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In the binary alloy with composition AxB1−x of two atoms with ionic energy scales ±�, an apparent Anderson
insulator (AI) is obtained as a result of randomness in the position of atoms. Using our recently developed
technique that combines the local self-energy from strong-coupling perturbation theory with the transfer matrix
method, we are able to address the problem of adding a Hubbard U to the binary-alloy problem for millions of
lattice sites on the honeycomb lattice. By adding the Hubbard interaction U , the resulting AI phase will become
metallic, which in our formulation can be manifestly attributed to the screening of disorder by Hubbard U .
Upon further increase in U , again the AI phase emerges, which can be understood in terms of the suppressed
charge fluctuations due to residual Hubbard interaction. The randomness takes advantage of such suppression
and localizes the quasiparticles of the metallic phase. The ultimate destiny of the system at very large U is
to become a Mott insulator. We construct the phase diagram of this model in the plane of (U, �) for various
compositions x.
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I. INTRODUCTION

Coulomb interaction between electrons plays a signifi-
cant role in the electronic structure of real materials. The
metal to insulator transition arising from correlations, i.e.,
Mott transition, has been the subject of intensive research in
past decades [1–8]. On the reverse direction, a considerable
amount of new theoretical work is devoted to the correlation-
driven insulator to metal phase transition. In other words, the
question is whether the correlations can drive an insulating
phase to a metallic phase or not. A well-studied example is
to start from a band insulating (BI) phase obtained from a
periodic external potential. Adding Hubbard interactions to
the periodic potential gives rise to the so-called ionic Hubbard
model [7,9–14]. These studies showed that by increasing
interaction strength, the half-filled ionic Hubbard model has
two transition points. The first transition is from BI to metal.
And, of course, by further increase of the interaction strength,
the second transition point involves a transition between the
metal and Mott insulator (MI).

The other route to the interaction-driven transformation of
insulator into metal is provided by the disordered systems.
The disorder is introduced through random on-site energies
which are distributed according to some probability distri-
bution. Choosing a uniform distribution by self-consistent
Hartree-Fock calculations and quantum Monte Carlo (QMC)
method, it was found that the two-dimensional system un-
dergoes an Anderson insulator (AI) to the metallic phase
transition [15–18]. In these studies, the lattice sizes used in
calculations were small. Therefore, the AI to metal transition
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cannot be determined with acceptable accuracy. In contrast,
the metallic phase induced by correlations was not reported
in the phase diagram of Refs. [19,20]. Also, in Ref. [21], we
ruled out the possibility of any metallic state between the AI
and MI for the uniformly distributed Anderson disorder.

In the present paper, instead of Anderson disorder, we
consider binary-alloy disorder AxB1−x that is composed of
two different atoms A and B which are randomly distributed
on the lattice. Once the positions of A and B in a random con-
figuration are chosen, each atom A (B) is assigned an on-site
potential +� (−�). In all sites, a Hubbard term U operates.
The resulting model is the so-called binary-alloy Hubbard
model. The spatially ordered limit of the binary-alloy system
on bipartite lattice corresponds to the ionic Hubbard model.
References [22] and [23] studied the binary-alloy Hubbard
model by using mean field theory on the three-dimensional
lattice and dynamical mean field theory (DMFT) on the
Bethe lattice, respectively. They found that at half-filling,
i.e., having on average one electron at every lattice site, two
metal-insulator transitions occur by increasing the Hubbard
interaction strength. The first transition point corresponds to
the transition from an uncorrelated BI to a metal, and the
second transition is from a metallic phase to MI. Employing
DMFT, Byczuk et al. found that a new metal to Mott-type
insulator transition occurs because of the interplay between
band splitting by binary-alloy disorder and correlation effects
[24]. The numerical renormalization group study at zero tem-
perature has shown that the system becomes a MI at strong
interactions at incommensurate densities n = x or n = 1 + x

[25]. In Ref. [26], Paris et al. investigated the phase diagram
of the Hubbard model with the binary-alloy disorder on the
square lattice. They found MI behavior away from half-filling,
in agreement with previously mentioned studies. Combining
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QMC simulations and exact diagonalization, they were also
able to treat disorder better than the earlier mean field and
DMFT studies to explore the possibility of AI phase.

The correlation effects on the honeycomb lattice have been
widely investigated both theoretically and experimentally,
which has relevance to a number of exotic phenomena in
graphene [27,28] and silicene [29–32] as well as topological
MIs [33]. Combination of disorder and correlation on the
honeycomb lattice gives rise to other interesting phenomena
such as the formation of AI phases and possible transitions to
metallic behavior driven by interactions [34].

Recently, we have been able to integrate the strong-
coupling perturbation theory—which can analytically address
the Mott transition—with very efficient numerical methods of
disorder problems [21]. The local nature of strong-coupling
self-energy allows an efficient embedding into the transfer
matrix method, which is essentially free from size limitations
and therefore enables us to perform a careful and reliable
finite size scaling. Generally speaking, the strong-coupling
perturbation theory is based on an exact treatment of the
atomic limit, followed by switching on the intersite hopping
[35,36]. This combination of the two powerful tools of Mott
and Anderson physics allows us to treat correlation and disor-
der on equal footing. Computation of the Green’s function for
very large lattice is the important advantage of this method. By
utilizing the Green’s function, the kernel polynomial method
(KPM) enables us to compute the density of states (DOS)
in real space for a disordered and interacting system with
millions of lattice sites. KPM as a highly efficient numerical
method offers a high precision determination of DOS without
an explicit diagonalization of the Hamiltonian [37–39]. On the
other hand, the transfer matrix method which can numerically
let the particles propagate on the lattice up to essentially
any desirable length scale can be nicely combined with the
local self-energy obtained from strong-coupling perturbation
theory to immediately give us the localization length of the
wave function in a background that includes not only on-site
(random) energies, but also includes appropriate local self-
energies. This method enables a reliable finite size scaling
which in turn furnishes invaluable insight into the localization
properties of strongly correlated and disordered system.

In this paper, we set out to study the binary-alloy Hubbard
model with our method on the honeycomb lattice. Our key
finding is that competition between local binary disorder
and electronic correlations leads to a metallic phase. This is
in contrast to Anderson disorder (nonbinary alloy) where a
metallic phase between MI and AI is ruled out [21]. Besides,
we find the AI phase as the ground state of the system in a
specific region of parameters whereas some methods such as
mean field and DMFT used in Refs. [22,23] failed to identify
this phase. Our results are backed by a careful finite size
scaling which, due to the exponential growth of the Hilbert
space, is not possible in other existing methods that treat the
Hubbard part numerically.

