points with εmT > 0 (εmT < 0),
shown in blue (red) color, correspond to the system size L = 8000 (L = 500) and we have used T = 0.5 and ϕ = 0.
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FIG. 4. Data collapse of the scaled average mean NPR RLβ−1

as a function of the strength λ of Aubry-André-Harper kicks on
the on-site energies. We use different system sizes and various
pairing magnitudes, considering high (T = 0.01) and intermediate
(T = 0.5) frequency of the kicks. The chemical potential is set to
μ = 0 and the resulting scaling power law exponent is β = 0.2. We
used ten disorder realizations.

denoting localization of the Floquet eigenstates. This agrees
with the analysis of the dual-peaked distribution of PRs given
in Fig. 2(b), representing a point in a similar region of the
phase diagram.

C. Critical region and scaling analysis

The critical region, present in both static and kicked cases,
is however sensitive to the addition of a finite homogeneous
chemical potential μ in Ĥ0. A relatively small potential (μ ∼
0.01) is already sufficient to shrink the plateaus in NPR
associated with the critical region, which is finally completely
destroyed for larger potentials, as can be seen in Fig. 2(c) for
the cases of μ = 0.25 and 0.5. Nevertheless, we will carry out
a simple scaling analysis as to argue on the critical behavior
of these states, which are neither completely extended nor
localized in the case that μ = 0.

We start by recalling that in the static case, a scaling
analysis of critical states was recently performed [73] based
on a multifractal analysis [74–76]. Here, instead, we will
focus on the scaling of the average mean NPR, R/L. We
report in Fig. 4 the scaling of this quantity for different
values of the period of the kicks (T = 0.01 and 0.5) and
pairing magnitudes (� = 0.2, 0.5, and 1.2), as a function
of the Aubry-André-Harper kick strength. For that purpose,
we try a scaling form RLβ−1, where β is a rational number
to be adjusted. Indeed, we notice that for the different sets
of parameters, the first plateau associated with the presence
of critical states across the whole spectrum can be scaled
with an exponent β ∼ 0.2, at the expense of destroying the
collapse for the regions of extended and localized states at
small and large λ/T , respectively. Furthermore, we notice
that the second plateau appearing in Fig. 4(d), which as we
described manifests both critical and localized states, has an
almost collapse for this same value of β. Since in that case the
critical states mostly contribute to the average mean NPR [see

the arrows in Fig. 2(b)], we thus expect a close but slightly
larger value of β in comparison to the purely critical regime,
i.e., β � 0.2 since in the localized case, β = 1.

IV. DELOCALIZATION IN APERIODICALLY KICKED
SUPERCONDUCTORS

In this section we explore the effects of aperiodicity in the
driving period on the bulk properties of the Kitaev chain. From
an experimental point of view, a small time aperiodicity is
an unavoidable effect and we investigate here the robustness
of the different phases we have so far obtained. In fact, the
effects of decoherence in noninteracting systems displaying
dynamical localization were experimentally studied in the
paradigmatic quantum kicked-rotor systems [80,81]. These
experiments demonstrated diffusive behavior of localized
wave functions [80] and an unbounded growth of the total
energy of the system [81].

To study the effects of noise in the time period of the
kicks we assume that the time between two consecutive kicks
Tτ is a stochastic variable distributed with equal probability
between times T − δt and T + δt . The time of the τ th kick
is then given as tτ = tτ−1 + T + δtτ , where δtτ ∈ (−δt, δt ) is
the aperiodicity for the τ th kick and δt < T so as to obey
causality. The same timing noise scheme was used in the
experimental study of a quantum kicked rotor [81]. The time
evolution operator after τ kicks is

Ûτ = Û (Tτ )Û (Tτ−1) · · · Û (T1), (6)

with Tτ = tτ − tτ−1 and Û (Tτ ) = e−iĤ0Tτ e−iλV̂ and we are
interested in the average NPR after a number τ of aperiodic
kicks Rτ /L, obtained from exact diagonalization of Eq. (6)
[82].

