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What determines the glass property remains one of the major unsolved problems in both condensed matter
physics and materials science. Despite extensive research attempting to identify possible structural features as
property signatures in glasses obeying the conventional philosophy of “structure determines property” in matter,
the hidden rule about why some proposed structures predict properties effectively but others do not is still poorly
understood. Here we revisit some earlier proposed successful “structural descriptors” in glasses, e.g., vibrational
mean-squared displacement, flexibility volume, participation fraction of low-frequency vibrational modes, and
two-body excess entropy, correlating them with the long-time dynamic property of model glass probed via the
activation energy for local structural excitation. We find that all four structural descriptors correlate strongly
with the activation energy, presenting large Pearson’s correlation coefficients. By examining the spatial nature
of the activation energy and the structural descriptors, a common rule for the robustness of structure–property
relationships in glasses is established, according to which there exists a critical characteristic correlation length.
We further demonstrate the concept that complex structures determine the glass property by manipulating the
cutoff distance used to define the two-body excess entropy. Only if this structural descriptor is defined involving
atoms beyond the first nearest neighbor does it reproduce the feature of common spatial correlation range in
glass. The presence of a common spatial correlation length strongly indicates that it is necessary to include the
spatial correlation of a complex structure accounting for the dynamic property of metallic glasses.
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I. INTRODUCTION

General disordered materials are ubiquitous in nature and
have many attractive physical and chemical properties in
contrast to their crystalline counterparts. The recent advanced
metallic glasses are a category of such amorphous solids
with exceptional mechanical functions as promising structural
materials, owing to the unique long-range disordered but
short-range ordered atomic structure. However, it is difficult
to understand their unconventional properties based on the
structure, because they do not have distinct lattices and well-
recognized structural defects akin to dislocations in crystals.
This challenges the prevailing philosophy of “structure deter-
mines property” in materials science and condensed matter
physics. The mysterious structure–property relationships con-
stitute one of the most intriguing unsolved problems in the
broad community of glassy physics [1–3].

Despite unremitting efforts during the past several decades
in recognizing the elementary deformation modes of metallic
glasses, it is still unclear how such local structural excitations
initiate and where they start. The concepts of free volume [4]
and shear transformation [5–7] have been commonly
accepted as possible forms of local structural excitations
that accommodate the viscoelastic and plastic deformation
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in metallic glasses. However, which kind of microscopic
structure facilitates the onset of plasticity in amorphous solids
is still puzzling. In other words, identifying the mechanism of
irreversible atomic rearrangement under stimuli like temper-
ature and/or external stress [8,9] is the key to understanding
the elusive structure–property relationships in disordered
solids.

In recent years, several effective “structural descriptors”
have been proposed to predict the dynamic atomic ar-
rangement in metallic and colloidal glasses and their su-
percooled liquids. General structural descriptors as property
signatures include local symmetry breaking [10–12], vibra-
tional mean-squared displacement (vibrational MSD) [13–17]
and vibrational anisotropy [18,19], localized soft vibrational
modes [20–22], flexibility volume [18,19], two-body excess
entropy [23], local yielding stress [24] and stress gradient
along the deformation path [25], local thermal energy [26],
machine-learned structural quantity “softness” [1,27,28], in-
teratomic repulsion softness [29], and a very recent orien-
tational order (Ref. [30]), to name just a few. All these
quantities partially predict the nature of localized particle
rearrangements or plastic deformation in glasses. However,
basic questions arise as to why the conventional straight-
forward short-range local structures, such as a dislocation’s
Burger’s vector, are not in the aforementioned list of effective
structures, and what is the hidden common rule behind these
structural descriptors in glasses?
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Recently, a few works have stated that locally preferred ge-
ometrical orders, such as local density and simple short-range
order, may not be able to predict the dynamic heterogeneity of
supercooled liquids and glasses [24], but the spatial correla-
tion between the configurations captures the structural origin
of dynamics [1,31–34]. From liquid to glass, a growing static
length scale with direct correlation to dynamic heterogeneity
is present. The findings also open a window to asserting the
structure–property relationships in disordered solids. Perhaps
the most straightforward way of examining the utility of a
structure is to correlate it with a specific property of glass.
Very recently, Cubuk et al. established a solid link between
a machine-learned structure “softness” and the particle rear-
rangement over an extremely wide range of disordered solids
with versatile stiffnesses [1]. A hidden governing factor of
remarkable commonality in spatial correlation was revealed
for the signature of plasticity, which may pave the way to
greatly simplifying the understanding of structure–property
relationships in glasses.

Molecular dynamics (MD) has proven to be an ideal
computational tool to understand the atomic-scale motion
mechanisms of glasses and their connection to the structure.
However, glasses are in a solid state. The dynamic response
of glass to external stimuli usually takes a long time to
occur, which far exceeds the classical MD time window, in
particular for the temperature range well below the thermal
glass transition temperature, i.e., Tg (see Ref. [35]). Therefore,
assigning a physically relevant property to the local glass
structure is not trivial in amorphous solids. The activation
energy extracted from the potential energy landscape (PEL)
is recognized as a pivotal physical quantity to characterize
the deformation propensity of local structures in amorphous
solids [18,19,36–40]. It denotes the level of difficulty of
an energy state transition from an inherent structure resid-
ing in an energy minimum to a neighboring basin on the
PEL [41,42]. The activation energy can be estimated via the
recently developed activation-relaxation technique nouveau
(ARTn) [43–45], which facilitates a quantitative comparison
between the structure and property in glasses.