The rest of this paper is structured as follows. In Sec. II,
we introduce the alloy-disordered Hubbard model followed
by brief review of the strong-coupling perturbation approach.
After that, we present the results of our calculations in Sec. III.
Finally, in Sec. IV, we end up with some concluding remarks.
The Appendices provide the self-energy formulas along with

brief description of KPM and transfer matrix method used in
present work.

II. STRONG-COUPLING PERTURBATION THEORY

In this section, we extend the strong-coupling perturba-
tion formalism of strongly interacting systems to include the
disorder as well [21]. The canonical model of disordered
interacting system is the Anderson-Hubbard model, which is
given by the following Hamiltonian:

H = H0 + H1,

H0 = U
∑

i

ni↑ni↓ − μ
∑
i,σ

niσ +
∑
i,σ

εi niσ , (1)

H1 =
∑
ij,σ

Vij (c†iσ cjσ + H.c.),

where H0 accounts for interaction and disorder energy, and
H1 for kinetic energy. Also c

†
iσ (ciσ ) is the fermionic creation

(annihilation) operator of the particle with spin σ = ±1/2 on
the lattice site i, niσ = c

†
iσ ciσ is the local electron number

operator, Vij is the hopping matrix element between sites i and
j , and U > 0 is the on-site Coulomb repulsion. The chemical
potential μ determines the average density of the system. The
local energies εi are independent random variables. In the
following, we assume a binary probability distribution for εi ,
i.e.:

P (εi ) = x δ(εi − �) + (1 − x) δ(εi + �). (2)

Here � parameterizes the binary-alloy disorder strength. x

and 1 − x are the concentrations of the two components of the
alloy ions with energies � and −�, respectively. Additionally,
x = 0 and x = 1 correspond to a nondisordered system with
shifted on-site energy ±�. The strong-coupling perturbation
theory assumes that the hopping parameter is the small energy
scale. Therefore, to obtain reliable results, either U or � of the
on-site terms must be large enough.

To be self-contained, in the following, we briefly describe
the strong-coupling perturbation theory. Considering H0 and
H1 in Hamiltonian Eqs. (1) as the unperturbed and perturbed
Hamiltonian, respectively, the partition function at tempera-
ture T = 1/β in the path-integral formalism is written as

Z =
∫

[dγ �dγ ] exp

[
−

∫ β

0
dτ

{∑
iσ

γ �
iσ (τ ) ∂τ γiσ (τ )

+ H0(γ �
iσ (τ ), γiσ (τ )) +

∑
ijσ

γ �
iσ (τ ) Vij γjσ (τ )

⎫⎬
⎭

⎤
⎦,

(3)

where γ and γ � denote the Grassmann fields in the imaginary
time τ .

As can be seen, the the unperturbed part of the Hamiltonian
is not quadratic. Therefore, the ordinary Wick theorem cannot
be employed to construct a diagrammatic expansion for the
correlation functions. To circumvent this, one starts with the
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following fermionic Hubbard-Stratonovich transformation [36]:

∫
[dψ�dψ] exp

⎡
⎣∫ β

0
dτ

∑
iσ

⎧⎨
⎩

∑
j

ψ�
iσ (τ )(V −1)ijψjσ (τ ) + ψ�

iσ (τ )γiσ (τ ) + γ �
iσ (τ )ψiσ (τ )

⎫⎬
⎭

⎤
⎦

= det(V −1) exp

⎡
⎣−

∫ β

0
dτ

∑
ijσ

γ �
iσ (τ ) Vij γjσ (τ )

⎤
⎦, (4)

In this equation, ψiσ (τ ) and ψ�
iσ (τ ) are the auxiliary Grassmann fields. So, by means of this transformation, we can rewrite the

partition function up to a normalization factor as

Z =
∫

[dψ�dψ] exp

[
−

{
S0[ψ�,ψ] +

∞∑
R=1

SR
int[ψ

�,ψ]

}]
. (5)

In the above partition function, S0[ψ�,ψ] is the free (unperturbed) auxiliary fermion action which is determined by the inverse
of the hopping matrix of original fermions,

S0[ψ�,ψ] = −
∫ β

0
dτ

∑
ijσ

ψ�
iσ (τ ) (V −1)ij ψjσ (τ ), (6)

and SR
int[ψ

�,ψ] includes an infinite number of interaction terms,

SR
int[ψ

�,ψ] = −1

(R!)2

∑
i

∑
{σlσ

′
l }

∫ β

0

R∏
l=1

dτldτ ′
l ψ

�
iσ1

(τ1) . . . ψ�
iσR

(τR )ψiσ ′
R
(τ ′

R ) . . . ψiσ ′
1
(τ ′

1)

× 〈
γiσ1 (τ1) . . . γiσR

(τR )γ �
iσ ′

R
(τ ′

R ) . . . γ �
iσ ′

1
(τ ′

1)
〉
0,c

. (7)

The 〈γiσ1 (τ1) . . . γiσR
(τR )γ �

iσ ′
R
(τ ′

R ) . . . γ �
iσ ′

1
(τ ′

1)〉0,c represents
connected correlation function of the original fermions, which
now determines the interaction vertices of the dual theory. In
the partition function of the auxiliary fermions Eq. (5), the
unperturbed part is quadratic. Hence, the Wick theorem can be
applied to take the interaction term Eq. (7) perturbatively into
account and calculate the self-energy of the auxiliary fermion
(�). Finally, the Green’s function of the original fermions is
expressed as

G = (�−1 − V )−1. (8)

The diagrammatic details of the strong-coupling approach can
be found in Ref. [36].

III. RESULTS AND DISCUSSION

In this section, we present our results obtained by strong-
coupling expansion for the Hubbard model with the binary-
alloy disorder on the honeycomb lattice. We assume Vij = −t

if i, j are nearest-neighbor sites and zero otherwise. Through-
out the paper, t = 1 sets the unit of the energy. In the absence
of disorder, setting μ = U/2 corresponds to half-filling. How-
ever, for the system affected by the disorder, this chemical
potential does not necessarily correspond to the half-filling. To
determine the half-filling in the presence of disorder, we nu-
merically solve the implicit equation, n(μ) = ∫ μ

−∞ ρ(ε) dε =
1/2, where bar denotes averaging over realizations of the
disorder. The numerical cost involved here is due to the fact
that ρ implicitly depends on μ. So μ has to self-consistently
satisfy the above equation.