A recent numerical study performed by the authors in-
dicates [47] that, in the absence of pairing, any nonzero
aperiodicity δt leads to eventual delocalization at long times
and that R∞/L = 0.5, which is the same as the average NPR
of eiA, where A is a full, random matrix belonging to the
Gaussian orthogonal ensemble (GOE)—or equivalently to the
AI symmetry class. From an extensive numerical investiga-
tion, we conjectured that this occurs for any values of period
T and kick strength λ. Here we reach a similar conjecture in
the case of nonzero pairing, where R∞/L = 1/3, which is
the same as the average NPR of eiA, where A is a full, random
matrix belonging to BDI symmetry class (chiral GOE). An
example demonstrating this behavior is presented in Fig. 5, for
an average period T = 0.5 and multiple values of pairing �

and kick strength λ. Irrespective of whether the starting point
belongs to the delocalized, critical, or localized regime if the
kicks were periodic in time, we observe in all cases that Rτ

goes to the value 1/3 [marked by dashed lines in Figs. 5(b)
and 5(c)] as τ → ∞. The approach to this asymptotic value
is faster for the initially delocalized regime, slower for critical
and slowest for the localized one.

V. EVOLUTION OF A LOCALIZED STATE

Having probed the aperiodic properties of the kicked prob-
lem in the presence of pairing, we return for now to the strictly
periodic drivings and focus instead on the transport properties
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FIG. 5. Average NPR as a function of the number of kicks in
the quantum-kicked Aubry-André-Harper model in a lattice with
L = 500. The (black) dashed horizontal line represents the average
NPR of a fully delocalized wave function obtained from a random
matrix belonging to a AI (a) and BDI (b) and (c) symmetry classes.
These refer, respectively, to the cases with zero and finite values of
the superconducting pairing �. We use the mean periodicity T = 0.5
and the maximum aperiodicity δt = T/2 (see text). A single disorder
and time aperiodicity realization was used.

of the Bogoliubov quasiparticle excitations in the Kitaev chain
with spatially inhomogeneous kicks. For this we consider the
stroboscopic evolution of an initially localized excitation at
the middle and at the edge of an open lattice. On top of
being of theoretical relevance, we emphasize that experiments
in optical lattices have used the ability to probe densities
with single-site resolution to address coherent single and two
particle quantum walks [83]—our extra ingredient is the time-
periodic and instantaneous quench on the on-site energies.

We start by studying in Fig. 6 the disorder averaged wave-
function evolution for the case of an intermediate period
T = 0.5, where we focus on the same points in the phase
diagram defined in Fig. 1(c). The delocalized regime, shown
in Figs. 6(a) and 6(e), for initial excitations, respectively, at the
edge and at the middle of the chain, exhibits ballistic spread-
ing, with the maximum velocity of 0.88 sites per kick and
the mean velocity 0.42 site per kick. This can be understood
from the following consideration: in the absence of kicks
(λ = 0), the group velocity vg (k) = ∂Ek/∂k is vg (k) = 2[μ +
2(�2 − 1) cos(k)] sin(k)/Ek , for the situation of NN hopping
and pairing (with periodic boundary conditions). Since an
initially completely localized state is a linear combination of
all the Bogoliubov excitations of the static Kitaev model, the
maximum group velocity will be connected to the maximum
velocity of the spreading, whereas the mean velocity can be
estimated as the average group velocity 1/π

∫ π

0 |vg (k)|dk,
which gives 1 and 0.64 site per kick, respectively, for the
parameters from Figs. 6(a) and 6(e). In fact, we thus observe
that the presence of kicks reduces these two values, which
may then be recovered in the limit λ → 0. Using similar
arguments, the revival times after quantum quenches in fi-
nite systems were recently studied [84] in a dual model,
the quantum XY model, which provides a connection to

the Lieb-Robinson bounds for the light-cone propagation of
information in interacting systems [85].

Returning to the propagation profile, we note in Fig. 6(a)
that the probability density of the state at the left edge of
the system remains at large values after the time evolution
with the kicks: this is a clear indication of the formation
of a localized edge state in the system for this regime. In
direct contrast, if the initial state is initially localized in the
middle of the chain, the probability density throughout the
lattice eventually becomes completely delocalized, retaining
no information about the initial preparation [Fig. 6(e)]. We
observe similar behavior in the (purely) critical regime (point
P1), as shown in Figs. 6(b) and 6(f), although we notice that
the spreading slows down considerably; as in the delocalized
regime, we observe the presence of the edge state in Fig. 6(b).
The case of the regime of the second plateau (point P2)
signifies the presence of localized states in both the edge and
in the middle of the chain [Figs. 6(c) and 6(g)]: the state after
time evolution remains with high probability close to its initial
position and only a very slow spreading throughout the chain
carries some of its weight. This, however, never happens in
the localized regime, where the state always remains expo-
nentially localized, as exemplified in Figs. 6(d) and 6(h).