To reveal the hidden rule behind the structure–property
relationship of metallic glasses, we systematically investigate
the quantitative correlation between four effective structural
descriptors and activation energy in a model CuZr glass, as an
example of general metallic glasses. It is found that a common
spatial correlation range constitutes the most critical factor ac-
commodating the structure–property relationships in metallic
glass. The contents of the paper are arranged as follows. After
this introduction, we provide details of the simulation proce-
dures and PEL sampling technique in Sec. II. The theoretical
background for all four structural descriptors are explained in
detail in Sec. III. In Sec. IV, we present the results for the
characteristics of PEL and confirm its validity in predicting
both athermal and thermal local structural excitations in glass,
along with the correlation between structures and property
and unveiling the underlying hidden rule. Then, in Sec. V, the
critical role of spatial correlation is further discussed in terms
of versatilely defined local structural entropies. Finally, we
summarize the paper by remarking on the utility of structures
in predicting the property in metallic glasses in Sec. VI.

II. METHODOLOGY

A. Atomic model of metallic glass

All atomistic simulations herein are performed using the
LAMMPS code [46] on a prototypical binary Cu50Zr50 model
metallic glass as a representative of general amorphous solids.
The interatomic interaction is described by a Finnis-Sinclair-
type embedded-atom method (EAM) empirical potential [47].
The MD sample contains 19 652 atoms, with dimensions of

∼70 × 70 × 70 Å
3
. The size of the model is far beyond the

short-range order (∼3 Å) of the present CuZr glass. The glass
sample is prepared by quenching from its equilibrium liquid
state at 2000 K to 0 K, with a high cooling rate of 1010 K/s. An
additional sub-Tg annealing at 700 K is performed for 60 ns
to accelerate the aging dynamics, which drives the inherent
structure to the deeper basin on the PEL [48,49]. During
quenching, each component of the stress tensor is controlled
to be zero within the Parrinello-Rahman barostate [50]. The
temperature is controlled by the Nosé-Hoover thermostat [51].
The MD timestep is 2 fs. Periodic boundary conditions
(PBCs) are applied on all three directions of the model. After
being quenched to 0 K, the sample is additionally in-depth
relaxed to a local potential energy minimum by the conjugate
gradient (CG) algorithm before studying the structure and
property.

B. Sampling activation energy for local structural excitation

To assign a physically meaningful property to atoms in the
glass model, the simulations focus on the single-atom acti-
vation energy, which can be regarded as a long-time property
effectively characterizing the propensity of the local structural
excitation in metallic glasses [52,53]. It is an important physi-
cal quantity relevant to the macroscopic mechanical properties
and microscopic dynamic heterogeneity of glasses [38–40].
From the perspective of the PEL theory [41,42], the elemen-
tary local particle rearrangement process for structural excita-
tion proceeds in two steps. (1) Activation: from an initial local
energy minimum on the PEL to a possible connecting saddle
state. (2) Relaxation: from the saddle state to a neighboring
local energy minimum. The activation energy is the energy
difference between the saddle point structure and the structure
constrained in the initial local energy minimum. We estimate
possible saddle point states of all atoms with single-atom
resolution when sampling the local structural excitations via
ARTn [43–45]. ARTn is an open-ended software for sampling
possible local activation energies in the 3N-configurational
space of a noncrystalline material starting from an energy
basin on the PEL representing an inherent structure of glass.

In the framework of ARTn, the initial perturbation is
introduced by imposing a random small displacement on a
specific atom or atom cluster in the fully relaxed 0 K metallic
glass model (one inherent structure). In the present work,
the activation is restricted to a specific atom by setting the
cutoff distance of perturbation to be 2 Å, which is shorter than
the position of the first peak in the pair correlation function
(PDF), g(r), of the glass structure. The magnitude of the initial
perturbation displacement is fixed to be 0.1 Å, whereas the
perturbation direction is chosen randomly for a possible event.
The increment movement is set as 0.15 Å. When the lowest
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eigenvalue of the Hessian matrix is less than −0.30 eV/Å
2
,

the system is pushed towards a connecting saddle point
along the direction of the lowest normalized eigenvector by
using the Lanczos algorithm [54]. Convergence to the saddle
point state is attained when the maximum force of all atoms
is below 0.05 eV/Å. For statistics purposes, we activate
each atom 10 times and finally obtain as many as ∼200 000
different activation events accounting for the dynamic hetero-
geneity of the amorphous model.

III. THEORY OF STRUCTURAL DESCRIPTORS

A. Vibrational mean-squared displacement

The vibrational MSD is written as 〈�r2〉. The vibrational
MSD of the ith atom is calculated according to the equation〈

�ri
2
〉 = 〈|�ri(t ) −�ri,equil|2〉τ0 (1)

during a finite time τ0 that includes enough periods of oscil-
lations. �ri,equil is the equilibrium position of the ith atom in
an inherent structure (after energy minimization by the CG
algorithm). Here�ri(t ) is the instantaneous position at different
times during tracing for 100 ps at 300 K. Here, the angular
brackets imply the time average. Such a suitable time duration
guarantees that the atoms vibrate around their thermodynamic
equilibrium positions without dynamic hopping between
energy basins.

Over the past few decades, the vibrational MSD has
proven to be a good indicator of the properties of glass-
forming liquids, such as the phenomena of slowing down upon
cooling [14–17,55] and dynamic heterogeneity [13]. From
the perspective of the PEL, the vibrational MSD indicates
the thermal average degree of deviation around one local
minimum, thereby reflecting the nature of curvature of an
energy basin. To be more specific, at a given temperature
T , it reflects the local configurational constraints considering
that the term kBT/〈�r2〉 is a kind of force constant within
the harmonic approximation. Here, kB is the Boltzmann con-
stant and kBT is the thermal energy. Thus, the vibrational
MSD should be closely related to the rigidity of the solid
(elastic modulus) [56], which predicts the energy barrier as
rationalized in the cooperative shear model [7]. In this sense,
the vibrational MSD can be presented as a straightforward
“structural descriptor” of glass.