In this paper, to study the disordered interacting electrons
on the honeycomb lattice, the perturbative treatment up to
order t2 is considered. We can compute the self-energy of
the auxiliary fermions up to second order as depicted in the
Feynman diagrams in Fig. 1. Therefore, the self-energy for
each spin is expressed as

�ij (iω) = �
(0)
ij (iω) + �

(2)
ij (iω), (9)

where the �
(0)
ij (iω) and �

(2)
ij (iω) are the zeroth- and second-

order self-energies for the auxiliary fermions, respectively.
The Matsubara frequencies are iω = i(2n + 1)πT . The alge-
braic expressions for the �

(0)
ij (iω) and �

(2)
ij (iω) at arbitrary

temperature and fixed chemical potential are presented in
Appendix A. Once the self-energy of the auxiliary fermions
is obtained, one can calculate the Green’s function by Eq. (8).

FIG. 1. Diagrams contributing to the self-energy of the auxiliary
fermions up to order t2 where solid lines indicate free propagator
V of auxiliary fermions and vertices represent connected correlation
functions. Circles are one-particle connected correlation functions
and the square refers to two-particle connected correlation function.
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FIG. 2. Disorder-averaged DOS obtained by KPM for different
disorder strengths � at concentration x = 0.5, μ = U/2 and interac-
tion strength U = 6. The system size is 500 × 500.

A. Fixed chemical potential μ = U/2

To investigate the physics of strongly correlated and
binary-disordered electrons on the honeycomb lattice, first, we
study the DOS, which is given by

ρ(ω) = 1

N

N∑
n=1

δ(ω − En), (10)

where N is the number of lattice sites and En denotes the
eigenvalues of the Hamiltonian. The DOS can be determined
very efficiently by the KPM [37–39], which is described in
Appendix B. In Fig. 2, DOS has been plotted for several
disorder strengths at interaction U = 6, μ = U/2 and zero
temperature for disorder concentration x = 0.5 and system
with 500 × 500 lattice sites. In the absence of disorder, i.e.,
� = 0, an insulating phase corresponding to MI can be
obtained which is in agreement with Refs. [6,7]. For large
enough interaction strengths, we expect the DOS of the clean
system to have two main subbands around −U/2 and U/2
which correspond to upper and lower Hubbard subbands.
Moreover, this band splitting is proportional to the interaction
strength U , which is a hallmark of Mott-Hubbard bands.

Turning the disorder on, we can discuss how DOS is
affected by the disorder. After introducing disorder to the
system, DOS will consist of four branches which correspond
to Hubbard sub-bands plus an additional band splitting within
each Hubbard subband that is originated from ionic energies.
This result is in agreement with Ref. [7], which reports similar
features in the ionic Hubbard model. Generally, disorder
broadens each branch of DOS spectrum and reduces Mott
gap as reported in, e.g., Ref. [21]. The Mott gap is robust
against weak disorder. By increasing the disorder strength, the
level repulsion pushes the two disorder-split subbands of each
Hubbard band toward each other which eventually results in
gap closing. So, as can be seen in Fig. 2, at � = 2 the gap is
completely filled. However, here DOS cannot determine the
conductive nature of the gapless states emerged at the Fermi
level (i.e., at ω = 0) due to competition between the interac-
tion and randomness. Upon further increase of the disorder
strength for � ≈ 5, a gap reopens in the spectrum. Therefore,

as shown in Fig. 2, the DOS exhibits an energy gap in the
spectrum at disorder strength � = 6.

The DOS in Fig. 2 for � = 2 reveals that for this disorder
strength, μ = U/2 specifies the half-filling. In contrast for
� = 6, setting μ = U/2 no longer specifies Fermi energy
at half-filling. Furthermore, closure of the Mott gap in the
presence of disorder indicates that disorder shifts the Mott
transition to larger values of interaction strengths. This be-
havior is captured by dual fermion approach [40] and DMFT
[41] as well.

As can be seen in the DOS profile, disorder suppresses
the Mott gap and gives rise to the gapless state first. Given
that the system is disordered, the question will be whether the
resulting gapless state is a conductor or not. To characterize
the nature of the gapless phases arising from the interplay of
binary-alloy disorder and interaction, we employ the transfer
matrix method which is briefly explained in Appendix C. The
transfer matrix method as a powerful technique allows us to
determine the localization length of the disordered systems
with a large number of atoms. The localization length λ for a
lattice with a fixed width M is the characteristic length scale
which determines the exponential decay of the single-particle
wave function as

ψ (x) ∝ exp(−x/λ). (11)

The length scale λ can be conveniently extracted from the
transfer matrix method as discussed in Appendix C. This
method offers a reliable finite size scaling which, in turn, will
enable us to determine whether the gapless states around the
Fermi energy have extended or localized properties.

In Fig. 3, we plot the localization length normalized to the
ribbon width, λ/M , in ribbon geometry of the honeycomb
lattice at fixed chemical potential μ = U/2, disorder strength
� = 6, and composition x = 0.5 for lattice with length L =
100 000. In Fig. 3(a), the interaction dependence of normal-
ized localization length for various ribbon widths M is dis-
played. As can be seen for a given width, at weak interaction
strengths the localization length takes very small values which
indicate the insulating behavior. This insulating state at large
disorder strength � = 6 corresponds to BI (gapped), which
is perturbatively connected to the noninteracting case U = 0,
and continued to weak interactions U . Increasing the Hubbard
interaction the normalized localization length increases up to
the onset of a jump around U ≈ 10.4. This is followed by
another bigger jump at U ≈ 11.2. According to the DOS, the
region between the above two values of U is gapless, but the
localization length values are still small to give a conducting
phase. The finite size scaling in Fig. 3(b) confirms this obser-
vation. Therefore it has to correspond to localized AI phase.
Upon further increase of interaction strength, a pronounced
plateau appears in the localization length. In this region we
still have a gapless phase, but with much larger localization
length. The finite size scaling in Fig. 3(b) confirms that it
corresponds to the metallic phase. Hence, the competition
between on-site Hubbard correlation and binary-alloy form of
randomness gives rise to a metallic ground state which passes
through an AI phase. Increasing the interaction strength, the
localization length shows the localized behavior again before
entering the (gapped) MI phase at strong U .
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FIG. 3. The localization length normalized to the width in ribbon
geometry for honeycomb lattice at Fermi energy (ω = 0) and fixed
chemical potential μ = U/2 as a function of (a) interaction strength
U for various ribbon widths M indicated in the legend and (b) the
ribbon width M for various Hubbard interaction U . In both cases, the
disorder strength � = 6 and concentration x = 0.5 is considered.

Let us explain in more detail the finite size scaling which
is necessary to corroborate the phases identified in Fig. 3(a).
In Fig. 3(b), we plot the normalized localization length as a
function of ribbon width M for different interaction strengths.
In general, in Mott/BI (gapped) and Anderson localized (gap-
less) phases, the localization length decreases with increasing
the width. Albeit the localization length for Mott and band in-
sulators is lower compared to neighboring Anderson localized
phases. This difference has to do with the fact that MI and BI
are gapped, while the AI is gapless.