To obtain a more quantitative picture, next we study the
wave function spreading using the root mean square of the
displacement, defined as

σ (τ ) =
[∑

i

(i − i0)2|ψi (τ )|2
]1/2

, (7)

where |ψi (τ )|2 = |ui (τ )|2 + |vi (τ )|2 is the density probability
at site i after the evolution for τ kicks of an initially localized
state at site i0. The growth of the root mean square displace-
ment is usually of the form σ (τ ) ∼ τ γ , where γ = 1, 1/2,
and 0 indicates ballistic spreading, diffusion, and localization,
respectively. The intermediate cases 1/2 < γ < 1 (0 < γ <

1/2) are denoted as superdiffusion (subdiffusion).
In Fig. 7 we quantify the time evolution of σ (τ ) in the

regime of fixed kick periodicity, T = 0.5, and pairing, � =
0.5, showing the comparison for an increasing magnitude of
the kicks. This set of parameters represent a line cut in the
phase diagram Fig. 1(c), which encompasses different regimes
as predicted by the NPRs, also observed in Fig. 3(a). In the
limit λ → 0, a free propagation of the state is expected: a
ballistic spreading of the initial states’ root mean square of
the displacement is observed, i.e., σ (τ ) ∝ τ . By increasing
λ within the delocalized region, we observe a slight reduction
of γ ; for example, γ � 0.95 and 0.90 for the cases λ/T = 0.4
and 0.8, respectively. In the critical regime (1 < λ/T < 3) we
obtain γ = 0.40 ± 0.05 indicating subdiffusive behavior. At
even larger λ/T , corresponding to the region of the second
plateau in NPR [Fig. 3(a)], γ decreases even further, until we
finally obtain localization and eventually γ → 0.

In this analysis of the extraction of the diffusion exponent
γ , we highlight some caveats: First, some care must be taken
to avoid the initial transient behavior and the final oscillating
regime; the latter is a manifestation of the system’s finiteness,
where the state has essentially spread over the whole lattice.
Second, we note that a single realization (single ϕ) behaves
differently than the disorder averaged ones considered in
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FIG. 6. The disorder averaged time evolution of initially localized state at the edge (a)–(d) and in the middle of the chain (e)–(h) for the
delocalized, critical (first plateau), critical (second plateau), and localized regime after various numbers of periodic kicks, with period T = 0.5.
The system size used was L = 500 and we averaged over 100 disorder realizations.

Figs. 6 and 7. To start, there is an intrinsic asymmetry in the
position of the expectation value of the time evolved state,
originating from the inhomogeneous nature of the quasiperi-
odic potential. As a consequence, the state propagates more
to the side where there is lower potential, which is essentially
a single realization aspect. Moreover, scattering centers with
high reflectivity are likely to appear, which occur at positions
where the ratio of adjacent potential differences is large.

VI. LOCALIZED EDGE STATES: MAJORANA VS
FERMIONIC EDGE MODES

In this last section we explicitly explore the formation of
the Majorana edge states in time-periodic settings in different
parts of the phase diagram, differentiating them from trivial

FIG. 7. Root mean square of the displacement σ as a function of
number of kicks τ at fixed T = 0.5, � = 0.5, and various λ/T = 0,
0.4, 0.8, 1.0, 2.0, 3.0, 3.6, 4.0, and 6.0 indicated in increasing size by
an arrow. Each line is averaged over ten disorder realizations and the
shaded area indicates the standard error. Note the log-log scale used,
from which we obtain the growth exponents γ through the linear fits
(indicated by dashed lines for several cases). The system size used
was L = 500.

fermionic (Andreev) edge states. Later, we explore their sta-
bility under different aperiodic drivings.