B. Flexibility volume

The flexibility volume is a structural parameter proposed
by Ding and colleagues [18,19] to quantitatively predict the
properties of metallic glass. It has been shown to be strongly
correlated with the local shear modulus as well as activation
energy for thermal activation in metallic glass [18] and amor-
phous silicon [19]. The flexibility volume of the ith atom is
defined as

vflex,i =
〈
�r2

i

〉
a2

i

�a,i, (2)

where �a,i is the atomic volume of the ith atom in terms
of the 3D Voronoi polyhedron scheme, and a = 3

√
�a,i is the

average atomic spacing. The flexibility volume is constructed
on the vibrational MSD and, therefore, naturally encompasses

the thermodynamic information in addition to structure. Com-
bining the configurational and thermodynamic constraints of
an atom, it actually represents the free space offered by
the local atomic environment in the dynamic response. The
flexibility volume efficiently predicts the location of shear
transformations in amorphous solids.

C. Two-body excess entropy

The two-body excess entropy, or local structural entropy,
of the ith atom is defined as

S2,i = −1

2

∑
υ
ρυ

∫ rcutoff

0

{
gμυ

i (�r) ln gμυ
i (�r)

− [
gμυ

i (�r) − 1
]}

d�r, (3)

where υ and μ represent the types of particles (Cu or Zr
atoms in the present case), ρυ is the number density of the
υ-type particles, and gμυ

i denotes the local PDF between the
particle i of type μ and other particles of type υ. Here rcutoff is
the cutoff distance for the integration. The two-body excess
entropy is the two-body term of the excess entropy after
an infinite-term expansion [57,58], which represents the loss
of configurational entropy over an ideal gas state owing to
positional correlation. It has been applied in the prediction
of diffusive behavior and heterogeneous dynamics in glass-
forming liquids [59–62] and in particular to the local particle
rearrangement in soft colloidal glasses [23]. Therefore, it
could be an intriguing pure structural feature worthy of further
investigation in terms of its correlation to the property of
glass. Furthermore, the freedom of choice in the cutoff dis-
tance provides immense room to examine the critical role of
spatial correlation in accommodating the structure–property
relationships in amorphous solids.

D. Participation fraction of low-frequency vibrational modes

In comparison with most crystals, amorphous solids gener-
ally have a large excess of low-frequency vibrational modes,
which are found to be spatially quasilocalized [21,32,63–
70] and regarded as the “soft spots” in glassy materials
[22,71–73]. Such low-frequency vibrational modes are
claimed to be strongly correlated with shear transformations
in metallic glass [22] and causally correlated to the irre-
versible structural reorganization of the particles in super-
cooled liquids [20]. The soft modes are therefore recom-
mended here as one of the effective “structural descriptors”
to predict the properties of glasses.

The participation fraction of the low-frequency vibrational
modes of a particle i is given by [20,22]

pi =
∑

ω
|�ei

ω|2, (4)

where�ei
ω is the corresponding polarization vector of particle i

in the normal mode characterized by the vibrational frequency
ω. The normal mode analysis is performed by diagonalization
of the dynamic matrix of the inherent structure of glass after
energy minimization with the CG algorithm [20,22]. The
force constants are derived based on the EAM potential. Here,
the summation

∑
ω is performed over the 0.25% lowest-

frequency normal modes for the ith particle as its participation
fraction.
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FIG. 1. Features of the PEL in Cu50Zr50 metallic glass. (a) Three-dimensional color map of the spatial distribution of local activation
energies. The local barriers are spatially correlated. The low or high barriers are prone to stay together. The shown slice is normal to the z
direction with a thickness of 3.9 Å. (b) Activation energy spectrum of a specific Zr atom (ID 11908), with the local structure in Voronoi index
〈0, 2, 9, 4〉, after being activated 1000 times along random directions. The wide distribution of barriers indicates the complexity of the PEL in
amorphous solids. (c)–(e) Histograms of activation energies for all atoms, Cu atoms, and Zr atoms, respectively.

IV. RESULTS

A. Features of the potential energy landscape

As metallic glass is a promising structural material, in this
section we focus on its mechanical properties. Shear trans-
formation has been widely regarded as the basic deformation
mechanism of metallic glass [5,6]; it is a thermally activated
local structural excitation with the help of temperature and/or
mechanical work. The activation of such a particle rearrange-
ment process corresponds to the energy state transformation
between neighboring basins (inherent structures) on the PEL.
Starting from an inherent structure located in a local energy
minimum on the PEL, there are many possible different min-
imum energy pathways linking to neighboring local basins.
When being stimulated by temperature or stress, the system
will escape from the sub-basin to a neighboring basin along
the corresponding minimum-energy pathway with a saddle
point separating the two local energy minima. The energy
difference between the saddle point structure and the structure
of the initial energy minimum is defined as the activation
energy, or energy barrier �Q, of a local structural excitation. It
is a very critical physical parameter quantifying the incubation
timescale of the activation of a plastic event. Therefore, it can
be regarded as a long-time property of glasses. We sample the
distribution of activation energies using the ARTn method. In
Fig. 1, the features of the PEL and the statistics of the activa-
tion energies of the studied Cu50Zr50 glass are summarized.