To interpret the curves, note that increasing behavior of the
localization length versus width, M , means that at infinite lat-
tice we have infinite localization length corresponding to the
extended state and hence the system will be metal. Such be-
havior can be seen in Fig. 3(b) for U = 11.4, 11.8, 12.2, 12.6,
which confirms that the localization length plateau in Fig. 3(a)
does indeed correspond to a conducting phase. So, from this
point, let us call it the metallic plateau. Fitting an appropriate
function for different values of disorder, the normalized lo-
calization length indicates the relation λ/M ≈ M−f (U,�,M ),
where f > 0 (f � 0) implies that system is localized (ex-
tended) [21].

The essential lesson to be learned from Fig. 3 is that the
effect of correlations on localization is to initially suppress
the localization. This can be interpreted as the “screening”1 of

1Note that this screening is not the same as the screening of the
long-range Coulomb forces, which requires calculation of the two-
particle response function.
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FIG. 4. The localization length normalized to the width in ribbon
geometry calculated by transfer matrix method at zero energy for
half-filled binary alloy Hubbard model with a fixed interaction
strength U = 6 and alloy composition x = 0.5, as a function of (a)
disorder strength � for different ribbon widths M indicated in the
legend and (b) the ribbon width M for various �.

the disorder [19,20] by repulsion U until it reaches a max-
imum value at the metallic plateau. On the right side of
the metallic plateau, there are two players: One is a very
strong Hubbard U , which in the conducting background of
the metallic plateau region with a residual Hubbard Ures will
be able to generate the substantial superexchange interaction
that wants to drive the system toward the ultimate Mott phase.
In the absence of the random ±� alloy potential, the Ures./t

would be the only player and one would have the Mott phase.
However, the randomness in the binary-alloy potential takes
advantage of the fact that charge fluctuations are suppressed
by residual Hubbard, Ures, and will be able to localize them,
giving rise to AI phase easily. This AI phase is followed
by Mott-Hubbard splitting of the spectral weight, ending
the system in MI phase. In this way, the transition from a
disordered metal to a Mott phase in the right side of the
localization plateau is preceded by an AI phase.

B. Half-filling

Up to this point, we have been focused on fixed chemical
potential μ = U/2, but as can be inferred from Fig. 2, the
μ = U/2 does not necessarily correspond to the half-filling.
In other words, for some �c, when � > �c, the condition
μ = U/2 does not specify the half-filling. Considering the
half-filled case, the localization length normalized to width
in ribbon geometry is plotted in Fig. 4 for a fixed inter-
action strength U = 6 and alloy composition x = 0.5. The
normalized localization length versus disorder strength � for
different values of the ribbon width is shown in Fig. 4(a).
Vanishing DOS at U = 6 and weak disorder strength means
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that the state at small � is an MI (gapped). Therefore, there
are no states near Fermi energy, which consequently leads
to very small localization length. Increasing disorder fills in
the Mott gap. This is because for the larger �, on average
half of the sites (since x = 0.5) will have a large negative
alloy potential which denies the no-double-occupancy rule of
the Mott phase and hence substantial charge fluctuations are
created which will then fill in the Mott gap. The Mott gap
closure results in increasing the localization length. But the
states created around the Fermi level are not yet ready for
conduction, as the DOS is small, which means that we are
dealing with a poor metal that can be localized by moderate
disorder in the position of the alloy potential ±�. Finite size
scaling in Fig. 4(b) confirms that the state to the right of MI
is AI. By further increase in �, the system enters a metallic
plateau where the localization length is maximal. Eventually,
the phase in the right of the metallic plateau is again an AI.
But at half-filling, there is no BI phase in large �.

The metallic plateau in Fig. 4 can be explained as follows:
Imagine that the alloy components A and B (at x = 0.5) are
arranged in a regular bipartite lattice. Then at half-filling,
a competition between � and U will generate a conduct-
ing phase for � ≈ U/2 within strong-coupling perturbation
theory [7]. A similar picture is obtained by DMFT [9,13],
continuous unitary transformation [42,43], and Gutzwiller
approximation [14]. So, in this case, the metallic phase can
be considered a descendant of the conducting phase of the
above studies. Adding disorder on top of such a conducting
state naturally explains the AI to the right of metallic phase
in Fig. 4. The transition from the leftmost MI to AI is
similar to the direct transition between MI and AI in other
disordered systems [21,40]. However, the transition from the
AI in the left of the metallic plateau to conducting phase in the
plateau is unusual. Technically, this happens because when
� approaches U/2, the self-energy � of auxiliary fermions
diverges. By Eq. (8), this divergence implies the Green’s
function will be similar to those of free fermions. It looks
like that by approaching � ≈ U/2, the interaction and binary-
alloy disorder knockout each other, and we are left with a
conducting phase.

As pointed out, DOS tells us whether we have gapped state
or gapless state. Then by finite size scaling of the localization
length, we can determine the nature of the single-particle
states around the Fermi surface in the gapless state. Therefore,
by computing the DOS and localization length for various
Hubbard interaction U and disorder strength �, we can gen-
erate the phase diagram in (U,�) plane for the correlated
fermions on honeycomb lattice with the binary-alloy disorder.
The phase diagram for disorder concentration x = 0.5 in two
cases are plotted in Fig. 5: (a) fixed chemical potential μ =
U/2 and (b) half-filling. We must stress again that the fixed
μ = U/2 corresponds to half-filling only for weak enough
� < �c. So the Mott phase which happens in � < �c, is
identical in both Figs. 5(a) and 5(b). In the strong-coupling
expansion is reliable when either of the on-site terms, U or �

are large. So in calculating the Mott gap extracted from DOS,
first, we compute the single-particle gap for large interaction
strengths at a given fixed �. Then, by extrapolating the gap to
zero, we can find the critical Coulomb repulsion Uc for Mott
transition in fixed disorder strength � [7,36,44].

0 4 8
0

2

4

6

0 4 8 12

AI

AI

M

MI

BI

Δ

U

NA NA

(b)

AI
M

MI

AI

U

(a)

FIG. 5. Ground state phase diagram of Coulomb interaction U

versus disorder strength � of the Hubbard model with binary-alloy
disorder in concentration x = 0.5 for (a) fixed chemical potential
μ = U/2 and (b) half-filled case. The NA region corresponds to a
weak U and � where the strong-coupling perturbation expansion is
not reliable.