A. Periodic kicks

In the driven case considered here, we examine both the
0 and π quasienergies [86] and their corresponding wave
functions. In Fig. 3 we showed the full quasienergy spectrum
for representative points of the phase diagram: Note the pres-
ence of zero quasienergy states, which are gapped from the
extended bulk ones. These are present in the case of delocal-
ized and critical regimes, in Figs. 7(a) and 7(b), respectively.
Although suggestive, zero quasienergies are not sufficient to
characterize a Majorana mode. Instead, to confirm its nature
we also compute the quantity η = ∑

i ηi , with ηi ≡ ||ui |2 −
|vi |2| and ui and vi being the particle and hole coefficients of
the Bogoliubov quasiparticle at site i. The value of η is vanish-
ing for Majorana states, due to their defining property of being
real or self-conjugate (γM = γ

†
M ), from which follows ui = v∗

i

[87]. We thus call quantity η self-conjugacy. Examples of the
real space probability distributions of the Majorana modes are
shown in Figs. 8(a) and 8(b), which can be observed in the
regimes where the bulk is delocalized or hosts critical states,
respectively.

Besides Majorana 0 and π quasienergy states, other lo-
calized fermionic edge modes may be present in the system
[88–91]. In some cases, they can be even more localized than
the Majorana states themselves, as exemplified by the lower
value of the NPR in Fig. 3(f)—their probability distribution is
also shown in Figs. 8(a) and 8(b). These are characterized by
not possessing 0 or π quasienergies, but most importantly by
not satisfying the Majorana self-conjugation condition (η →
0). In practice, one can easily obtain that η is essentially
zero within machine precision for not so large lattices if
dealing with highly localized Majorana states [92], whereas
for the normal fermionic edge modes, they usually possess
ηi/|ψi |2 ∼ O(1), which ultimately results in a finite η. We
show, in the insets of Figs. 8(a) and 8(b), the site distribution
of the self-conjugacy relation: while for the Majoranas they
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FIG. 8. Majorana versus normal localized edge modes for the
case of delocalized and critical bulk are shown in (a) and (b), respec-
tively. Inset shows the difference ηi of particle and hole coefficients,
as defined in the text. The system size used was L = 500 and we
zoom in the relevant edge region. (c) and (e) The quasienergies
for two cases of nontopological static Hamiltonian, where multiple
quasienergy Majorana modes are created. Self-conjugacy η of the
Majorana modes from (c) and (e) are shown in (d) and (f) for one of
the Majorana modes in pairs, demonstrating that the corresponding
states become self-conjugate exponentially with increasing system
size. In contrast we show also two normal states from the band edge
in (d) which are non-self-conjugate. The parameters used in (c) and
(d) are μ = 0.0, λ = 10, T = 2, � = 0.2 and in (e) and (f) μ = 2.5,
λ = 1, T = 8, � = 0.8.

cannot even be represented in the scale for this system size
(L = 500), they are markedly finite for trivial edge modes.

After explicitly characterizing the Floquet Majorana states,
we are now in position to tackle an important property of
periodically driven systems: starting from a static Hamiltonian
whose parameters result in the absence of any topological
order, it is possible that the driving induces topologically
nontrivial states. This procedure, called Floquet engineering
of topological states of matter, has lately received increased
attention [31–43]. For the specific case of the 1D Kitaev
chain treated here, this was also recently proposed with
different driving protocols [37–39]. Here we show that one
can also create multiple topological edge states in the specific
case of time-periodic driving with a quasiperiodic potential.
Two examples are given in Fig. 8, where we present the
quasienergies in Figs. 8(c) and 8(e), for a set of parameters
such that the underlying static Hamiltonian is trivial. In both
cases, gapped quasienergy states close to 0 and π are present,
and they exponentially converge to 0 and π with larger L’s,
a typical characteristic of Majorana states. In the case of
Fig. 8(c), we notice the manifestation of a pair of states, one
at 0 and one at π quasienergies, concomitant with a spatial
distribution that is exponentially localized at the edges;
they also exponentially approach a perfect self-conjugation
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FIG. 9. Stroboscopic time evolution of a Floquet Majorana
mode, engineered from a parent static nontopological phase (τ = 0),
under aperiodic driving. (a) and (b) Examples for the case of homo-
geneous and quasiperiodic kicks in the on-site energies, respectively.
The parameters used were T = 8, μ = 2.5, � = 0.8, and λ = 1.0 in
both panels. The aperiodicity used was δt/T = 0.1 and the system
size L = 1000.

with increasing lattice sizes as demonstrated in Fig. 8(d).
In contrast, typical bulk states right in the vicinity of this
quasienergies do not show any change in η by increasing
system size. In the second example, we show in Fig. 8(e) the
formation of two pairs of 0 and π quasienergies. In this case,
the Majorana end modes are less localized compared to the
ones created from the topological regime, but nevertheless
exponentially approach η → 0 with increasing lattice sizes.
This is similar to the case of Majorana generation with
homogeneous spatial driving [37], but here with a quench that
competes with the localization of the bulk spectrum.