First, the PEL of general amorphous solids is much more
complicated than that of their crystalline counterparts owing

to the lack of periodicity in structure. In Fig. 1(a), we show the
spatial distribution of activation energies in a slice chosen on
the x–y plane of the model. The thickness of the slice is 3.9 Å
along the z direction, which corresponds to the first trough of
the PDF (short-range order). The 3D plot of the topological
information on activation energy is extremely rugged, indicat-
ing the complexity of the PEL in glass. For example, here we
choose a specific Zr atom with atom ID 11908 in the system
for demonstration. Although the local short-range structure of
the atom is unique in terms of the Voronoi index of 〈0, 2, 9, 4〉,
its dynamic property is extremely scattered. The Voronoi
index 〈n3, n4, n5, n6〉 is a vector of integers constituting a
histogram of the number of edges on the faces of the 3D
Voronoi cell, and ni is the number of i-edged faces [74]. In
Fig. 1(b), we show the histogram of activation energies for
this Zr atom after activating 1000 times with a random initial
perturbation direction. Multiple peaks can be clearly observed
in the wide-distributed spectrum. In the 3N-configurational
space, there is immense room for activations starting from
one local region. The wide distribution of barriers for a
specific atom is strong evidence of the lack of a one-to-one
intuitive structure–property correlation in the obscure glassy
structure, at least in the sense of short-range structure. This
observation is in agreement with earlier findings that the local
density or short-range order possesses very weak correlation
to atom rearrangement in a model glass [24]. Instead, statistics
structures and activation energies should be considered when
discussing the structure–property relationships in noncrys-
talline materials, owing to the inherent structural and dynamic
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heterogeneity. Finally, we note from the projection of the
peaks shown in Fig. 1(a) (bottom plane) that atoms possessing
lower (blue) or higher (red) activation energies tend to stay
together, which indicates that the long-time property of glass
is spatially correlated.

The whole spectra of the activation energies for the
Cu50Zr50 system, Cu atoms, and Zr atoms are shown in
Figs. 1(c)–1(e), respectively. The activation energies are dis-
tributed over a very broad range, spreading from ∼0 to
5 eV, which signifies the versatility of dynamic structures
in the glassy state. All spectra can be decomposed into two
distribution modes, namely an exponential decaying mode at
low activation energies and a Rayleigh mode in the medium
to high activation energy regime. The former is akin to the
feature of liquid dynamics with a cascade process, whereas
the latter corresponds to solidlike structures in which the
activations behave like a localized process [38–40]. The left
tail of the activation energy spectrum usually dominates the
dynamics of glass, because such events take place within a
short time under specific conditions of temperature and stress.
Our samplings are consistent with the results of previous PEL
samplings on a similar Cu56Zr44 metallic glass [38–40]. One
may also note that the distribution of activation energies for
Cu atoms is more concentrated than that of Zr atoms. This is
because Zr atoms have a higher coordination number, which
yields greater diversity in the local structural environment.
The peak position of the Zr barrier distribution shifts to the
right compared with that of Cu atoms. This is because Zr
atoms are heavier than Cu atoms, and the former are hard to
activate under the same conditions. In other words, Zr atoms
experience larger constraints in CuZr glass than Cu atoms.
Finally, there is a greater fraction of Zr atoms obeying the
exponential decay mode according to the histograms shown
in Fig. 1(e). This phenomenon possibly originates from the
slower dynamics of Zr atoms (compared with Cu atoms)
during the preparation of the sample by the standard heating–
quenching technique in MD. Compared with Cu atoms, the
Zr atoms take longer time to relax into stable positions corre-
sponding to deeper basins on the PEL.

B. Validity of activation energy in predicting local structural
excitation

1. Prediction of athermal excitation

To confirm that the activation energy is a pivotal physical
quantity in measuring the dynamic properties of glasses,
we consider two special cases with external stimulus of ei-
ther pure mechanical stress or pure temperature. The former
stimulus is provided by following the protocol of ather-
mal quasistatic shear (AQS) deformation [75], and the lat-
ter stimulus is provided by tracing the mobility of atoms
at a finite temperature. We investigate the validity of the
activation energy in predicting the two dynamic properties
of glasses.

In Fig. 2, we demonstrate the robustness of the activation
energy in predicting the athermal local structure excitation
driven only by the stress in glasses. Figures 2(a)–2(d) show
the first four rearrangement events corresponding to the stress
drops on the stress-strain curve of AQS loading, as indicated
in the four insets in the panels. The background contours

illustrate the levels of activation energies on a slice with
thickness of 3.9 Å in the undeformed model. The activation
energies are therefore coarse grained on such a thickness
normal to the shown plane. The location and size of the white
bubbles superimposed on the contours denote the spatial infor-
mation and magnitude of the athermal events. The size of the
bubble is proportional to the level of atomic strain calculated
based on the configurations just before and after the stress
drop. The atomic strain is quantified by the local minimum
nonaffine squared displacement, D2

min, proposed by Falk and
Langer [6],

D2
min = 1

Nc

∑
j

{�r j (t ) −�ri(t )

− Ji[�r j (t − �t ) −�ri(t − �t )]}2. (5)

where the atom i is surrounded by j ∈ Nc atoms within a
reasonable cutoff distance, �r is the position vector of an
atom, and Ji is the local deformation gradient tensor that best
minimizes the affine deformation component. Here, t and �t
denote the time and time interval between the instantaneous
and reference configurations, respectively. As expected, the
spatially isolated events with atoms experiencing major rear-
rangement are located precisely in the low-activation-energy
regions (blue regimes in the contour plot). Note that the
location of activation is also dependent on the shear protocol,
e.g., xy simple shear in the present case. As a result, not all
the low-barrier regions can be activated simultaneously. In
AQS, priority is given to the most stress-sensitive event in
a specific loading form. Nonetheless, the activation energy
can precisely predict the occurrence of athermal activation.
It should be regarded as a quite reasonable physical parameter
for predicting the deformation of glasses.

