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We study Anderson localization of massless two-dimensional Dirac electrons in random one-dimensional
scalar and vector potentials theoretically for two different cases, in which the scalar and vector potentials are
either uncorrelated or correlated. From the Dirac equation, we deduce the effective wave impedance, in which
we derive the condition for total transmission and those for delocalization in our random models analytically.
Based on the invariant imbedding theory, we also develop a numerical method to calculate the localization
length exactly for arbitrary strengths of disorder. In addition, we derive analytical expressions for the localization
length, which are extremely accurate in the weak and strong disorder limits. In the presence of both scalar and
vector potentials, the conditions for total transmission and complete delocalization are generalized from the usual
Klein tunneling case. We find that the incident angles at which electron waves are either completely transmitted
or delocalized can be tuned to arbitrary values. When the strength of scalar potential disorder increases to
infinity, the localization length also increases to infinity, both in uncorrelated and correlated cases. The detailed
dependencies of the localization length on incident angle, disorder strength, and energy are elucidated and the
discrepancies with previous studies and some new results are discussed. All the results are explained intuitively
using the concept of wave impedance.
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I. INTRODUCTION

The phenomenon of Anderson localization of quantum
particles in a random potential and classical waves in random
media continues to attract a strong interest of researchers,
despite a half-century of investigation [1–11]. Though the ba-
sic origin of Anderson localization, which is the interference
of wave components multiply scattered by randomly placed
scattering centers, is well understood, new and surprising
aspects of the phenomenon have been discovered continually
[12–20]. Differences in the types of wave equations, the
material properties, and the nature of disorder all affect An-
derson localization strongly and can cause conceptually new
phenomena to occur. Recently, much interest has been paid
to the localization arising in new kinds of condensed-matter
materials and artificially fabricated metamaterials [20–27].

In this paper we are especially interested in the unique
localization and delocalization phenomena occurring in the
system of pseudospin-1/2 Dirac fermions in two-dimensional
(2D) materials such as monolayer graphene, which is charac-
terized by a linear dispersion relation around the Dirac point
and described by a relativistic Dirac-type equation [28–30].
Though our method can be generalized to the cases of massive
pseudospin-1/2 and pseudospin-1 Dirac systems, we restrict
our interest here to the massless pseudospin-1/2 case. Our
result can also be applied to the localization of quantum
particles in other systems, including cold atoms, trapped ions,
and semiconductors, and to that of classical electromagnetic
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waves in photonic systems analogous to graphene or other 2D
materials [31–34].

The localization of the aforementioned 2D Dirac fermions
in a random one-dimensional (1D) scalar or vector potential
has been studied previously by several authors [20,35–37]. In
all of these studies, they considered superlattice models with
random arrays of rectangular potential barriers with random
heights and widths and calculated the localization length or
the transmittance using the transfer matrix method. One of
the outstanding features of these studies is that massless Dirac
particles that incident normally on a 1D random scalar poten-
tial are always delocalized regardless of the potential strength
and the particle energy, whereas those that incident obliquely
are localized except for some special cases. This phenomenon
is an extension of the famous Klein tunneling to random
cases [38,39]. Another interesting and counterintuitive feature
is that localization is destroyed as the strength of the scalar
potential disorder increases to large values [20].

The localization behavior of Dirac particles that incident
normally on a 1D random scalar potential was studied numer-
ically in Ref. [35], where it has been demonstrated that, in
the massless case, the localization length diverges and, in the
massive case, it is larger than the corresponding nonrelativistic
value. The transmission of electron waves through disordered
graphene superlattices with a random scalar potential was
studied in Ref. [36]. The transmittance of a finite strip was
shown to be equal to 1 at normal incidence and to have a
strong angle dependence at oblique incidence. In Ref. [37],
analytical formulas for the localization length in disordered
graphene superlattices with a random scalar or vector po-
tential were obtained using the transfer matrix method and
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the weak-disorder expansion. The localization length was
reported to have a tan−2 θ dependence on the incident angle
θ for all energy in a weak scalar potential and to have a
cos2 θ dependence for all energy in a weak vector potential.
More recently, the localization behavior of pseudospin-1 and
pseudospin-1/2 Dirac particles in disordered superlattices
with a random scalar potential was studied in Ref. [20]. The
localization length was reported to have a sin−2 θ dependence
for all energy and to increase to large values in the strong
disorder regime.

In this paper we consider the continuum 2D Dirac equation
in random 1D scalar and vector potentials, which are charac-
terized by δ-function correlations. In addition to the model
where the scalar and vector potentials are independent, we
also consider the one where they are strongly correlated. All of
our numerical results are essentially exact for all strengths of
disorder. Our main focus is to obtain the generalized condition
for total transmission and those for complete delocalization in
our random models and to understand them in an intuitive and
physical way.

We study our problem using three different approaches.
Starting from the Dirac equation, we deduce an analytical
expression for the effective wave impedance, in which we
derive the condition for total transmission and those for de-
localization in our random models analytically. Based on the
invariant imbedding method (IIM) for solving wave equations
[40–45], we also derive the invariant imbedding equations
for the reflection and transmission coefficients. By applying
a stochastic averaging technique to them and solving the
resulting equations numerically, we calculate the localization
length exactly for an arbitrary strength of disorder. In addi-
tion, by applying the perturbation expansion method to the
invariant imbedding equations, we derive concise analytical
expressions for the localization length, which are extremely
accurate in the weak and strong disorder regimes.

One of the main advantages of the IIM for the study
of localization is that it is possible to perform the disorder
averaging analytically in an exact manner and convert the
random problem to an equivalent deterministic one. In other
studies, disorder was introduced in the superlattice model by
assigning the values of the potential and the layer widths
randomly. The disorder averages of various quantities were
obtained by repeating a large number of calculations for many
random configurations and averaging over the results. In order
to obtain reliable disorder averages using this type of method,
one usually needs to do the calculations for a very large
number of configurations.

Using our approaches, we calculate the dependencies of
the localization length on incident angle, disorder strength,
and particle energy in detail and compare the results with
those of previous works. We find some crucial discrepancies
and surprising new results. We derive the incident angles
at which obliquely incident electron waves are either totally
transmitted or completely delocalized for two different ran-
dom models. We find that these conditions, which include the
ordinary Klein tunneling as a special case, can be understood
completely through the concept of wave impedance. In the
presence of a vector potential, these angles can be tuned to
arbitrary values. We also explain the counterintuitive phe-
nomenon that, in certain cases, the localization is destroyed

as the strength of scalar potential disorder increases to infinity
using the impedance concept.

The rest of this paper is organized as follows. In Sec. II
we introduce the two random models used in this study. In
Sec. III the IIM for the calculation of the localization length is
described and the invariant imbedding equations are derived.
In Sec. IV we deduce an expression for the wave impedance,
in which we derive the condition for total transmission and
those for delocalization analytically. By applying the pertur-
bation expansion method to the invariant imbedding equations
in Sec. V, we derive analytical expressions for the localization
length in the weak and strong disorder regimes. In Sec. VI we
present detailed numerical results obtained using the IIM and
discuss the dependencies of the localization length on incident
angle, disorder strength, and particle energy. We conclude the
paper in Sec. VII with some remarks on the implications of
our results for experiments.