B. Aperiodicity in the driving

Finally, an important question concerns the stability of
topological states under various types of noises, which were
investigated either theoretically [49,93] or experimentally
[94]. For the specific case of Majorana modes in a Kitaev
chain this was preliminary studied in Ref. [37] and expanded
in Ref. [95] using Markovian models of noise.

Here we study the noise due to aperiodicity in the times
between successive kicks as introduced in Sec. IV, i.e., the
quenches on the on-site energies all have the same amplitude
and phase, but they happen at nonperiodic times. For this we
track the stroboscopic time evolution of an initial Majorana
edge state, Floquet engineered from a parent nontopological
static Hamiltonian with a period T , and promote time devi-
ations from this mean period. We start by showing in Fig. 9
that, generically, an initial Majorana state rapidly decays into
the bulk with the application of aperiodic kicks of moderate
aperiodicity δt = 0.1 T , either in the case where the kicks are
spatially homogeneous [Fig. 9(a)] or quasiperiodic [Fig. 9(b)].

A more quantitative analysis on the topological nature of
the time-evolved state can also be drawn if besides tracking
the wave function we study also the evolution of η, which
measures its amount of self-conjugacy. In Figs. 10(a), 10(c)
and 10(b), 10(d) we show the evolution of η for spatially
homogeneous and quasiperiodic kicks, respectively. Here we
apply aperiodic driving with δt = 0.1T and compare the
evolution of three distinct Majorana end modes: (i) Majorana
mode γa , which is created from the flat band point (μ =
0,� = 1); (ii) Majorana mode γb, which is created from a
generic point in the topological regime; and (iii) Majorana
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FIG. 10. Stroboscopic evolution of the self-conjugacy η of Ma-
jorana modes γi (γ ′

i ) as a function of the number of aperiodic kicks
in (a) and (c) [(b) and (d)] for homogeneous (quasiperiodic) kicks.
We present a single Majorana mode γa (γ ′

a) created from the FB
point, multiple Majorana modes γb (γ ′

b) from topological regime and
a single Majorana mode γc (γ ′

c) from trivial regime (the parameters
used here were T = 8.0, μ = 2.5, � = 0.8, λ = 1.0). For Majorana
modes with i = a, b we used T = 0.5, λ = 0.2 and in all cases we
used L = 1000, δt = 0.1T and a single realization.

mode γc which is created from a generic point in the trivial
regime. Strikingly, the aperiodic time evolution of a Majorana
mode γa (blue) roughly remains self-conjugate up to a large
number of kicks [96], in contrast to the evolution of the
Majorana modes γb (red, orange, violet) that quickly lose
their self-conjugacy, saturating at finite η value. Here we
observe a difference between the spatially homogeneous and
quasiperiodic kicks, namely for the former, the self-conjugacy
sharply jumps after about 70 aperiodic kicks to the value
of about 10−4–10−3, where it saturates, while in the latter
case self-conjugacy is increasing at a slow, steady rate for
fixed � = 1 [Fig. 10(b)], while it starts increasing faster after
about 200 kicks for the case of fixed μ = 0 [Fig. 10(d)]. This
demonstrates that Majorana modes induced by quasiperiodic
potential are more robust to decoherence against the noise in
the aperiodicity of the driving, which is in agreement with a
recent study showing that disorder helps to protect topological
edge states against the decoherence [49]. On the other hand,
the Majorana mode γc (green), which starts from the trivial
regime, loses self-conjugacy much faster for both drivings. We
have also tested larger aperiodicities in the driving, up to the
maximum aperiodicity δt = T and we observe qualitatively
similar results as given in Fig. 10.