2. Prediction of thermal excitation

In the case of thermal activation, we test two cases that are
relevant to the short-time and long-time properties of glasses
in terms of vibrational MSD and diffusive MSD. The results
are explained in Figs. 3(a) and 3(b), respectively. Again, the
contours show a spatial distribution of activation energy on a
chosen slice of the inherent structure. On one hand, one can
see the fairly good correspondence between vibrational MSD
and activation energy in Fig. 3(a). Here the sizes of bubbles
denote the magnitude of vibrational MSD by considering
the fluctuation amplitude of atoms at 300 K for 100 ps. For
clarity, we only show the deviation of vibrational MSD to the

ensemble average value, i.e.,
√

vMSD − √
vMSD, to reduce

the thermal noise. A scaling factor of 60 is assigned for better
visualization of vibrational MSD. The vibrational MSD is
actually a mechanical feature closely related to the force con-
stant (elasticity) at thermodynamic equilibrium. It reflects the
configurational constraint owing to the atomic environment.
Therefore, we confirm that the atomic-scale activation energy
is a good dynamic signature of the short-time thermodynamic
property. This is easy to understand because the activation
energy is positively proportional to the local shear modulus,
as proposed by Argon in his shear transformation model [5]
and Johnson and Samwer in their cooperative shear model [7].

014115-5



WEI, YANG, JIANG, WEI, WANG, AND DAI PHYSICAL REVIEW B 99, 014115 (2019)

FIG. 2. Prediction of athermal local structural excitation via the activation energy. (a)–(d) First four athermal events during AQS
deformation and the corresponding activation energy contour maps before deformation. The contour maps denote the activation energy field
in the slices where atomic rearrangements occur. The slices are 3.9 Å thick. The location and dimension of the athermal events are indicated
by the white bubbles. The size of the bubbles denotes the magnitude of nonaffine displacement in terms of D2

min. The four insets in the panels
are the instantaneous fragments of the AQS stress-strain curve, in which the stress drops indicate the occurrence of athermal events.

On the other hand, we also investigate the correlation
between the activation energy and diffusive MSD, which
represents real thermally activated hopping between basins on
the PEL. The results are shown in Fig. 3(b). As explained in
the log plot of the diffusive MSD-time relationship in the inset
of Fig. 3(b), we determine the magnitude of the real diffusive
MSD at 700 K after a 50 ns MD run. This time duration is
already far beyond the diffusion plateau that brings about
real escape from the energy minimum. The size of the white
bubbles denotes the magnitude of deviation to the ensemble

average diffusive MSD, e.g.,
√

MSD − √
MSD with a

scaling factor of 1.5. It is noted that although atom hopping
basically occurs in the low-barrier regions, the one-to-one
correspondence is poor as compared with vibrational MSD,
as shown in Fig. 3(a). This is expected because the thermal
activation is a statistic result, especially at high temperature.
If enough samplings are performed, one can obtain a better
correlation between the barrier and mobility. Another reason
is that the long-time MD run at 700 K may lead to extra
relaxation, which could change the original inherent structure,
yielding relatively less correlation between the mobility of
the atoms and the original activation energy field. However,
the typical trend is that low-activation-energy atoms have
a greater propensity to move. The activation energy can
also be regarded as a long-time property signature of glassy
structures.

C. Quantitative structure–property relationships

The belief “structure determines property” is the founda-
tion of a vast majority of the studies in materials science
and condensed matter physics. The well-known line defect—
dislocation—in crystals presents the most successful example
of this philosophy in the deformation and mechanical proper-
ties of crystalline materials. However, in the case of noncrys-
talline solids, e.g., metallic glass, there is no simple structural
descriptor that can be regarded as the “defect” of the materials
that dominates the materials’ functions. Despite the difficulty,
in the past decades, there have still been a few successful
general “structural descriptors” of glasses that can predict the
shear transformation or local atomic rearrangement in glasses
and their supercooled liquid counterparts. A basic question
arises as to what is the hidden rule behind the effective
structural descriptors in property prediction, whereas other
simple short-range structures cannot establish a one-to-one
correlation with property. For example, one unique Voronoi
short-range structure may show a very wide range of proper-
ties in terms of activation energy, as demonstrated in Fig. 1(b).

To answer this question, we revisit the correlation between
the activation energy and four effective structural descriptors,
i.e., (1) vibrational MSD 〈�r2

i 〉, (2) flexibility volume vflex,i,
(3) two-body excess entropy S2,i, and (4) participation fraction
of low-frequency vibrational modes pi, to check whether they
are correlated and, if so, identify the physical mechanism
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FIG. 3. Prediction of thermally activated diffusion via activation
energy. Correlation between activation energy and (a) vibrational
MSD, as well as (b) diffusive MSD. The contour maps show the
spatial distribution of activation energy within the slices normal to
the x and z directions, respectively, with a thickness of 3.9 Å. The
bubbles superimposed on the contour maps indicate the positions of
the atoms experiencing pronounced vibrational or diffusive MSD.
The size of bubbles denotes the magnitude of deviation to the en-

semble average values of the vibrational MSD,
√

vMSD − √
vMSD

and diffusive MSD,
√

MSD − √
MSD in (a) and (b), respectively.

For clarity, a scaling factor of 60 is assigned for vibrational MSD
and 1.5 for diffusive MSD.

underlying the structure–property relationships of glasses.
The results are summarized in Fig. 4 by plotting the atomic-
resolution activation energy against the aforementioned four
structures. Each data point denotes a coarse graining of ∼200
atoms sorted by the magnitude of quantity describing the
structural descriptor. One can see from the scattered data
of Fig. 4 that there exists a strong correlation between the
activation energy and structure descriptors, either for Cu or Zr
atoms. Thus, these four proposed structures can be regarded as
the anticipated structural signatures of properties in glasses.