II. MODEL

We are interested in the localization of massless Dirac
electrons in 2D systems such as monolayer graphene in the
presence of 1D random scalar and vector potentials. Our the-
ory can also be applied to the localization of electromagnetic
waves in graphenelike photonic systems. The graphene layer
is in the xy plane and the scalar potential U and the vector
potential A (=Ay ŷ) are assumed to be functions of x only. The
scalar potential can be generated by various methods includ-
ing the electric field effect and chemical doping. The vector
potential is related to an external magnetic field perpendicular
to the graphene plane B = B0ẑ, by B0(x) = dAy (x)/dx. It
can also be induced by physical strain.

The motion of electrons in our system is described by the
2D Dirac Hamiltonian of the 2 × 2 matrix form

H =
(

U vF (πx − iπy )
vF (πx + iπy ) U

)
, (1)

where vF (≈106 m/s) is the graphene Fermi velocity. The x

and y components of the kinetic momentum operator πx and
πy are given by

πx = h̄

i

d

dx
, πy = h̄q + eAy, (2)

where e is the elementary charge and q is the y component of
the wave vector, which is a constant of the motion. The 2D sta-
tionary Dirac equation, which follows from the Hamiltonian,
takes the form

d

dx

(
ψA

ψB

)
=

(
ka + q ik(1 − u)

ik(1 − u) −ka − q

)(
ψA

ψB

)

= k

(
β iε

iε −β

)(
ψA

ψB

)
, (3)

where k [=E/(h̄vF )] is the wave number for the electron
wave in free space and E (>0) is the electron energy. The
dimensionless scalar and vector potentials u and a and the
supplementary functions ε and β are defined by

u = U

E
, a = eAy

h̄k
, ε = 1 − u, β = q

k
+ a. (4)
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It is easy to see that the localization behavior in the negative
energy case is the same as that in the positive energy case with
the opposite signs of the scalar and vector potentials.

We are interested in the situation where U and Ay are
random functions of x in the region 0 � x � L and zero else-
where and consider two different random models. In model I
we assume that u and a are independent random functions of
x and are given by

u = u0 + δu(x), a = a0 + δa(x), (5)

where u0 and a0 are the disorder-averaged values of u and a

and δu(x) and δa(x) are Gaussian random functions satisfy-
ing

〈δu(x)δu(x ′)〉 = g̃uδ(x − x ′), 〈δu(x)〉 = 0,

〈δa(x)δa(x ′)〉 = g̃aδ(x − x ′), 〈δa(x)〉 = 0. (6)

The notation 〈· · · 〉 denotes averaging over disorder and g̃u

and g̃a are independent parameters characterizing the strength
of disorder. In model II we consider the situation where the
random functions δu(x) and δa(x) are not independent, but
proportional to each other such that

δa(x) = f δu(x), (7)

where f is a real constant. We point out that our vector
potential configuration corresponds to the external magnetic
field given by

B0(x) = h̄k

e
[a0δ(x) − a0δ(x − L)] + δB(x), (8)

where δB(x) is a random magnetic field fluctuating between
positive and negative values with zero average. When a0 is
zero, we have a purely random magnetic field. A similar type
of nonrandom models with two δ functions of opposite signs
have been studied previously [46]. From the definition of the
dimensionless parameter ga to be defined in Eq. (20), we can
relate it to the magnitude of the randomly fluctuating part of
the magnetic field |δB| by

|δB| ∼
√

gah̄E

lc
3e2vF

, (9)

where lc is the correlation length of the vector potential disor-
der. If we substitute E = 20 meV, lc = 10 nm, and ga = 0.01,
we obtain |δB| ∼ 0.36 T.

III. INVARIANT IMBEDDING METHOD

We use the IIM to solve the Dirac equation in the presence
of random potentials. Similar methods have been applied in
previous studies of the localization of electromagnetic waves
in random dielectric media [41,47–49]. We assume that an
electron plane wave is incident from a uniform region (x > L)
onto the random region (0 � x � L) obliquely at an angle
θ and transmitted to another uniform region (x < 0). The
wave function ψA (or equivalently ψB) in the incident and
transmitted regions can be expressed in terms of the reflection
coefficient r and the transmission coefficient t :

ψA(x, L) =
{
e−ip(x−L) + r (L)eip(x−L), x > L,

t (L)e−ipx, x < 0,
(10)

where r and t are regarded as functions of L. The y and
(negative) x components of the wave vectors q and p are
related to θ by q = k sin θ and p = k cos θ . Once ψA is
obtained from the IIM, ψB can be calculated using

ψB = − i

kε

dψA

dx
+ i

β

ε
ψA. (11)

Starting from Eq. (3), we are able to derive exact differen-
tial equations satisfied by r and t using the IIM developed in
Ref. [45], which have the forms

1

k

dr

dl
= −e−iθ (ε tan θ − β sec θ ) + 2i(ε sec θ − β tan θ ) r

+ eiθ (ε tan θ − β sec θ )r2,

1

k

dt

dl
= i(ε sec θ−β tan θ )t+eiθ (ε tan θ−β sec θ )rt. (12)

We can obtain r and t by integrating these equations numeri-
cally from l = 0 to l = L with the initial conditions r (0) = 0
and t (0) = 1.

If the potentials are nonzero in the transmitted region
where x < 0, we need to solve the same differential equations
with the modified initial conditions obtained using the Fresnel
formulas, which take the form

r (0) = e−iθ − Q

eiθ + Q
, t (0) = 2 cos θ

eiθ + Q
, (13)

where Q is defined by

Q = p2

kε2
− i

β2

ε2
, ε2 = 1 − u2, β2 = sin θ + a2. (14)

The parameters u2, a2, ε2, and β2 are, respectively, the values
of u, a, ε, and β in the region x < 0 and p2 is the negative
x component of the wave vector in the same region. Since p2

satisfies p2
2 + k2β2

2 = k2ε2
2, we can calculate p2 from

p2

k
=

{
sgn(ε2)

√
ε2

2 − β2
2 if ε2

2 � β2
2,

i
√

β2
2 − ε2

2 if ε2
2 < β2

2.
(15)

After obtaining r and t , we calculate the reflectance R and the
transmittance T from

R = |r|2, T =
{

sgn(ε2 )
√

ε2
2−β2

2

ε2 cos θ
|t |2 if ε2

2 � β2
2,

0 if ε2
2 < β2

2.
(16)

With these definitions, R and T satisfy the law of energy
conservation R + T = 1.

One of the main advantages of using the IIM is that the
disorder averaging can be performed analytically in an exact
manner. We use Eq. (12) to calculate the disorder averages of
various physical quantities consisting of r and t exactly. In
this paper we are mainly interested in the localization length
ξ defined by

ξ = − lim
L→∞

(
L

〈ln T 〉
)

. (17)

The nonrandom differential equation satisfied by 〈ln T 〉 can be
obtained using the second of Eq. (12) and Novikov’s formula
[50] and, in the case of model I, takes the form

−1

k

d〈ln T 〉
dl

=C1+Re[2eiθ (C0−iC2)Z1−e2iθC1Z2], (18)
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where Zn (n = 1, 2) is equal to 〈rn〉 and the parameters C0,
C1, and C2 are defined by

C0 = u0 tan θ + a0 sec θ, C1 = gu tan2 θ + ga sec2 θ,

C2 = (gu + ga ) sec θ tan θ. (19)

The dimensionless disorder parameters gu and ga , which can
take any arbitrary nonnegative real values, are defined by

gu = g̃uk, ga = g̃ak. (20)

In general, our method can be applied to the case where u0,
a0, gu, and ga are arbitrary nonrandom functions of x. In
this paper we restrict to the case where they are constants
independent of x. In that case, the left-hand side of Eq. (18)
approaches asymptotically to a constant 1/(kξ ) in the l → ∞
limit. Therefore we need to calculate Z1 (= 〈r〉) and Z2 (=
〈r2〉) in the l → ∞ limit to obtain the localization length.