By varying Hubbard U for a fixed disorder strength � in
Fig. 5(a), we can span phases from weakly correlated phase BI
to strongly correlated MI. The no answer (NA) region corre-
sponds to situations where both U and � are small, where the
strong-coupling expansion is not applicable. We, therefore,
discuss the region outside the NA. As can be seen, between
these two insulating phases, a metallic phase surrounded by
AI phases has emerged. For the half-filled case as presented
in Fig. 5(b), the BI phase disappears in comparison with the
phase diagram of μ = U/2. Indeed, as pointed out earlier in
the limit � 
 U , the condition μ = U/2 does not correspond
to half-filling. To maintain the half-filling, the spectral weight
must be shifted to higher energies to keep the Fermi level
at ω = 0. So, if the system was gapped for μ = U/2, after
the spectral shift, the DOS becomes nonzero at Fermi level.
Therefore, in the half-filled case, the large �/U BI phase of
Fig. 5(a) is never realized in Fig. 5(b).

It is worth noting that the green shaded area in both
Figs. 5(a) and 5(b), which represents the metallic phase, is
centered by the green line U = 2� [7] where 2� denotes the
energy difference of alloy energies. As pointed out earlier,
at � = U/2 the self-energy �(ω) diverges at Fermi level
(ω = 0) and consequently, by Eq. (8), interaction completely
screens the disorder. Hence, the system does not feel any
disorder that results in a robust metallic phase which persists
in both situations with fixed chemical potential and fixed
density. On one hand, by infinitesimal deviation from U = 2�,
the self-energy will start to feel the disorder in the system.
This can be viewed as the partial screening of the disorder
by interaction. On the other hand, small disorder on the
honeycomb lattice does not localize the wave functions in the
middle of the band and the system remains metal [18,45–47].
However, far away from U = 2�, the interaction cannot
screen disorder, and metallic phase no longer persists. Note
that the AI phase that is sandwiched between metallic and MI
phases is narrower than the other AI phase. The former AI
takes advantage of the reduced charge fluctuations due to large
U . But once this AI phase is established, it will be easier for
the Hubbard U to stabilize a Mott phase on an AI background.
The other AI, on the other hand, has to compete with the ionic
energy scale of the BI phase in Fig. 5(a). Larger � means
more disorder, and more ionicity which makes both BI and AI
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FIG. 6. Phase diagram at fixed interaction strength U = 6 as a
function of disorder concentrations x for (a) μ = U/2 and (b) half-
filling.

phases happy. That is why the AI phase to the left of metallic
state spans a larger region.

C. Dependence on composition ratio x

So far, we have fixed the disorder concentration at x = 0.5,
the regular limit of which corresponds to the ionic Hubbard
model. This helps us to (i) identify the gapped phase in weakly
correlated phase at the fixed chemical potential with BI and
(ii) understand the nature of the middle metallic phase. Let
us see how this picture carries on for other composition ratios
x, which might be more relevant to realistic materials than
x = 0.5. So we examine other compositions by varying x.
To this end, let us start by construction of the phase diagram
of the Anderson-Hubbard model for various concentrations x

at fixed U = 6 as displayed in Fig. 6 for (a) μ = U/2 and
(b) half-filling. Varying the concentration of A atoms with
energy � from x = 0.5 to x = 0, B atoms with energy −�

are the majority atoms (such that at x = 0 only atoms B exist).
So the main branch of DOS belongs to atoms B. Assuming
x = 0 in Fig. 6(a), for a fixed on-site repulsion U , and fixed
μ = U/2 and � = 0, the system is MI. Upon switching on
the �, the spectral weight transfers toward ω ≈ −�. The
rearrangement of the spectral weight is controlled by the ran-
dom variations in the inverse self-energy �−1 of the auxiliary
fermions. The spectral weight transfer for � smaller than
the certain limit, say �c1 (the green square border) is such
that still the Fermi level will remain inside the Mott gap.
At �= �c1, the Fermi level crosses the shifted spectrum at
a nonzero DOS and hence the Mott gap will be pushed to
energies well above (below) the Fermi level and, therefore,
we basically have a gapless phase up to some upper limit � <

�c2. �c2 (the pink down-triangle) is the critical strength for
which all states are shifted to the right of the Fermi energy, and
there are no states in Fermi level anymore. So for � > �c2,
the system is an empty band and hence will be in the (gapped)
BI phase. The same explanation is valid for x = 1, because in
this limit the system is composed of only A atoms with on-site
energy �. The difference between x = 1 and x = 0 cases is
that the direction of the spectral weight shift is reversed. Since
at x = 0 and x = 1, the system has no disorder, we do not
have any AI phase. That is why, by approaching these two
points, the AI phase shrinks to zero. For x ∈ (0, 1), we have
AI phases with a metallic phase sandwiched between them.

In Fig. 6(b), all possible phases in a fixed particle
density corresponding to half-filling have been plotted.

Half-filling is obtained by calculating the chemical potential
self-consistently for every x and �. For x = 0 and x = 1,
which corresponds to ordered arrangements of atoms, as
explained in Fig. 6(a), by increasing �, the system becomes
MI, which is followed by gapless phase. After closing the
Mott gap, due to half-filling, the Fermi level always falls in
the regions with nonzero DOS, and the system remains metal.
If the composition ratio x deviates from x = 0 or x = 1,
depending on the � magnitude we start to obtain AI states
similar to x = 0.5.

Why in the fixed chemical potential case μ = U/2 the
large �/U region is a BI while in the half-filled case with
n= 1 no gapped (BI) state at large �/U is obtained? Phys-
ically fixing the particle density (e.g., here at half-filling)
means that we are dealing with a closed system to/from
which electrons cannot be added/removed. In this case, in
the rightmost AI phase of Fig. 4(a), electrons are localized
wherever they are. By increasing �, the alloy potential wells
become deeper, and every electron stays where it is. So we are
dealing with a compressible state where an extra electron can
be added to a suitable location at negligible cost. However,
when the chemical potential is maintained constant by an
external gate, those regions whose alloy potential is −� suck
more electrons from the gate, and eventually all the sites
with negative alloy potential are filled. Therefore, for large
enough �, we expect an incompressible (gapped) state adding
electrons, which requires finite energy. That is why in the
constant chemical potential case the large � region is a BI
while with fixed particle density, no BI follows the AI phase
by increasing �.

The special cases x = 0 and x = 1 correspond to the stan-
dard Hubbard model, albeit with a shift ±� in the chemical
potential. In the case of constant chemical potential, if this
shift happens to place the Fermi level below the bottom of the
lower Hubbard band or above the top of the upper Hubbard
band, then we have a “BI,” in the sense that we are dealing
with an empty band or completely filled band. If the shifted
Fermi level crosses the upper or lower Hubbard band, then we
are dealing with a (strongly correlated) metallic state. In this
limit, since the lattice is dominated with only one atom, there
is no phase space for randomness, and therefore the AI phases
are absent. Once the composition x deviates from these two
limits, randomness starts to generate AI phases as well.