To study the sudden increase of self-conjugacy in more
detail we look into snapshots of the Majorana mode wave
functions at different times, which we show in Fig. 11 for
the case of γb, with T = 0.5, μ = 0.0, � = 0.95, λ = 0.2,
whose self-conjugacy was already presented in Fig. 10. The
sudden increase of self-conjugacy occurs when the two edges
composing the same Majorana mode hybridize, that is when
the wave function of the same Majorana mode from both
edges begin to overlap. This happens for both homogeneous
[Fig. 10(a)] or quasiperiodic kicks [Fig. 10(b)], albeit in

FIG. 11. Stroboscopic evolution of the Majorana mode γb after
various numbers of aperiodic kicks for the cases of spatially homo-
geneous and quasiperiodic potential kicks are shown in (a) and (b),
respectively, demonstrating that eventually Majorana modes disperse
into the bulk. Insets provide a zoom-in into the evolution of self-
conjugacy η of Majorana modes as already presented in Fig. 10. Star
markers depict the number of aperiodic kicks used in the snapshots
in the main panels. The parameters used were L = 1000, δt = 0.1 T,
T = 0.5, μ = 0.0, � = 0.95, λ = 0.2.

the former at much earlier times due to the larger speed of
decaying into the bulk of the edge modes in comparison to
the latter. In fact, the slower increase of self-conjugacy is
connected to the nature of the bulk states: in the homogeneous
case they are extended, whereas in the quasiperiodic case,
for the parameters considered, are critical. Despite eventual
complete delocalization of Majorana modes in both cases,
we observe that the final self-conjugacy of Majorana modes
γb saturates at a much smaller finite value in comparison to
Majorana modes created from a trivial region γc, indicating
that up to a certain level these states retain their distinct
property of being self-conjugate.

VII. SUMMARY

We studied bulk and edge properties of driven 1D Kitaev
chain. The driving consisted of instantaneous quenches of the
on-site energies, with the main focus on the quasiperiodic
modulation of the potential, for both periodic and aperi-
odic kicks. In the former, we identified three typical driving
regimes, the low (T < 0.1), intermediate (T ∼ 0.5), and high
period (T > 1) ones. In the low period, the time-dependent
problem can be mapped onto a time-independent effective
Hamiltonian whose parameters are renormalized, as obtained
from the expansion based on the BCH formula. By deriving
the effective Hamiltonian up to the second order in the expan-
sion, we note that the first order term only renormalizes the
chemical potential by an additional term which is given by the
kick amplitude divided by the period of the driving; in second
order, additional terms characterized by NNN pairings and
hoppings also appear. In the intermediate regime, the effective
Hamiltonian description breaks down. This occurs at about
T ∼ 0.1 provided that other parameters are not much larger
than 1 and the kick strength λ is of the order of the period T

or smaller. Finally, the high period regime occurs when the
quasienergy gap at ω/2 closes (quasienergies multiplied by
the period become larger than π ) or equivalently |εm| > ω/2
for some state(s) m.

We studied the bulk properties of the spatially inhomo-
geneous kicked chain via the average mean normalized par-
ticipation ratio, and by considering the (stroboscopic) time
evolution of an initially localized excitation. In the low period
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regime the phase diagram consists of delocalized, critical, and
localized regions and the bulk wave functions possess differ-
ent scaling forms with the system size in these regions. A lo-
calized excitation spreads nearly ballistically, subdiffusively,
and does not spread in delocalized, critical, and localized
region, respectively. In the intermediate regime, an additional
phase emerges, hosting a mobility edge in quasienergies be-
tween the critical and localized states, which is a new type of
mobility edge, contrasting the single particle mobility edges
studied previously [97] and experimentally measured recently
[98]. The new phase appears in what was localized region
in the low period regime. Lastly, in the high period regime,
different quasienergy bands mix and the pure phases break
down. The aperiodicity in the driving period leads to the
destruction of localization and for long enough drivings the
final time evolution operator converges to the random matrix
from the corresponding symmetry class, which for the case of
� �= 0 (� = 0) is BDI (AI).