To calculate Z1 and Z2 for use in Eq. (18), we derive an
infinite number of coupled nonrandom differential equations
satisfied by the moments Zn, where n is an arbitrary nonnega-
tive integer, using the first of Eq. (12) and Novikov’s formula.
These equations turn out to take the form

1

k

dZn

dl
= [2in(cos θ − u0 sec θ − a0 tan θ )

+ gun
2(1 − 3 sec2 θ ) − gan

2(1 + 3 tan2 θ )]Zn

− neiθ [C0 − i(2n + 1)C2]Zn+1

+ ne−iθ [C0 − i(2n − 1)C2]Zn−1

+ 1

2
n(n + 1)e2iθC1Zn+2

+ 1

2
n(n − 1)e−2iθC1Zn−2. (21)

If the potentials are zero in z > L and z < 0, the initial
conditions for Zn’s are Z0 = 1 and Zn(l = 0) = 0 for n >

0. In the l → ∞ limit, all Zn’s become independent of l

and the left-hand sides of these equations vanish. Then we
obtain an infinite number of coupled algebraic equations. The
moments Zn with n > 0 are coupled to one another and their
magnitudes decrease rapidly as n increases. Based on this
observation, we solve these algebraic equations numerically
by a systematic truncation method described in Ref. [41].

In model II δu(x) and δa(x) are not independent, but
proportional to each other. This condition leads to completely
different equations for Zn and 〈ln T 〉. The invariant imbedding
equation for Zn in this case is written as

1

k

dZn

dl
= {2in(cos θ − u0 sec θ − a0 tan θ )

+ gun
2[1 − f 2 − 3(sec θ + f tan θ )2]}Zn

− neiθ [C0 − i(2n + 1)D2]Zn+1

+ ne−iθ [C0 − i(2n − 1)D2]Zn−1

+ 1

2
n(n + 1)e2iθD1Zn+2

+ 1

2
n(n − 1)e−2iθD1Zn−2, (22)

where D1 and D2 are defined by

D1 = gu(tan θ + f sec θ )2,

D2 = gu(sec θ + f tan θ )(tan θ + f sec θ ). (23)

The equation for the localization length takes the form

1

kξ
= −1

k
lim
l→∞

(
d〈ln T 〉

dl

)

= D1 + Re[2eiθ (C0 − iD2)Z1(l → ∞)

− e2iθD1Z2(l → ∞)]. (24)

IV. INTERPRETATION OF KLEIN TUNNELING
AND RELATED DELOCALIZATION PHENOMENA USING

THE CONCEPT OF WAVE IMPEDANCE

A. Effective wave impedance

Klein tunneling originally refers to the phenomenon that
Dirac fermions entering a large potential barrier are trans-
mitted almost completely as the barrier becomes higher and
wider [38]. In the case of massless Dirac fermions such as the
electrons in monolayer graphene, the transmission is perfect
regardless of the strength and the shape of the potential when
electrons are incident normally on it [39]. Such perfect trans-
mission occurs even in the case where the potential is a 1D
random function of the position. This unique delocalization
phenomenon, which we call Klein delocalization, has been
demonstrated in some previous papers [35–37].

Several different concepts and approaches, which include,
for example, particle-antiparticle pair production and chirality
conservation, have been used to explain Klein tunneling and
related Klein delocalization phenomena. In this paper we
approach these phenomena from the viewpoint of classical
wave propagation theory and demonstrate that they can be
interpreted readily using the concept of wave impedance.

With that purpose in mind, we rewrite the Dirac equation
[Eq. (3)] as the wave equation for ψA by eliminating ψB ,
which takes the form

d

dx

(
1

ε

dψA

dx

)
+ p2εη2ψA = 0, (25)

where η is defined by

η2 = 1

cos2 θ

[
1 −

(
β

ε

)2

− 1

kε

d

dx

(
β

ε

)]
. (26)

We notice that the wave equation of this form looks the same
as that for p-polarized electromagnetic waves propagating
normally in a medium with the effective wave impedance
given by η(x).

In the incident region where the potentials u and a are zero,
ε is equal to 1 and β is equal to sin θ , therefore η is equal to 1
for all θ . If η is unity in all other parts of the space as well, then
there will be no wave reflection and the transmittance will be
1. From the form of η we find that total transmission can arise
only when the parameter β/ε is a constant independent of x.
In that case, the expression for η is simplified to

η2 = 1

cos2 θ

[
1 −

(
β

ε

)2
]
. (27)
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Sometimes, it is more convenient to rewrite Eq. (3) as
another alternative form

d

dx

(
1

β

dψA

dx

)
− 1

ε

d

dx

(
ε

β

)
dψA

dx
+ p2βη̃2ψA = 0, (28)

where η̃ is given by

η̃2 = 1

cos2 θ

[(
ε

β

)2

+ 1

kε

d

dx

(
ε

β

)
− 1

]
. (29)

When ε/β is independent of x, these equations are simplified
to

d

dx

(
1

β

dψA

dx

)
+p2βη̃2ψA = 0, η̃2 = 1

cos2 θ

[(
ε

β

)2

−1

]
.

(30)

Again, the uniformity of ε/β implies that of the effective wave
impedance η̃.

B. Generalized Klein tunneling in inhomogeneous potentials

The condition for total transmission is obtained by setting η

equal to 1 in Eq. (27). We obtain two solutions, which are a =
−u sin θ and a = (u − 2) sin θ , respectively. Only the first of
these two is the real solution because, in the second case, β/ε

changes discontinuously from sin θ to − sin θ as the wave
enters obliquely from the incident region and the derivative
term in Eq. (26) is nonzero. Therefore the expression for the
incident angle θK at which the transmittance is identically
equal to 1 becomes

sin θK = −a

u
= −evF Ay

U
. (31)

If there is no vector potential, then this condition is sat-
isfied at θK = 0 for any arbitrary functional form of U (x),
which corresponds to the ordinary Klein tunneling at normal
incidence. In the presence of a vector potential, θK exists only
if a/u is a real constant in the range −1 < a/u < 1. Then the
analogy of Klein tunneling arises for particles incident at a
nonzero angle θK . It is interesting to note that this condition
can be satisfied even if a(x) and u(x) are arbitrary functions
of x, including random functions, as long as their ratio is
constant.