IV. CONCLUDING REMARKS

We have explored the physical effects caused by the simul-
taneous presence of on-site Coulomb interaction and disorder
which is distributed in a bimodal form (alloy disorder) on
honeycomb lattice within strong-coupling perturbation expan-
sion. In this approach, the intersite hopping t is considered as
the perturbation parameter. Moreover, the expansion in pow-
ers of the hopping t is expressed in terms of local connected
correlation functions. In this paper, we have carried out the
perturbative expansion of the auxiliary fermions around the
atomic limit up to second order in terms of the hopping ampli-
tude. This is already sufficient to capture the Mott transition,
and the resulting self-energy being local can be integrated into
efficient numerical methods of disordered systems such as the
transfer matrix method and KPM [21]. The KPM allows us to
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efficiently compute the spectral density. The DOS obtained in
this way determines whether the system is gapped or gapless.
In a gapless state, the transfer matrix method can be used to
calculate the localization length and its scaling behavior for
the quasiparticles at the Fermi level. Integration of strong-
coupling perturbation theory with transfer matrix provides a
very powerful and conclusive tool to determine whether a
given state at the Fermi level is an extended (metallic) or
(Anderson) localized.

The weakly correlated phases at weak interaction U for
fixed chemical potential μ = U/2 is a disordered BI which
upon increasing the correlations becomes AI. When the den-
sity is fixed, the life at weak interactions U starts in the
AI phase. From this point, the qualitative behavior of fixed
density and fixed chemical potential cases is similar. By
further increasing of the Hubbard U , a remarkable metallic
phase around U ≈ 2� emerges which can be interpreted as
a perfect screening of the disorder by Hubbard interaction.
By further increase of the Hubbard U , again an Anderson
insulating phase is obtained. Of course, in the absence of the
alloy energy scale �, the Hubbard U on top of a metallic state
would stabilize a Mott phase by substantial superexchange
coming from large U . But when the (disordered) alloy poten-
tial is present, it can take advantage of the suppressed charge
fluctuations and transform the metallic phase around U ≈ 2�

into AI before ultimately the Hubbard U takes over and the
system becomes MI. Note that a metallic phase sandwiched
between AI phases has not been obtained by mean field theory
nor DMFT studies [22,23].

For x = 0.5, the metallic phase sandwiched between the
two Anderson insulating states can be understood as follows:
At this composition, the ordered limit where atoms A and B
belong to two sublattices, our system will become the ionic
Hubbard model. Our earlier studies of the ionic Hubbard
model indicate a conducting phase between the band and Mott
insulating phases [13,42,43]. Strong-coupling perturbation
study sheds new light on this conducting state: At U = 2�

[7], the divergence of the self-energy � of auxiliary fermions
is responsible for the formation of gapless state. Randomizing
the position of ±� ionic potentials broadens the U = 2�

quantum critical conducting phase of the ionic Hubbard model
[7] into a region around U ≈ 2� where the self-energy �

diverges. As a result, disorder � and Hubbard U knock out
each other in Eq. (8) and hence both lose, which leaves us
with almost a noninteracting electrons on the lattice. The
above picture holds for any composition ratio x. The width of
the AI phase sandwiched between the metallic and MI phase
becomes zero for x = 0 and x = 1, and hence the width near
these regions must be some positive power of x(1 − x).

The AI phase in the weak U is a standard AI phase
which results from interference. However the AI phase to
the right (larger U ) side of the metallic phase results from
the suppression of charge fluctuations by the superexchange

mechanism. In this sense, this AI phase is an unconventional
AI. The later AI phase is narrow compared to the former AI
phase.

The generic effect of the alloy disorder � is to increase the
critical value required for the Mott phase. It is interesting that
a metallic state together with three known insulating states,
namely BI, AI, and MI exist in the phase diagram of the same
model, albeit with a metallic phase in between the two AI.
This calls for the examination of other physical properties of
such phases, and comparison of, e.g., the optical absorption
spectra to study details of the strongly correlated dynamics
resulting from the competition between the Hubbard U , ionic
scale �, and the randomness.
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APPENDIX A: AUXILIARY FERMION’S SELF-ENERGIES

In this Appendix, we present the self-energies of the
auxiliary fermions for zeroth- and second-order diagrams of
Fig. 1 at an arbitrary temperature 1/β and chemical potential
μ = U/2. Also, we use the abbreviation u = U/2. The mean
occupation of each lattice site for a given spin projection at
μ = u is

ni = eβ(u−εi ) + e−2βεi

Zi

, (A1)

where Zi denotes the partition function. For fixed μ = u the
partition function is given by

Zi = 1 + 2 eβ(u−εi ) + e−2βεi . (A2)

It should be mentioned that in the absence of magnetic field,
the mean occupation for both spins is identical.

The matrix elements of the self-energy in zeroth order �(0)

is given by

�
(0)
ij (iω) =

(
1 − ni

iω − εi + u
+ ni

iω − εi − u

)
δij , (A3)

where δij is Kronecker delta and i, j label the lattice sites.
The second-order self-energy of the auxiliary fermions is

�
(2)
ij (iω) = −δij

∑
l

Vil Vlj �il (iω), (A4)

where i and l are nearest-neighbor lattice sites connected
by hopping. In the following, we present the �il (iω), which
is separately calculated in two different cases εi = εl and
εi �= εl .

In the εi �= εl case, the �il (iω) is given by

�il (iω) =
{

4βu2 ni (1 − ni ) (1 − nl )

(iω − εi )2 − u2

[
nF (εi − u) δ(iω − εi + u)

2u (εi − εl )
− nF (εi + u) δ(iω − εi − u)

2u (εi − εl + 2u)
− nF (εl − u) δ(iω − εl + u)

(εi − εl ) (εi − εl + 2u)

]

+ 4βu2 ni (1 − ni ) nl

(iω − εi )2 − u2

[
nF (εi − u) δ(iω − εi + u)

2u (εi − εl − 2u)
− nF (εi + u) δ(iω − εi − u)

2u (εi − εl )
− nF (εl + u) δ(iω − εl − u)

(εi − εl ) (εi − εl − 2u)

]
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− β eβ(u−εi ) (1 − nl )

Zi (iω − εi + u)2 (εi − εl + 2u)2
[(iω − εl + 3u)2 nF (εl − u) δ(iω − εl + u)

− (iω − εi + u)2 (εi − εl + 2u) nF (εi + u) δ′(iω − εi − u) + (iω − εi + u) δ(iω − εi − u)

× ((iω − εi + u) (εi − εl + 2u) n′
F (εi + u) − (iω + εi − 2εl + 5u) nF (εi + u))] − β eβ(u−εi ) nl