Finally, we have also studied the edges and demonstrated
that in an open system both Majorana and fermionic edge
modes are present in delocalized and critical regions of the
phase diagram. We have shown that similar to the case of
homogeneous kicks, multiple Majorana edge modes can be
created by periodic driving with a quasiperiodic potential,
thus demonstrating the possibility of Floquet engineering
[31–43] using spatially quasiperiodic potential. While zero
quasienergy Majorana modes can be found in all driving
regimes, the π Majorana modes occur only in high period
regimes, since by definition the ω/2 gap closes at the tran-
sition between intermediate and high period regime. By intro-
ducing the aperiodicity in the driving, the Majorana modes
originating from the trivial regime quickly lose their self-
conjugacy. In contrast, the self-conjugacy of Majorana modes
from topological regime decays slower and it saturates at
a value order of magnitude smaller, despite their complete
delocalization, which is an unexpected result. The decay
occurs slower for Majorana modes, created by quasiperiodic
driving in comparison to spatially homogeneous driving in
agreement with a recent study of topological ladder system
[49]. Remarkably, the decay is slowed further in the case of
Majorana modes originated from the flat-band point.
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APPENDIX: HIGH FREQUENCY EFFECTIVE
FLOQUET HAMILTONIAN

Here we derive the effective Floquet Hamiltonian up
to (including) the first nested commutators, as given by

the BCH formula in Eq. (2), i.e., the second order in
the expansion. By using: (i) standard fermionic anticom-
mutation relations {ĉi , ĉj } = 0 and {ĉi , ĉ

†
j } = δij , where

{Â, B̂} = ÂB̂ + B̂Â is an anticommutator and δij is a Kro-
necker delta, (ii) elementary commutator relations [ÂB̂, Ĉ] =
Â[B̂, Ĉ] + [Â, Ĉ]B̂ = Â{B̂, Ĉ} − {Â, Ĉ}B̂, [Â, B̂Ĉ] =
[Â, B̂]Ĉ + B̂[Â, Ĉ] = {Â, B̂}Ĉ − B̂{Â, Ĉ}, [ÂB̂, ĈD̂] =
Â{B̂, Ĉ}D̂ − ÂĈ{B̂, D̂} + {Â, Ĉ}D̂B̂ − Ĉ{Â, D̂}B̂, and (iii)
explicit forms for the static and kick terms Ĥ0 and Ĥ1 as given
in Eq. (1), we notice that we need to calculate the following
four commutators:

[ĉ†aĉb, ĉ
†
d ĉe] = δbd ĉ†aĉe − δae ĉ

†
d ĉb,

[ĉ†aĉ
†
b, ĉ

†
d ĉe] = −δbe ĉ†aĉ

†
d − δae ĉ

†
d ĉ

†
b,

[ĉa ĉb, ĉ
†
d ĉe] = δbd ĉa ĉe + δad ĉeĉb, (A1)

[ĉ†aĉ
†
b, ĉd ĉe] = δbd ĉ†aĉe − δbe (ĉ†aĉd − δad )

− δad ĉ
†
bĉe + δae (ĉ†bĉd − δbd ).

The effective second order Hamiltonian is then calculated
as

Ĥeff =
L∑

i=1

[(J̃i ĉ
†
i ĉi+1 + J̃ ′

i ĉ
†
i ĉi+2 + �̃i ĉ

†
i+1ĉ

†
i

+ �̃′
i ĉ

†
i+2ĉ

†
i + H.c.) − μ̃i ĉ

†
i ĉi], (A2)

where J̃i (J̃ ′
i ), �̃i (�̃′

i), and μ̃i are renormalized nearest (next-
nearest) neighbor hopping, nearest (next-nearest) neighbor
pairing, and on-site potential, respectively. They read

J̃i = −Ji{1 + λ(Vi+1 − Vi )[λ(Vi+1 − Vi )/2

+ T (μi+1 − μi )]/12},
J̃ ′

i = T λ[JiJi+1(Vi+2 − 2Vi+1 + Vi )

−�i�
∗
i+1(Vi+2 + 2Vi+1 + Vi )]/12,

�̃i = −�i{1 + λ(Vi+1 + Vi )[λ(Vi+1 + Vi )/2 (A3)

+ T (μi+1 + μi )]/12},
�̃′

i = T λ(Vi+2 + Vi )(Ji�i+1 + �iJ
∗
i+1)/12,

μ̃i = μi + λ/T Vi − λT [|Ji−1|2(Vi − Vi−1)

− |Ji |2(Vi+1 − Vi ) + |�i−1|2(Vi + Vi−1)

+ |�i |2(Vi+1 + Vi )]/6,

where we have considered the most general case, where all the
terms are in general complex and possess spatial dependence.
It is worth mentioning that the first order term in the BCH
formula, as identified by Eq. (3), merely renormalizes the
chemical potential by an addition of a term which is given by
the amplitude of the kick divided by the period of the driving.
On the other hand, NNN terms in pairing and hoppings arise
from the second order term, indicated by the common prefac-
tor T λ, as well as leads to the renormalization of the nearest
neighbor NN terms. To obtain even further range hoppings
and pairings higher order terms need to be accounted for.