Furthermore, we show the best linear regression fit on all
the scattered data shown in Fig. 4, which yields the Pearson’s
correlation coefficient rP that quantifies the robustness of

the proposed structure–property correlations in glasses. The
absolute values of all derived |rP| are listed in Fig. 5 for Cu and
Zr atoms. Most correlation coefficients are larger than 0.95,
which indicates robust structure–property relationships except
in the case of the �Q − S2,i correlation for Zr atoms. This is
possibly because Zr atoms tend to be at higher positions on
the PEL that are less stable, compared with Cu atoms during
cooling in the glass preparation process. However, the four
structures are already very satisfactory predictors of the glass
property. The common feature underlying these structural
descriptors and the activation energy must play an important
role in the structure–property relationships in glasses, which
is discussed in detail later in this paper.

Whereas the correlation between the structure and property
is pronounced for all the surveyed physical quantities as
shown in Fig. 4, the physical background underlying the
correlations is not necessarily the same. First, the vibrational
MSD is a thermodynamic feature that describes the curvature
of the energy basin on the PEL. In particular, the ratio between
the thermal energy and vibrational amplitude, kBT/〈�r2

i 〉,
denotes the force constant of the atom in the framework of
harmonic approximation. A higher vibrational MSD implies
lower stiffness and smaller curvature; hence, atoms experience
less constraints and can undergo real hopping more easily. The
correlation also indicates that the height of the energy peak
(saddle point) can usually be informed by the narrowness of
the trough (local minimum) on the PEL. In the language of
materials science, the local shear modulus is proportional to
the activation energy of shear transformation in glass [5,7].

The flexibility volume is constructed on the vibrational
MSD [18]. In addition to atomic rigidity, it also includes
the short-range volumetric constraint within a Voronoi cell.
It is therefore regarded as a physically structural quantity
combining both thermodynamic and configurational informa-
tion. The strong correlation between the activation energy and
flexibility volume is not surprising, because vibrational MSD
is already a good signature of property, whereas the Voronoi
volume of the atoms is not very scattered.

The two-body excess entropy S2 of local structural reflects
the loss of configurational entropy over their ideal gas state
owing to positional correlation. It can be also regarded as a
local structural entropy of an atom. The atom with higher
S2 is less correlated with the atomic environment. In other
words, they are more disordered and for more microscopic
states in the local structure. Such a group of atoms with more
structural diversity is nearer to the ideal gas state that is highly
rejuvenated compared with the ordered atoms and is ready to
flow like fluid. Therefore, atoms with high two-body excess
entropy are easy to move and have lower activation energy.

Atoms with a high participation fraction of low-frequency
vibrational modes have been proposed as the “soft spot”
in glass and supercooled liquids, which can be regarded
as an effective structural predictor of irreversible particle-
level rearrangement in amorphous materials [21,22]. The
low-frequency modes are usually localized in space, which
is closely related to the well-known Boson peak (excess
vibrational modes compared with the Debye squared model)
in the generally disordered materials. It has been shown that
the low-frequency vibrational anomaly is a possible origin
of primary α and secondary β relaxation, rationalized by an
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FIG. 4. Quantitative correlation between activation energy and the four effective structural descriptors. The surveyed structural descriptors
include: (1) vibrational MSD 〈�r2

i 〉, (2) flexibility volume vflex,i, (3) two-body excess entropy S2,i, and (4) participation fraction of low-
frequency vibrational modes pi. Activation energies of Cu and Zr atoms are sorted based on the magnitude of the quantity describing each
structural descriptor with a bin size of ∼200 atoms. The correlations are shown in (a)–(d) for Cu atoms and in (e)–(h) for Zr atoms. The best-fit
linear regression lines are shown in each panel together with the Pearson’s correlation coefficients rP.

atomic-scale viscoelastic theory of metallic glass [76,77]. It is
therefore the participation fraction pi that can quantitatively
predict the activation energy of local structural excitation.

D. Hidden rule underlying the robustness of structure–
property relationships

After confirming the validity of the four structural de-
scriptors in predicting the property of glass, a basic question
arises as to why the above-mentioned structural descriptors
can predict the dynamic property quantitatively whereas a
unique short-range Voronoi structure presents a wide range
of activation energies, as shown in Fig. 1(b). To identify
the hidden rule underlying the mysterious structure–property
correlation in glass, we further show the spatial characteristics
of the activation energy and the four structural descriptors
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FIG. 5. Absolute values of Pearson’s correlation coefficient |rP|
between the activation energy and four structural descriptors, derived
from the plots shown in Fig. 4.

in Fig. 6. Figures 6(a)–6(e) show the contour maps of the
activation energy and the quantities describing the nature
of structural descriptors, on the same slice normal to the z
direction in the model. It is seen that all the spatial patterns
of the structural descriptors are self-similar, and they also
resemble the spatial feature of the activation energy. The size
of the spatial heterogeneity is of the order of a nanometer.
The common spatial nature of the effective structures and
property indicates the important role of spatial correlation in
determining the mechanical property of glassy materials.

To quantify the common spatial nature, we calculate the
spatial autocorrelation functions of the four structural descrip-
tors and activation energy according to