In Fig. 1 we illustrate the total transmission phenomenon
at oblique angles of incidence, when u and a are given by the
linear functions u = um(1 − x/L) and a = am(1 − x/L) in
the region 0 � x � L. In the incident region (x > L), u and
a are both zero, and in the transmitted region (x < 0), we set
u = um and a = am to make the potentials continuous. The
linear vector potential corresponds to an external magnetic
field of |B0| = Eam/(evF L) in the −z direction, while the
linear scalar potential corresponds to an external electric field
of |E0| = Eum/(eL) in the −x direction. Since the ratio of a

and u is a constant, we find θK = −60◦, −30◦, 0◦, 30◦, and
60◦ when um and am are given by um = 2 and am = 1.732,
1, 0, −1, and −1.732, which is clearly verified by the sharp
transmission peaks shown in Fig. 1. These peaks become
sharper as the thickness of the nonuniform region L gets
larger. The angle θK can be tuned easily by tuning either the
external magnetic field or the external electric field. We notice

FIG. 1. Transmittance T plotted versus incident angle θ , when
massless Dirac particles are incident on an inhomogeneous strip of
thickness L with the normalized scalar potential u = 2 − 2x/L, and
the normalized vector potential a = am(1 − x/L) (am = 1.732, 1,
0, −1, −1.732), in the region 0 � x � L. In the transmitted region
(x < 0), the potentials are u = 2 and a = am. The strip thickness is
given by (a) kL = 100 and (b) kL = 1000.

that our system in the present geometry can function as a very
efficient directional filter.

C. Delocalization condition in the presence of random scalar
and vector potentials

Now we return to the case where the potentials are random.
We are interested in deriving the delocalization condition,
which is in general distinct from the total transmission con-
dition, Eq. (31). The wave is delocalized and the localiza-
tion length diverges only if the effective impedance η is
nonrandom, whereas the total transmission occurs when η is
identically equal to 1. Therefore the delocalization condition
is a much weaker condition.

There are three different ways in which the nonrandomness
or uniformity of β/ε can be achieved. If only the scalar poten-
tial u (therefore, only ε) is random and the vector potential is
constant, then we are forced to set β = 0 in order to make β/ε

nonrandom. In this case the wave is delocalized at the incident
angle θR satisfying

sin θR = −a0, (32)

where |a0| < 1. When a0 is zero, this gives θR = 0, which is
the same as the total transmission condition and corresponds
to the usual Klein tunneling of normally incident massless
Dirac electrons in a 1D random scalar potential. In general
cases where a0 is nonzero, however, this condition is different
from Eq. (31) and the two angles θR and θK are different.
Since the medium is effectively uniform when the wave is in-
cident at θR , it propagates without an exponential decay. How-
ever, since the effective impedance given by η = | cos θR|−1 is
not equal to 1, the wave is reflected at the interfaces and the
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disorder-averaged transmittance of a strip of finite thickness is
smaller than 1.

Second, when only the vector potential a (therefore, only
β) is random and the scalar potential is constant, it is more
convenient to use the alternative expression Eq. (30), from
which a necessary condition for the nonrandomness of η̃ is
seen to be ε = 0, or equivalently, E = U . In this case, how-
ever, the value of η̃2 is −1/ cos2 θ , and therefore the effective
impedance η̃ is imaginary. Then the wave becomes evanescent
and decays exponentially in a manner similar to localized
waves. An exception to this occurs when β0 (= sin θ + a0)
is also zero simultaneously. In later sections, we will show
analytically and numerically that the localization length in this
case indeed diverges.

Finally, when both u and a are random, a necessary con-
dition for η to be nonrandom is that δa(x) and δu(x) have to
be proportional to each other, such that δa(x) = f δu(x), as in
our model II. Then the condition that β/ε is uniform gives

sin θS = −a0 − f (1 − u0), (33)

where the constant in the right-hand side should satisfy |a0 +
f (1 − u0)| < 1. In this case we define θS as the delocalization
angle. We also need an additional constraint |f | < 1 to have a
propagating wave. The effective impedance at θS given by

η2 = 1 − f 2

cos2 θS

(34)

is not equal to 1. If |f | < 1, η is real and the disorder-
averaged transmittance of a finite strip is smaller than 1. The
total transmission can be obtained if a0 is proportional to u0

with the same proportionality constant f , such that a(x) =
f u(x). This case just corresponds to Eq. (31) with both u and
a as random functions. On the other hand, if |f | � 1, η is
either zero or imaginary and the wave decays exponentially.

D. Alternative derivation of the delocalization condition using
the Fresnel formula

Alternatively, we can derive the delocalization condition
using the Fresnel formula for the reflection coefficient. We
consider our stratified random medium as consisting of a large
number of very thin strips. The reflection coefficient between
two neighboring strips is written as

r = p/ε − p′/ε′ − ik(β/ε − β ′/ε′)
p/ε + p′/ε′ + ik(β/ε − β ′/ε′)

, (35)

where p (p′) is the negative x component of the wave vector
in the first (second) strip with the parameters ε and β (ε′ and
β ′). Since p satisfies p2 + k2β2 = k2ε2, we can introduce φ

(and similarly φ′) such that

p

ε
= k cos φ,

β

ε
= sin φ. (36)

Then r is written as

r = e−iφ − e−iφ′

eiφ + e−iφ′ , (37)

which vanishes when φ = φ′, or equivalently, when β/ε =
β ′/ε′. If this condition is maintained throughout the system,
we expect to have perfect transmission and delocalization.

E. Counterintuitive delocalization in the strong disorder limit

Our formalism based on the concept of wave impedance
can be used to predict and explain the counterintuitive de-
localization phenomena arising in the infinite disorder limit
in some cases. We first consider the case where only the
scalar potential is random. Then, from the expression of the
impedance, Eq. (26), we find that in the strong disorder limit
where δu is statistically much larger than 1, the last two terms
become negligibly small and the impedance approaches a
constant given by η ≈ | cos θ |−1. Therefore, as the disorder
parameter gu approaches infinity, the system becomes less
and less random and the localization length should diverge for
all θ . This behavior will be verified analytically by solving
our invariant imbedding equations using a strong-disorder
expansion in Sec. V B and confirmed in a precise numerical
calculation in Sec. VI B.

Next, we consider the case where only the vector poten-
tial is random. Then from the alternative expression of the
impedance [Eq. (29)] we find that in the strong disorder limit
where δa is statistically much larger than 1, the impedance
approaches a constant given by η̃2 ≈ −1/ cos2 θ . Therefore
the impedance is nonrandom, but imaginary, which leads to a
finite decay rate independent of the disorder strength ga in the
ga → ∞ limit. The analytical expression of the localization
length in the large disorder limit to be derived in the next
section will show just such a behavior.

Finally, in the case where δa(x) and δu(x) are proportional
to each other such that δa(x) = f δu(x), we find from Eq. (26)
that in the strong disorder limit, the impedance approaches a
constant given by η2 ≈ (1 − f 2)/ cos2 θ . When |f | is smaller
than 1, this constant is real and we have a complete delocal-
ization and a diverging localization length for all θ in the large
disorder limit, whereas, when |f | � 1, the impedance is either
zero or imaginary. In this latter case, the localization length
approaches a constant as the disorder parameter increases to
infinity. These behaviors will be also confirmed in the next
sections.

V. ANALYTICAL EXPRESSIONS FOR
THE LOCALIZATION LENGTH IN THE WEAK

AND STRONG DISORDER REGIMES

A. Weak disorder regime

Starting from the invariant imbedding equations, Eqs. (18),
(21), (22) and (24), and applying the perturbation theory, it
is possible to derive accurate analytical expressions for the
localization length in the weak and strong disorder limits.
We first consider the weak disorder regime. We write the
reflection coefficient r as r = r0 + δr , where r0 is the re-
flection coefficient from an interface between free space and
a half-space medium with the parameters ε0 and β0. The
expression for r0 can be obtained from that of r (0) in Eq. (13)
by replacing ε2 and β2 with ε0 and β0, respectively.