Zi (iω − εi + u)2 (εi − εl )2

× [(iω − εl + u)2 nF (εl + u) δ(iω − εl − u) − (iω − εi + u)2 (εi − εl ) nF (εi + u) δ′(iω − εi − u)

+ (iω − εi + u) δ(iω − εi − u) ((iω − εi + u) (εi − εl ) n′
F (εi + u) − (iω + εi − 2εl + u) nF (εi + u))]

− 2 nF (εi − u)

(iω − εi )2 − u2

(
εi − εl + 2u(nl − 1)

(εi − εl )(εi − εl − 2u)

)[
βu ni (1 − ni ) + (1 − ni ) + βu(e−2βεi − e2β(u−εi ) )

Z2
i

]

+ 2 nF (εi + u)

(iω − εi )2 − u2

(
εi − εl + 2unl

(εi − εl )(εi − εl + 2u)

)[
βu ni (1 − ni ) + ni + βu(e−2βεi − e2β(u−εi ) )

Z2
i

]

+ 4u[β u ni (1 − ni ) + (1 − ni ) + βu(e−2βεi − e2β(u−εi ) )/Z2
i ]

(εi − εl )((iω − εi )2 − u2)

(
(1 − nl ) nF (εl − u)

εi − εl + 2u
+ nl nF (εl + u)

εi − εl − 2u

)

− 4u2(2ni − 1) nF (−iω + 2εi ) [iω − 2εi + εl + u(1 − 2nl )]

((iω − εi )2 − u2)2 ((iω − 2εi + εl )2 − u2)
+ (2ni − 1) (1 − nl ) nF (εl − u)

(iω − 2εi + εl − u)

×
(

1

iω − εi − u
+ 1

εl + εi − 2u

)2

+ (2ni − 1) nl nF (εl + u)

(iω − 2εi + εl + u)

(
1

iω − εi − u
+ 1

εi + εl

)2

− ni nF (εi + u)

(iω − εi + u)2

(
(1 − nl )(iω − εl + 3u)

(εi − εl + 2u)2
+ nl (iω − εl + u)

(εi − εl )2

)

+ ni nF (εi + u)

(iω − εi − u)2

(
(1 − nl )(iω − 2εi + εl − 3u)

(εi − εl + 2u)2
+ nl (iω − 2εi + εl − u)

(εi − εl )2

)

− 2 u

(εi − εl ) ((iω − εi )2 − u2)

(
ni (εi − εl + 2u nl ) n′

F (εi + u)

(εi − εl + 2u)
+ (1 − ni )(εi − εl + 2u (nl − 1)) n′

F (εi − u)

(εi − εl − 2u)

)

+ (ni − 1) nF (εi − u)

(iω − εi + u)2

(
nl (iω − 2εi + εl + 3u)

(εi − εl − 2u)2
+ (1 − nl ) (iω − 2εi + εl + u)

(εi − εl )2

)

+ (1 − ni ) nF (εi − u)

(iω − εi − u)2

(
nl (iω − εl − 3u)

(εi − εl − 2u)2
+ (1 − nl ) (iω − εl − u)

(εi − εl )2

)
+ (1 − ni ) (1 − nl ) nF (εl − u)

(iω − εi + u)2

×
(

iω − εl + 3u

(εi − εl + 2u)2
+ iω + εl + u

(εi − εl )2

)
+ (nl − 1) nF (εl − u)

(iω − εi − u)2

(
ni (iω − 2εi + εl − 3u)

(εi − εl + 2u)2
+ (1 − ni ) (iω − εl − u)

(εi − εl )2

)

− nl nF (εl + u)

(iω − εi − u)2

(
(1 − ni )(iω − εl − 3u)

(εi − εl − 2u)2
+ ni (iω − 2εi + εl − u)

(εi − εl )2

)

+ (1 − ni ) nl nF (εl + u)

(iω − εi + u)2

(
iω − εl + u

(εi − εl )2
+ iω − 2εi + εl + 3u

(εi − εl − 2u)2

)}
. (A5)

For εi = εl , �il it reduces to

�il (iω) = δil

{
β ni (1 − ni )

(iω − εi )2 − u2
[(1 − 2ni ) (nF (εi + u) − nF (εi − u)) + 2u (ni n

′
F (εi + u) − (1 − ni ) n′

F (εi − u))

+ (1 − 2ni )(δ(iω − εi + u) nF (εi − u) − δ(iω − εi − u) nF (εi + u)) + 2u ni (δ′(iω − εi − u) nF (εi + u)

− δ(iω − εi − u) n′
F (εi + u)) + 2u (1 − ni ) (δ(iω − εi + u) n′

F (εi − u) − δ′(iω − εi + u) nF (εi − u))]

+ (2ni − 1) (1 − ni )

[
nF (εi − u) − nF (2εi − iω)

(iω − εi − u)3
+ (iω − εi + 3u) nF (2εi − iω)

((iω − εi )2 − u2)2
+ nF (εi + u)

u ((iω − εi )2 − u2)

− nF (εi − u)

u (iω − εi − u)2
+ nF (εi − u)

4u2 (iω − εi − u)
+ n′

F (εi + u)

2u (iω − εi + u)
− (iω − εi + 3u) nF (εi + u)

4u2 (iω − εi + u)2

+ nF (εi + u) − nF (εi − u)

2u (iω − εi + u)2

]
+ (2ni − 1) ni

nF (εi + u) − nF (2εi − iω)

(iω − εi + u)

(
1

(iω − εi + u)2
+ 1

(iω − εi − u)2
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− 2

((iω − εi )2 − u2)

)
+ (2ni − 1) ni

[
2 n′

F (εi + u)

((iω − εi )2 − u2)
− n′

F (εi + u)

(iω − εi + u)2
+ n′′

F (εi + u)

2(iω − εi + u)

]

+ β (e−2βεi − e2β(u−εi ) )

Z2
i ((iω − εi )2 − u2)

[(2ni − 1) (nF (εi − u) − nF (εi + u)) + 2u (ni n
′
F (εi + u) − (1 − ni ) n′

F (εi − u))]

+ (1 − ni )

u ((iω − εi )2 − u2)
[(2ni − 1) (nF (εi − u) − nF (εi + u)) + 2ni n

′
F (εi + u) − 2(1 − ni ) n′

F (εi − u)]

+ ni (ni − 1) n′
F (εi + u) + (ni − 1)2 n′

F (εi − u)

(iω − εi + u)2
+ −n2

i n′
F (εi + u) + (ni − 1)2 n′

F (εi − u)

(iω − εi − u)2

+ ni (1 − ni ) n′′
F (εi + u) + (ni − 1)2 n′′

F (εi − u)