C(r) = 〈�Pr0�Pr0+r〉 − 〈�Pr0〉2

〈�Pr0
2〉 − 〈�Pr0〉2 , (6)

where P denotes a physical property, namely, the above struc-
tural descriptors and activation energy. Here �Pr0 = Pr0 − P̄
is the deviation to the ensemble average property P̄ for the ith
atom at a reference position r0, and �Pr0+r is the same devia-
tion of the atoms locating at a distance of r from the reference
position. Here, the angle brackets 〈· · · 〉 denote the ensemble
average. The calculated spatial autocorrelation functions are
shown in Figs. 6(f)–6(j) as a function of the distance. On
the one hand, they are almost identical. Evidently, all the
correlation functions decrease exponentially with respect to
distance r. Our observation is in agreement with previous
findings on the size of shear transformation zones [78] and the
correlation length of atomic flexibility volume in amorphous
silicon [19]. On the other hand, the correlation functions
are always positive, which implies that atoms with similar
structure and activation energy have greater propensity to stay
together spatially.
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FIG. 6. Spatial correlation behind the structure–property relationship. (a)–(e) Spatial distributions of the activation energy and the four
surveyed structural descriptors. From left to right: activation energy �Qi, vibrational MSD 〈�r2

i 〉, flexibility volume vflex,i, two-body excess
entropy S2,i, and participation fraction of low-frequency vibrational modes pi, respectively. The shown slice is normal to the z direction with
a thickness of 3.9 Å. The self-similarity of the contour maps indicate the validity of structural descriptors in predicting properties, which also
implies possible common nature underlying the structures and property. (f)–(j) Spatial autocorrelation functions of the activation energy and
the four structural descriptors. The first value of the correlation function is set to be unity.

To further understand the spatial correlation of the glass
structure and property, we fit all the correlation functions
according to an empirical equation C(r) ∝ exp(−r/ξ ) as used
in the literature [1], where ξ is defined as the correlation
length, which represents the smallest distance beyond which
the correlation function is less than exp(−1) ≈ 0.37. The fits
of the correlation functions are shown in Fig. 7 in a semilog-
arithmic manner. By definition, the correlation function de-
cays to 0.37 at the correlation length, i.e., r = ξ . However,
the correlation functions have been normalized to unity at
a distance of 3 Å for convenience. As a result, the fitted
functions have been shifted to the right by 3 Å. Therefore,
the true correlation length should be 3 Å shorter than the
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FIG. 7. Semilogarithmic plot of the spatial autocorrelation func-
tions versus distance for activation energy and the four structural
descriptors. The dashed lines are the best empirical fits to C(r) ∝
exp(−r/ξ ), which defines the correlation length, ξ . The correlation
lengths for all the structural descriptors are ∼2.2 Å, which is close to
that of ξ = 2.6 Å for a property (i.e., activation energy).

apparent length at which C(r) = exp(−1) as shown in Fig. 7.
However, the rigid shift of correlation function in the distance
does not affect the determination of ξ , because only the slopes
of semilogarithmic plots matter in Fig. 7.

It is seen from Fig. 7 that the spatial autocorrelation lengths
of all four structural descriptors are approximately 2.2 Å,
which are similar to that of the activation energy (2.6 Å). They
are all close to the average nearest neighbor distance, i.e.,
rNN = 2.8 Å, determined from the position of the first peak
in the PDF. It suggests an intimate relationship between the
structural features and dynamic property of metallic glass via
a common spatial correlation length scale. For comparison,
we also calculate the spatial autocorrelation function of a
simple short-range order parameter, i.e., the local fivefold
symmetry (L5FS) parameter used to identify the local Voronoi
structure [10], as shown in Fig. S1 of the Supplemental
Material (SM) [79]. Figures S1(a) and S1(b) denote that there
does not exist strong correlation between L5FS and activation
energy for either Cu or Zr atoms. Figure S1(c) shows that
the spatial autocorrelation of L5FS decreases exponentially
with respect to distance. Its quantified autocorrelation length
in Fig. S1(d) is only 1.2 Å, much shorter than that of the
activation energy. Hence, the spatial correlation of the struc-
ture could be a hidden rule underlying the structure–property
relationship of metallic glasses. From another perspective,
the spatial correlation could mean the sweeping scale of
the “defectlike” structure or dynamic property. The premise
behind the effective prediction for dynamic property is that
the sweeping scale of the “defectlike” is consistent with that
of dynamic excitation. The insensitive prediction from the
simple SRO like L5FS mainly originates from the complexity
of amorphous solids: Only one simple static parameter cannot
describe the atomic environment well; even the same SRO
parameter can lead to very different properties, as shown
in Fig. 1(b). Of course, if one extends the simple SRO to
the complex structure defined involving atoms at longer dis-
tance (e.g., interconnection of icosahedral cluster [80,81]), the
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prediction can be improved. Both of those two factors need
to be considered if one intends to search for an effective
structural descriptor of the general amorphous solids. In
other words, a simple short-range structure does not work in
predicting the property, whereas a complex super structure
defined by multiple atoms in the cluster up to the common
correlation length may be responsible for the property of
glasses. Our observation of the spatial correlation between
structure and property is in agreement with earlier studies on
different noncrystalline systems [1,82]. The spatial correla-
tion length of the machine-learned structure “softness” and
particle rearrangement are of the order of the particle size in
Ref. [1]. As has been demonstrated by Wang et al., the spatial
correlation of elastic heterogeneity can tune macroscopic
deformation modes of metallic glasses [82]. Finally, we note
that the spatial correlation length is defined as the distance
where the correlation function decays to exp(−3) ≈ 0.05 in
the literature [82], but the point is that how to choose the
method of definition does not affect the relative magnitudes
of the spatial correlation length scale between structure and
property.

V. DISCUSSION

We now further discuss the critical role of the spatial
correlation in determining the property of glasses, in terms
of the two-body excess entropy. Returning to its definition
shown in Eq. (3), there exists a critical cutoff distance, rcutoff ,
which gives a converged value of a single atom S2,i. This
cutoff distance of the integral has been chosen reasonably as
the fourth trough (11.2 Å) of g(r) in calculating S2,i because
the fluctuation of g(r) almost vanishes at this distance; see
Fig. 8(a). Beyond this distance, the atoms’ surroundings make
no contribution to S2,i.