By substituting r = r0 + δr into the infinite number of
algebraic equations obtained from Eq. (21), we get an infinite
number of coupled equations for 〈(δr )n〉 for all integers n.
We expand these averages, which are at least of the first order
in gu and ga , in terms of the small perturbation parameters
gu and ga . From analytical considerations and numerical
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calculations, we can demonstrate that the leading terms for
〈δr〉 and 〈(δr )2〉 are of the first order, while that of 〈(δr )3〉
is of the second order, except at incident angles close to the
critical angle of total reflection. From this consideration, we
substitute

Z1 = r0 + 〈δr〉, Z2 = r2
0 + 2r0〈δr〉 + 〈(δr )2〉,

Z3 ≈ r3
0 + 3r2

0 〈δr〉 + 3r0〈(δr )2〉, (38)

into Eq. (21) when n = 1 and 2 in the l → ∞ limit and obtain
two coupled equations for 〈δr〉 and 〈(δr )2〉. We solve these
equations analytically and substitute the resulting expression
for 〈δr〉 into Eq. (18) to the leading order in the disorder
parameters. We note that to the leading order, we have a
simplification and do not need 〈(δr )2〉 in this equation. The
result for the localization length in model I is very simple and
takes the form

1

kξ
= 2

√
β2

0 − ε2
0�

(
β2

0 − ε2
0

) + guβ
2
0 + gaε

2
0

ε2
0 − β2

0

, (39)

where � is the step function, �(x) = 1 for x > 0 and 0 for
x < 0.

From the form of Eq. (39), it follows that there is a
symmetry under the sign change of ε0 and β0. It turns out
that this feature is not limited to the weak disorder regime, but
is valid in all parameter ranges including the intermediate and
strong disorder regimes. If only the scalar potential is random
(therefore, ga = 0) and |ε0| is greater than |β0|, the explicit
form of the normalized localization length is

kξ = (1 − u0)2 − (sin θ + a0)2

gu(sin θ + a0)2 , (40)

which is valid for all θ . If u0 �= 1, this expression diverges
at θ = θR given by sin θR = −a0, as expected from our argu-
ment based on the impedance concept. When u0 = a0 = 0, it
reduces to kξ = (gu tan2 θ )−1, which diverges at θ = 0. The
same θ dependence was reported in Ref. [37], though the
result there differs from ours in that the tan−2 θ dependence
was obtained for both the u0 = 0 and u0 �= 0 cases. If u0 �= 1
and a0 = 0, kξ can be approximated as kξ ≈ (ε0

2/gu) sin−2 θ

near θ = 0. The same sin−2 θ dependence was reported in Ref.
[20], though the average scalar potential corresponding to our
u0 was zero in that work. In the more general cases where
both u0 and a0 are nonzero, we can write an approximate
expression near θR as

kξ ≈ (1 − u0)2

(gu cos2 θR )(θ − θR )2 . (41)

We have verified numerically using the IIM that the
(θ − θR )−2 dependence is not limited to the weak disorder
regime, but is valid in all parameter ranges including the
intermediate and strong disorder regimes in model I with only
scalar potential disorder.

Another interesting point to make is that in the total reflec-
tion (or tunneling) regime where |β0| > |ε0|, the localization
length increases as the disorder parameter increases, as can
be seen easily from Eq. (39). This is an example of the well-
known disorder-enhanced tunneling phenomenon [49,51–54],
which has not been discussed before in the context of Dirac
electrons in a random potential.

Next, we consider the case where only the vector potential
is random (therefore, gu = 0). If ε0 �= 0 (that is, u0 �= 1), the
localization length does not diverge and takes a maximum
value equal to ga

−1 at the angle satisfying β0 = 0, away from
which it decreases parabolically. In the special case where
u0 = a0 = 0, kξ is given by kξ = cos2 θ/ga . The same cos2 θ

dependence was reported in Ref. [37]. The divergent behavior
can occur if ε0 is zero, as we have argued in Sec. IV C. In that
case, we find from Eq. (39) that

kξ = 1

2|β0| , (42)

which diverges as β0 → 0. The disorder-enhanced tunneling
phenomenon also occurs in this case.

In a similar manner as in model I, we can derive the
expression for the localization length for model II in the weak
disorder regime, which takes the form

1

kξ
= 2

√
β2

0 − ε2
0�

(
β2

0 − ε2
0

) + gu(β0 + f ε0)2

ε2
0 − β2

0

. (43)

We observe that the symmetry with respect to the sign change
of ε0 and β0 is absent. The localization length can diverge if
the incident angle satisfies β0 + f ε0 = 0, which is the same
condition as Eq. (33) obtained in Sec. IV C. However, this is
not sufficient, but we need an additional condition |ε0| > |β0|
in order not to have the first term in the right-hand side
of Eq. (43), which gives the additional constraint |f | < 1.
Near the angle θS given by Eq. (33), kξ is approximated
as

kξ ≈ (1 − f )2(1 − u0)2

(gu cos2 θS )(θ − θS )2 . (44)

We have verified that the (θ − θS )−2 dependence is not limited
to the weak disorder regime, but is valid in all parameter
ranges in model II with |f | < 1. On the other hand, the
case with |f | > 1 shows a close similarity to model I with
only vector potential disorder. From Eq. (39), it is straight-
forward to show that the localization length takes a finite
maximum value equal to [gu(f 2 − 1)]−1 at the angle satis-
fying β0 = −ε0/f . In addition, the disorder-enhanced tunnel-
ing phenomenon occurs in model II regardless of the value
of f .

We have made extensive comparisons between our exact
numerical results obtained using the IIM and the analytical
formulas [Eqs. (39) and (43)] and found that both of these
equations are extremely accurate except very close to the
region where |β0| = |ε0|, if the disorder parameters are suf-
ficiently small. We show some examples of this comparison
in Fig. 2 to illustrate the accuracy.

B. Strong disorder regime

In this subsection we present the analytical expressions
for the localization length in the strong disorder regime. The
idea of the perturbation theory is similar to the weak disorder
case, but instead of expressing r as r = r0 + δr , we write
r = r∞ + δr , where r∞ is the reflection coefficient from an
interface between free space and an infinitely disordered half-
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FIG. 2. Illustration of the comparison between the numerical
results obtained using the IIM and the analytical formulas for the
localization length presented in Sec. V. (a) Normalized localization
length kξ plotted versus incident angle θ for electron waves in
model I, when ga = 0 and u0 = 0. The left curve is for gu = 0.01
and a0 = 0.5 and is compared with Eq. (39), while the right curve
is for gu = 100 and a0 = −0.3 and is compared with Eq. (48).
(b) Normalized localization length versus incident angle in model I,
when ga = 0.01, gu = 0, u0 = 0.5, and a0 = −0.6. The IIM result is
compared with Eq. (39). (c) Normalized localization length versus
incident angle in model II, when f = 0.6 and u0 = 0.5. The left
curve is for gu = 0.01 and a0 = 0.2 and is compared with Eq. (43),
while the right curve is for gu = 100 and a0 = −1.2 and is compared
with Eq. (51).

space medium with the parameters ε0 and β0, which is given
by

r∞ =
⎧⎨
⎩

e−iθ −1
eiθ +1 , if ε0 > 0,

e−iθ +1
eiθ −1 , if ε0 < 0.