This general expression may then be simplified when
considering a simpler Hamiltonian, with homogeneous NN
pairings and hoppings and a constant chemical potential,
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FIG. 12. Phase diagrams of the effective static Hamiltonian,
Eq. (A4), shown in the low and intermediate period regimes in (a) and
(b), respectively—the (μ, T ) parameters are (0, 0.01) and (4.5, 0.5).
In (b), the numbers matching the colors of the regions denote
the value of the winding number, while the star symbols depict
the examples of different windings, which are shown in (c). (c) The
winding vector, with h̃α = hα (k)/h0 (α = y, z) and normalization
h0 = maxk[

√
hy (k)2 + hz(k)2]. In (d), the two Majorana edge states

for W = 2 case from (c) in a lattice with L = 1000; the inset in
linear-log scale depicts the exponential localization.

being driven according to a kick on the site energies that is
also spatially homogeneous with amplitude V , which we take
being V = 1. In this case, the second order BCH expansion
results in the following Floquet Hamiltonian:

Ĥeff,h = −
L∑

i=1

[(J1 ĉ
†
i ĉi+1 + J2 ĉ

†
i ĉi+2 + �1 ĉ

†
i+1ĉ

†
i

+�2 ĉ
†
i+2ĉ

†
i + H.c.) + μ̃ ĉ

†
i ĉi], (A4)

where the renormalized parameters are J1 = J ,
J2 = −T λ|�|2/3, �1 = �[1 + λ(λ + 2T μ)/6], �2 =
−T λ�Re(J )/3, μ̃ = μ + λ/T − 2λT |�|2/3. Note that
the Hamiltonian (A4) was already studied before (see, e.g.,
Refs. [55,57]) in the context of static Hamiltonians, but here
the model’s parameters are expressed in terms of the driven
model parameters.

As an exercise of the topological behavior that is manifest
in this Floquet Hamiltonian, we start by writing it in momen-
tum space, considering periodic boundary conditions, as

Ĥeff,h = 1/2
∑

k

(ĉ†k, ĉ−k )Hk

(
ĉk

ĉ
†
−k

)
, (A5)

where Hk =−[μ̃/2+J1 cos(k)+J2 cos(2k)]τz+[�1 sin(k) +
�2 sin(2k)]τy , with τα Pauli matrices in the Nambu space.
After diagonalization, it results in the following dispersion
E2

k = [μ̃/2 + J1 cos(k) + J2 cos(2k)]2 + [�1 sin(k) +
�2 sin(2k)]2. We report an accurate analysis in Fig. 12. First,
we show that in the high-frequency regime (with μ = 0), one
recovers the familiar phase diagram of the 1D Kitaev’s chain
[8], with the gap closings at λ/T = 2 [see Fig. 12(a)]. As we
have described above, in this regime, the on-site energies get
rescaled by the period while the NN hoppings and pairings
are unchanged. In contrast, if one studies smaller frequencies
[Fig. 12(b)], the NNN hopping and pairing terms become
large enough to give rise to winding numbers ±0, ±1, and
±2. These winding numbers, computed via the transfer matrix
method [58,71], can be exemplified by the parametric plot
of the winding vector h(k) = (0, hy (k), hz(k)) in Fig. 12(c),
where one can see three cases where this vector rounds around
the point (0,0) either 0, 1, or 2 times, denoting winding num-
bers W = 0, 1, and 2, respectively. Lastly, as an example of
the bulk-boundary correspondence, which relates the winding
number with the number of edge states, we report in Fig. 12(d)
the two Majorana edge states for the W = 2 case from
Fig. 12(c), in a lattice with L = 1000. The inset characterizes
the exponential localization of these edge modes.
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