On the other hand, manipulating the cutoff distance rcutoff

would provide further insights into the question why the
simple short-range order structure cannot be a good property
predictor in glass. The freedom in cutoff distance provides
immense room to demonstrate the critical role of the spatial
correlation length in determining the property of glasses.
To this end, we redefine the two-body excess entropy at
different cutoff distances, i.e., 3.9, 6.4, 8.8, and 11.2 Å,
which correspond to the positions of the first, second, third,
and fourth troughs of g(r), respectively. In this way, the
quantity can be transformed from a simple short-range order
parameter involving only the first nearest neighbor atoms to
a complex structure defined with atoms at longer distance
without changing anything else, as we shorten the cutoff
distance of the integration in Eq. (3). The spatial autocor-
relation functions of these newly defined two-body excess
entropies are displayed in Fig. 8(b). They have similar fea-
tures with positive values and decay with distance. However,
the correlation functions decay increasingly quickly with
decreasing cutoff distance, which implies that the spatial
correlation length ξ becomes increasingly shorter as S2,i varies
from complex structure to simple short-range order. In other
words, the structure defined at the nearest-neighbor distance
does not suffice to define a successful property descriptor in
glasses.

The spatial autocorrelation functions of S2,i shown in
Fig. 8(b) are further displayed in Fig. 8(c) in a semiloga-
rithmic manner. In this way, we can quantify the correlation
length by fitting the data empirically to C(r) ∝ exp(−r/ξ ).
The derived correlation length is shown in Fig. 8(d) as a
function of the cutoff distance. As one can see, ξ increases
with rcutoff initially, whereas it saturates at a longer distance
of 11.2 Å, which corresponds to the fourth shell of the
positional correlation of atoms. By demonstrating the cutoff-
distance-modulated spatial correlation of the two-body excess
entropy, we may have answered the question “why should
the structure–property correlation be established on complex
structure” in glasses. If only one structural descriptor were
composed of atoms within a reasonable spatial range (not
only the atoms within the first nearest neighbor), it would be
effective in correlating the property of glasses. Otherwise, the
simple short-range structure, which does not contain complete
physical information and necessary atoms in its definition up
to the common spatial correlation length, would not define
an effective complex structure as a property descriptor of
glasses, in analogy to the role that dislocation plays in the
deformation of crystals. Finally, we stress that possessing the
common spatial correlation length for one structural feature
is fundamental to predict the dynamic feature of glass. That
is, the spatial correlation is intrinsically embedded in the
relationship between the structure and property of disordered
materials [1]. This means that any structural parameter that
does not possess the common correlation length scale would
not be a good property predictor. In a broad sense, the spa-
tial correlation can be a reasonable reference for testing the
utility of one structural feature in determining the property
of glass.

VI. CONCLUDING REMARKS

In summary, we have systematically revisited the
structure–property relationships in a model CuZr metallic
glass by examining the quantitative correlation between four
structural features and the dynamic property via atomic-
resolution activation energy. The operation is aimed at an-
swering a general question regarding the kind of structural
feature that would be meaningful in determining the function
of a glass. The four structural descriptors at the atomic scale
include the vibrational MSD, flexibility volume, two-body
excess entropy, and participation fraction of low-frequency
vibrational modes. All four structure descriptors have been
proposed in the literature as effective structural signatures
of the dynamic property of glasses and supercooled liquids.
The dynamic property of glass here is represented by the
activation energy of a local structural excitation sampled on
the 3N-configurational PEL, which is confirmed as quite a
physically meaningful quantity in characterizing either ather-
mal or thermal deformation of metallic glass. Whereas a
unique simple short-range Voronoi cluster presents a wide
spectrum of activation energies, all four surveyed structural
descriptors are correlated strongly with the activation energy,
quantified with a significant fraction of Pearson’s correlation
coefficient. After checking the spatial feature of the struc-
ture field and activation energy field, we unveil a common
critical correlation length as the physical factor underlying
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FIG. 8. Demonstration of the critical role of the spatial correlation underlying the robustness of the structure–property relationship of
glasses. (a) Pair correlation function g(r) of the model glass. (b) Spatial autocorrelation functions for two-body excess entropy defined with
various cutoff distances, i.e., 3.9, 6.4, 8.8, and 11.2 Å, respectively. They correspond to the first, second, third, and fourth troughs of g(r),
respectively. (c) Semilogarithmic plot of the autocorrelation functions in (b). The dashed lines are empirical fits to C(r) ∝ exp(−r/ξ ). (d)
Correlation length ξ increases with the magnitude of the cutoff distance rcutoff , saturating at the fourth trough of g(r), i.e., rcutoff = 11.2 Å.

the robustness of structure–property relationships in glasses.
The concept of common spatial correlation as the hidden
rule of an effective property descriptor has been further dis-
cussed by manipulating the cutoff distance in defining one of
the structural descriptors, i.e., the two-body excess entropy.
Should local structural entropy predict the property of atoms,
it has to be defined beyond the fourth shell of g(r) for
glass to include necessary physical information and atoms.
The common spatial correlation length actually means the
accordant scale and scope for the “defectlike” structure and
dynamic excitation. It could be as a bond linking structure and
property.

Hence, we might have an ad hoc answer for the philosophi-
cal question of whether structure determines property in glass.
On one hand, no. Simple short-range structures such as the
Voronoi polyhedron and the coordination number cannot well
predict the dynamic property of glasses. On the other hand,
yes. A complex structure descriptor defined by multiple atoms
within a cluster up to several shells of its surroundings can
predict the dynamic feature accurately. The hidden rule behind
the robustness of the structure–property relationship in metal-
lic glasses is the spatial correlation of a specific structural

descriptor. Our findings provide comprehensive insights into
the mysterious structure–property relationships in metallic
glasses. We have explained the physical reason for which the
complex structure can more effectively predict the dynamic
property of glass. Moreover, the common correlation length
scale can serve as a general guide to identify more physically
elegant and more efficient property signatures of disordered
materials.
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