(45)

We first consider model I with only scalar potential dis-
order. Similarly to the weak disorder case, we substitute r =
r∞ + δr into Eq. (21) and get an infinite number of coupled
equations for 〈(δr )n〉. We expand these averages in terms
of the small perturbation parameter gu

−1. From analytical
considerations and numerical calculations we can demonstrate
that the leading terms for 〈δr〉, 〈(δr )2〉, and 〈(δr )3〉 are,
respectively,

〈δr〉 ∝ gu
−1, 〈(δr )2〉 ∝ gu

−2, 〈(δr )3〉 ∝ gu
−3. (46)

We substitute

Z1 = r∞ + 〈δr〉, Z2 = r2
∞ + 2r∞〈δr〉 + 〈(δr )2〉,

Z3 = r3
∞ + 3r2

∞〈δr〉 + 3r∞〈(δr )2〉 + 〈(δr )3〉, (47)

into Eq. (21) when n = 1, 2, and 3 in the l → ∞ limit
and obtain three coupled equations for 〈δr〉, 〈(δr )2〉, and
〈(δr )3〉. We solve these equations analytically and substitute
the resulting expressions for the three averages into Eq. (18)
to the leading order in the parameter gu

−1. The result for the
localization length is given by

kξ = gu

β0
2 = gu

(sin θ + a0)2 , (48)

which is valid for all θ and diverges at θR given by Eq. (32).
Close to θR , it is approximated as

kξ ≈ gu

(cos2 θR )(θ − θR )2 . (49)

We notice that the localization length does not depend
on the average value of the scalar potential u0 in the strong
disorder regime. We also notice that ξ diverges in the infinite
disorder limit for any values of u0, a0, and θ since kξ ∝
gu. We have already predicted and explained this intriguing
behavior using the impedance concept in Sec. IV E. If there is
no vector potential, then kξ is given by kξ = gu/ sin2 θ for all
θ . We have verified that the agreement between Eq. (48) and
the numerical results is perfect in the region where gu  1.

When only the vector potential is random in model I, a
similar derivation as above gives the following expression for
the localization length:

1

kξ
= 2|β0| + ε0

2

ga

. (50)

In the strong disorder limit, this expression approaches 2|β0|,
which is independent of the disorder parameter. Therefore,
except at the angle where β0 = 0, the localization length is a
finite constant independent of ga . This behavior has also been
predicted using the impedance concept in Sec. IV E. Unfortu-
nately, it turns out that the systematic truncation method we
use for solving the invariant imbedding equations converges
too slowly in the present parameter regime and cannot provide
sufficiently accurate results, and therefore we do not make
comparisons between the IIM and Eq. (50).

Finally, in the case of model II, a similar strong-disorder
perturbation method gives the following expression for the
localization length:

1

kξ
=

⎧⎨
⎩

1
gu

(
β0+f ε0

1−f 2

)2
, if |f | < 1,

2|ε0+fβ0|√
f 2−1

+ 1
gu

(
β0+f ε0

f 2−1

)2
, if |f | > 1.

(51)

In the case where |f | < 1, kξ diverges at the angle θS given
by Eq. (33). In addition, in the infinite disorder limit, it
diverges as kξ ∝ gu for all parameter values and for all θ , as
in the case of model I with only scalar potential disorder. The
agreement between Eq. (51) and the IIM results is perfect,
as shown in Fig. 2(c). If |f | > 1, the overall behavior is
similar to model I with only vector potential disorder. As gu

approaches infinity, kξ approaches an expression independent
of gu. Therefore, except at the angle where β0 + f ε0 = 0, the
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FIG. 3. Normalized localization length kξ plotted versus incident
angle θ for electron waves in model I, when ga = 0, a0 = 0, ±0.5,
±0.9, and (a) gu = 0.01, u0 = 0, (b) gu = 0.01, u0 = 0.5, (c) gu =
0.01, u0 = 1, and (d) gu = 100. There is no noticeable dependence
on u0 when gu = 100.

localization length is a finite constant independent of gu. The
same behavior has also been predicted using the impedance
concept in Sec. IV E. The truncation method used for solving
our invariant imbedding equations converges too slowly in
the present parameter regime and cannot provide sufficiently
accurate results.

VI. NUMERICAL RESULTS

A. Incident angle dependence

In this section we present the results of our comprehensive
numerical calculations obtained using the IIM. We first con-
sider the incident angle dependence of the localization length.
In Fig. 3 we plot the normalized localization length kξ as a
function of the incident angle θ for electron waves in model
I, when only the scalar potential is random and the vector
potential is constant. We show the results for small (gu =
0.01) and large (gu = 100) values of the disorder parameter
gu. When gu is small, we compare the results obtained for
three different values of u0 (= 0, 0.5, 1). The dependence on
u0 disappears completely in the strong disorder regime.

In all cases we find that the localization length indeed
diverges precisely at θR given by sin θR = −a0, if |a0| � 1. If
|a0| > 1, no Klein delocalization occurs. At θR , the electron

matter wave is extended, as if it is in a nonrandom medium.
For a0 = 0, ±0.5, and ±0.9 shown here, these angles are 0◦,
∓30◦, and ∓64.16◦. In addition, we find that the symmetry
under the sign change of ε0 (= 1 − u0) and β0 (= sin θ + a0)
is strictly obeyed. For instance, the results for u0 = 0 and
u0 = 2 are identical and the curves for a0 and −a0 are mirror
symmetric with respect to θ = 0. In fact, we have verified
that the divergence of ξ at θR and the symmetry property
mentioned above are maintained for all parameter values
including the intermediate values of the disorder parameter.

The curves shown in Figs. 3(a) and 3(b) agree extremely
well with the analytical formula, Eq. (39), except for very
close to the critical angles of total reflection defined by
sin θc = −a0 ± (1 − u0), if they exist. Near θc, a small dif-
ference in parameters can cause a large change of the reflec-
tion coefficient, and therefore the perturbation theory is not
reliable. On the other hand, the curves shown in Fig. 3(d)
agree perfectly with the formula in the strong disorder regime,
Eq. (48).

In Fig. 3(c) we show the weak disorder results obtained for
u0 = 1, which corresponds to the special case where E = U0.
In this case, the expression β/ε in Eq. (26) can be written
as −(δu/β0)−1, where δu/β0 plays the role of the effective
random part. Therefore, as θ approaches θR , this case becomes
equivalent to the case in the strong disorder limit where
Eq. (48) is applied. In fact, this formula agrees with Fig. 3(c)
quite well near θR .

From the analytical formulas, Eqs. (41) and (49), we find
that in the presence of only scalar potential disorder, the
localization length shows a divergent behavior of the form
kξ ∝ |θ − θR|−2 near θR both in the weak and strong disorder
limits. In fact, this dependence is more general and applies
also to the intermediate disorder case. In Fig. 4 we illustrate
this point by showing the results for various parameter values
in a log-log plot.