(iω − εi + u)
− n2

i n′′
F (εi + u) + (ni − 1)2 n′′

F (εi − u)

(iω − εi − u)

+ (1 − ni )

4u2
(nF (εi − u) − nF (εi + u) + 2u n′

F (εi + u))

(
1 − ni

iω − εi + u
− ni

iω − εi − u

)

+ ni (1 − ni )

4u2
(nF (εi + u) − nF (εi − u) − 2u n′

F (εi − u))

(
1

iω − εi + u
− 1

iω − εi − u

)

− β eβ(u−εi ) (1 − ni )

4uZi (iω − εi + u)2
[(iω − εi + 3u)2 nF (εi − u) δ(iω − εi + u) − (iω − εi + u) (iω − εi + 5u)

× nF (εi + u) δ(iω − εi − u) + 2u (iω − εi + u)2 (n′
F (εi + u) δ′(iω − εi − u) − nF (εi + u) δ′(iω − εi − u))]

− β eβ(u−εi ) ni

2 Zi (iω − εi + u)2
[2nF (εi + u) δ(iω − εi − u) − 2(iω − εi + u)2 δ′(iω − εi − u) n′

F (εi + u)

+ nF (εi + u) (iω − εi + u) (4δ′(iω − εi − u) + (iω − εi + u) δ′′(iω − εi − u))

+ (iω − εi + u) δ(iω − εi − u)((iω − εi + u) n′′
F (εi + u) − 4n′

F (εi + u))]

}
, (A6)

where nF (x) = 1
exp(βx)+1 and δ(x) denote the Fermi-Dirac

distribution and delta function, respectively. Further, we rep-
resent the first derivative of these functions with n′

F (x) and
δ′(x) and the second derivatives with n′′

F (x) and δ′′(x).

APPENDIX B: KERNEL POLYNOMIAL METHOD

The KPM is a stochastic approach which is based on
the expansion of any spectral function into a finite series of
Chebyshev (or any other complete set of orthonormal) poly-
nomials [37,39,48]. The expansion coefficients are computed
through an efficient recursion relation which involves sparse
matrix and vector multiplications with Hamiltonian H , fol-
lowed by possible regularization [38,45]. On the other hand,
the arguments of Chebyshev polynomials do not exceed 1. In
consequence, expanding the Hamiltonian H , which its eigen-
values E are in range [Emin, Emax], in Chebyshev polynomials
requires us to rescale to Ĥ (ε) where ε ∈ [−1, 1]. Also, Ĥ (ε)
and ε are defined as Ĥ = (H − b)/a and ε = (E − b)/a
where b = (Emax + Emin)/2 and a = (Emax − Emin)/2.

The DOS can be expanded as follows:

ρ̂(ε) = 1

π
√

1 − ε2

(
μ0 g0 + 2

Nc∑
m=1

μm gm Tm(ε)

)
, (B1)

where Tm(ε) = cos(m arccos(ε)) are the mth Chebyshev
polynomials, gm are attenuation factors which minimize the
Gibbs oscillations arising from terminating the expansion in a
finite order. Nc denotes the cutoff on the expansion order. μm

are Chebyshev moments which expressed as

μm = 1

Ns

Ns∑
r=1

〈φr |Tm(Ĥ )|φr〉, (B2)

where φr are random single-particle states and Ns is the
number of random states used in numerical calculations.
To calculate matrix elements of Tm(Ĥ ), we use the recur-
rence relation of Chebyshev polynomials, namely, Tm(Ĥ ) =
2ĤTm−1(Ĥ ) − Tm−2(Ĥ ) with initial conditions T1(Ĥ ) = Ĥ

and T0(Ĥ ) = 1.
To apply the above procedure for calculating DOS to

Green’s function Eq. (8), we utilize the following equation:

ρ ′(ω) = − 1

π
lim
η→0

Im

[
Tr

1

E + iη + �−1(iω) − V

∣∣∣∣
E=0

]
,

(B3)

where Tr denotes trace. So the DOS in Eq. (B1) can be
rewritten as

ρ̂ ′(ω′) = 1

π
√

1 − ε2

(
μ0 g0 + 2

Nc∑
m=1

μm(ω′) gm Tm(ε)

)∣∣∣∣
ε=0

,

(B4)

where μm(ω′) are the generalized Chebyshev moments in
which H is considered as �−1(ω) − V . Furthermore, ω′ and
Ĥ are rescaled ω and H , respectively. To compute μm(ω′),
we need to run a separate KPM to evaluate μm for every
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FIG. 7. Honeycomb lattice with zigzag edge as the transport
direction and width M = 4 and length L = 15.

ω′ which is computationally expensive. Therefore, MPICH
is employed to parallelize our program. Additionally, owing
to divergences of �−1(ω) for some values in disorder distri-
bution and the spectral broadening, we need to choose large
cutoff Nc = 15 000, Ns = 5, and calculate its average on 100
configurations of disorder to obtain well converged values of
DOS ρ ′(ω′) at E = 0.

APPENDIX C: TRANSFER MATRIX METHOD

In this section, we describe the transfer matrix method em-
ployed for computing the localization length. In this method,
we use quasi-one dimensional Schrödinger equation H ��i =
E ��i which can be rewritten as

V∗
i,i−1

��i−1 + Hi ��i + Vi,i+1 ��i+1 = E ��i , (C1)

where Vi,i+1 denotes hopping matrix from block i to i + 1 and
Hi is the on-site matrix for block i. The above wave equation

can be expressed by the following matrix:

( ��i+1

��i

)
= Ti+1,i

( ��i

��i−1

)
, (C2)

where

Ti+1,i =
(

V−1
i,i+1(EI − Hi) −V−1

i,i+1V∗
i,i−1

I 0

)
. (C3)

Indeed, matrix Eq. (C2) provides us a recursive procedure
to calculate the wave function ��i of the ith slice along the
transfer direction. In this paper, we used zigzag graphene with
periodic boundary condition as depicted in Fig. 7. Assuming
M as the width of the system, vector elements are M by M

matrices whereas T is 2M by 2M matrix.
Oseledets theorem [49] states that by defining the product

of the transfer matrices as �N = TN+1,N TN,N−1 · · · T2,1 the
eigenvalues of (�†

N �N)1/2N in thermodynamic limit converge
to fixed values e±γm where γm with m = 1, · · · ,M are Lya-
punov exponents. The localization length λ is computed by
minimum Lyapunov exponent as the largest decaying length:

λ = 1

γmin
. (C4)

The numerical details to compute the smallest positive Lya-
punov exponent is presented in Refs. [50–52]. In employing
the transfer matrix method, N is chosen in such a way that
localization length converges.
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