FIG. 4. Normalized localization length kξ plotted versus |θ −
θR| in a log-log plot, for electron waves in model I when only the
scalar potential is random (ga = 0). The four curves are obtained for
different values of the parameters u0, a0, and gu, which are shown in
the figure. All curves show the divergent behavior kξ ∝ |θ − θR|−2

near θR .
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FIG. 5. Normalized localization length kξ plotted versus incident
angle θ for electron waves in model I, when ga = 0.01, gu = 0, a0 =
0, ±0.5, ±0.9 and (a) u0 = 0.5 and (b) u0 = 1.

Next, we consider the case where only the vector potential
is random in model I. In this case, our general argument based
on the impedance concept and the analytical formulas for the
localization length show that the localization length is finite,
except for the special case where both ε0 and β0 are zero. This
is demonstrated in Fig. 5, where we show the results obtained
for ga = 0.01, gu = 0 and a0 = 0, ±0.5, ±0.9. In Figs. 5(a)
and 5(b) the value of u0 is 0.5 and 1, respectively. In Fig. 5(a)
we confirm that the localization length takes a maximum value
given by ga

−1 = 100 at the angle corresponding to β0 = 0, in
agreement with Eq. (39). In Fig. 5(b), which corresponds to
the case where ε0 = 0, we find that the localization length
indeed diverges at the angle θR . We have verified that the
curves shown here agree very well with the formula, Eq. (42).

Finally, we consider the case of model II, where the random
parts of the vector and scalar potentials are proportional to
each other with the proportionality constant f . In this case, if
|f | < 1, the overall behavior is rather similar to model I with
only scalar potential disorder, whereas if |f | > 1, it is similar
to model I with only vector potential disorder. We also notice
that there is no symmetry with the sign change of either ε0 or
β0. In Fig. 6(a) we show the weak disorder case where |f | is
smaller than 1. We find that the localization length diverges
precisely at the angle θS defined by Eq. (33). In Fig. 6(b) we
show the strong disorder case where |f | is smaller than 1.
Again, the localization length diverges at θS and the curves
agree perfectly with Eq. (51). In Fig. 6(c) we show the weak
disorder case where |f | is larger than 1. Similarly to the case
of model I with only vector potential disorder, the localization
length takes a finite maximum value [gu(f 2 − 1)]−1 at the
angle given by β0 = −ε0/f .

FIG. 6. Normalized localization length kξ plotted versus incident
angle θ for electron waves in model II, when u0 = 0.5. The values
of a0 are designated on the curves. The other parameters are (a) f =
0.6, gu = 0.01, (b) f = 0.6, gu = 100, and (c) f = 1.5, gu = 0.01.

When the Klein delocalization occurs, our results show
that the localization length has a single divergent peak at
the Klein delocalization angle, θR or θS , depending on the
model and is finite elsewhere. In Ref. [37] a phenomenon
termed delocalization resonance, referring to the divergence
or near divergence of the localization length at angles other
than the delocalization angle, was reported. By generalizing
our formalism to include a background periodic potential
in addition to the random potential, we have verified that
this phenomenon occurs due to the background periodic
potential and disappears completely if it is removed. The
complicated angle dependence of the transmittance showing
disorder-induced resonances in Ref. [36] also occurs due to
the interplay between the background periodic potential and
the random potential.

B. Disorder dependence

In this subsection we consider the dependence of the
localization length on the strength of disorder. In Fig. 7 we
show the result for model I with only scalar potential disorder,
when β0 is 0.5 and ε0 takes values around β0. When the
vector potential is nonzero, the result does not depend on θ

and a0 separately, but only on β0 (= sin θ + a0). We find that
there are three different types of behaviors, depending on the
relative magnitudes of ε0 and β0. In the weak disorder regime,
as the disorder parameter gu increases from zero, the local-
ization length is found to decrease if |ε0| � |β0| and increase
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FIG. 7. Normalized localization length plotted versus the
strength of scalar potential disorder gu for electron waves in model I,
when ga = 0, β0 = 0.5, and ε0 = 0.1, 0.48, 0.5, and 0.6.

if |β0| > |ε0|. The latter behavior is a case of the disorder-
enhanced tunneling phenomenon. On the other hand, in the
strong disorder regime, all curves converge to a single linear
one given by kξ = guβ0

−2, which shows the divergence of ξ

in the gu → ∞ limit. Therefore, in the region where |ε0| �
|β0|, the localization length has a nonmonotonic behavior as
shown by the curves for ε0 = 0.6 and 0.5. On the contrary,
in the opposite region where |ε0| is sufficiently smaller than
|β0|, the localization length increases monotonically as gu

increases from zero to infinity, as shown by the curve for ε0 =
0.1. This type of behavior has never been reported before.
Sufficiently close to the boundary |ε0| = |β0| but when |ε0| <

|β0|, we observe a very interesting behavior that ξ increases
initially, then decreases, and increases again to infinity, as
shown by the curve for ε0 = 0.48. When β0 = 0.5, we have
found numerically that this third behavior occurs in the narrow
region 0.44 � ε0 < 0.5. This type of double-nonmonotonic
behavior has also never been reported. Our analytical formulas
in Sec. V cannot be used in the region where |ε0| ≈ |β0|.
Therefore the intriguing nonmonotonic behavior there can
only be obtained numerically using the IIM.

Right at the boundary where |ε0| = |β0|, we observe that
the overall behavior is qualitatively similar to the case where
|ε0| > |β0|, but the dependence of ξ on gu in the small gu

region is quantitatively different. By careful numerical fitting
of the data, we have found with very high accuracy that ξ ∝
gu

−1/3 when |ε0| = |β0|, while ξ ∝ gu
−1 when |ε0| > |β0|,

in the small gu region. Contrasting scaling behaviors of this
kind are observed universally in the systems showing the
disorder-enhanced tunneling phenomenon and are similar to
what happens to the electromagnetic waves incident at the
critical angle on a randomly stratified dielectric medium [49].

We next consider model I with only vector potential
disorder in Fig. 8, when β0 = 0.5. The disorder-enhanced
tunneling phenomenon also occurs in this case when |β0| >

|ε0|. Therefore as the disorder parameter ga increases, ξ

initially increases if |β0| > |ε0| and decreases otherwise. As
ga increases further, ξ is found to decrease in all cases. In

FIG. 8. Normalized localization length plotted versus the
strength of vector potential disorder ga for electron waves in model
I, when gu = 0, β0 = 0.5, and ε0 = 0.1, 0.48, 0.5, and 0.6.

the region where ga is large, our numerical method con-
verges very slowly and we cannot obtain reliable numerical
results. However, we expect from the argument based on the
impedance concept and the analytical formula, Eq. (50), that
the localization length will approach a constant independent
of ga in the ga → ∞ limit.

In Fig. 9 we consider the case of model II, when β0 =
0.5. If |f | < 1 as in Fig. 9(a), the overall behavior is quite

FIG. 9. Normalized localization length plotted versus the
strength of scalar potential disorder gu for electron waves in model
II, when β0 = 0.5, ε0 = 0.1, 0.4, 0.48, 0.5, and 0.6 and (a) f = 0.5
and (b) f = 1.5.
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FIG. 10. Energy dependence of the localization length in model
I when there is only a random scalar potential. ξ is normalized by
the wave number associated with disorder ku [see Eq. (53)] and
k/ku [= E/(h̄vF ku) = gu

−1] is the normalized energy variable. In
(a), the parameter ũ0 (= u0k/ku) is zero and θ = 30◦. The IIM result
is compared with the analytical results in the high and low energy
limits. (b) ũ0 = 1, 3, 5 and θ = 30◦.

similar to model I with only scalar potential disorder. One
major difference from Fig. 7 is that in the strong disorder
limit, the limiting behavior is precisely given by kξ = gu(1 −
f 2)2/(β0 + f ε0)2, which depends on ε0 (therefore, u0). If
|f | > 1 as in Fig. 9(b), the overall behavior is also quite
similar to model I with only vector potential disorder. Again,
in the large gu region, we cannot obtain reliable numeri-
cal results, but we expect from the argument based on the
impedance concept and the analytical formula, Eq. (51), that
the localization length will approach a constant independent
of gu in the gu → ∞ limit.

C. Energy dependence

Until now, all physical quantities were made dimension-
less by a suitable normalization using the energy of the
incident particle E as in u = U/E and a = eAy/(h̄ck) =
evF Ay/(cE). In order to obtain the energy dependence of
the localization length properly, it is necessary to redefine the
dimensionless variables. In this subsection we will consider
two cases, which are model I with only scalar potential
disorder and model II with |f | < 1. For these cases, it is
convenient to normalize all quantities using the wave number
associated with the scalar potential disorder ku. We suppose
that the random part of the scalar potential δU (x) satisfies

〈δU (x)δU (x ′)〉 = Gδ(x − x ′). (52)

Then ku is defined by

ku = G

(h̄vF )2 . (53)

It can be simply related to the variables we have used by

ku = k2g̃u = kgu. (54)

We introduce new dimensionless variables

ũ0 = h̄vF U0

G
= u0

k

ku

, ã0 = eAy0

h̄ku

= a0
k

ku

, (55)

where U0 and Ay0 are the disorder averages of the scalar
and vector potentials and k/ku [= E/(h̄vF ku) = gu

−1] is the
dimensionless energy variable.

In Fig. 10 we plot the normalized localization length kuξ

versus k/ku in model I with only scalar potential disorder and
no vector potential, for various values of ũ0 and θ = 30◦. In
all cases, we find that in the low energy limit ξ is proportional
to E−2 and in the high energy limit it is a constant independent
of E. The behavior in the high energy limit is surprising and
somewhat counterintuitive in that the particles with extremely
high energy would show the same localization behavior as
those with much lower energy. We have also confirmed nu-
merically that the limiting value of kuξ in the high energy
limit is universal and precisely the same as cot2 θ , regardless
of the average values of the scalar and vector potentials. The
low energy behavior ξ ∝ E−2 also always holds if ã0 is zero.
However, the proportionality constant depends on ũ0. We have
found numerically that the low energy behavior is strongly
modified in the presence of the vector potential, but we will
not discuss it here. In Fig. 10(b) we show that the localization
length in the intermediate energy range, where k/ku ≈ ũ0 (or
equivalently, E ≈ U0), is suppressed and depends strongly on
the potential.

The energy dependence obtained here is in a direct contra-
diction with that in Ref. [20] [see Eq. (15)], where it has been
reported that in the large energy limit, the localization length
has an oscillatory dependence on the energy and its overall

FIG. 11. Energy dependence of the localization length in model
II with zero average values of the scalar and vector potentials when
θ = 30◦. The IIM result is compared with the analytical results in the
high and low energy limits.
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FIG. 12. Disorder-averaged transmittance 〈T 〉 versus incident
angle for model II with u0 = 0.5, a0 = −0.25, gu = 0.01, and kL =
1 and for f = −0.5, 0, 0.5.

size is proportional to E2. The oscillatory behavior is due to
the background periodic potential in their superlattice model.
The reason for the discrepancy between their E2 dependence
and our constant result is unclear at this stage and is worthy
of further investigation. The energy dependence in the low
energy region was not reported in Ref. [20]. In Ref. [37] it
has been stated that the localization length in the presence of
a purely random scalar or vector potential depends only on the
incident angle and the disorder strength, but is independent of
the energy. This result agrees with our result in the high energy
region, but is in contradiction with ours in the low energy
region, where ξ ∝ E−2. The weak-disorder expansion method
used in Ref. [37] is not expected to be valid in the low energy
region, where the effective disorder is strong. Therefore the
result of Ref. [37] cannot be applied to that region.

It is also interesting to compare our result with the case
of the Schrödinger equation with a random scalar potential.
From the result obtained in Ref. [41], it is straightforward to
deduce that the localization length is proportional to E in the
high energy limit, while it goes to a constant (with a possible
logarithmic correction) in the low energy limit.

In Fig. 11 we consider model II with |f | < 1. We limit our
interest to the case where the average potentials are zero. Then
we find that in the low energy limit ξ is proportional to E−2

and in the high energy limit it is a constant independent of E,
similarly to the previous case. The limiting behaviors agree
precisely with those obtained analytically and shown on the
figure. In the presence of the nonzero average potentials, the
behaviors are strongly modified, but we will not pursue that
here.

D. Total transmission through a disordered region

Finally, we briefly comment on the total transmission
condition in the random case. As we have stated in Sec. IV B,

total transmission through finite random systems can arise
if a(x)/u(x) remains a constant everywhere. This can be
achieved in our model II with a suitable choice of f . In
order to verify this, we need to develop a method to calculate
the disorder-averaged transmittance of a finite system. We
have done this using the IIM similar to the one developed
in Sec. III, which we do not elaborate here. In Fig. 12 we
illustrate the total transmission phenomenon by plotting the
disorder-averaged transmittance 〈T 〉 versus incident angle for
model II with u0 = 0.5, a0 = −0.25, gu = 0.01, and kL = 1.
We find that when f is equal to a0/u0 (= −0.5), 〈T 〉 is indeed
equal to 1 at the angle defined by Eq. (31).

VII. CONCLUSION

In this paper we have studied Anderson localization and
delocalization phenomena of 2D Dirac electrons in random
1D scalar and vector potentials theoretically for two different
cases. In the first case, the random parts of the scalar and
vector potentials are uncorrelated while, in the second case,
they are proportional to each other. We have calculated the
localization length for all values of the disorder strength in a
numerically exact manner using the IIM. We have also derived
analytical expressions for the localization length, which are
accurate in the weak and strong disorder regimes. We have
generalized the condition for total transmission and those for
delocalization to our random models and derived the incident
angles at which obliquely incident electron waves are either
completely transmitted or delocalized. We have found that
these conditions, which include the ordinary Klein tunneling
as a special case, are equivalent to the condition that the
effective wave impedance is either matched or uniform. We
have investigated the dependencies of the localization length
on incident angle, disorder strength, and particle energy in
detail and found crucial discrepancies with previous results
and some surprising new results.

In addition to exploring novel localization phenomena
which are completely different from those of nonrelativistic
particles, our results have strong implications for electrical
transport properties of graphene and similar 2D materials.
In Sec. IV B we have proposed the use of inhomogeneous
potentials for the design of very efficient tunable directional
filters. The use of random structures can also facilitate similar
applications including tunable electron beam supercollima-
tion and other tunable electronic circuits [55,56]. Our result
can also be applied to the understanding of wave propagation
properties in equivalent photonic systems and to the design of
photonic devices.
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