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Structural and vibrational properties of lithium under ambient conditions
within density functional theory
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We apply a general first-principles approach to derive the phase diagram of metallic lithium at ambient
pressure between 0 and 350 K, including identification of candidate phases. We use ab initio random structure
searching to identify competing phases and supplement the results with calculations of vibrational properties
and relevant derived neutron diffraction patterns. Strong quantum nuclear effects are present, prompting a
careful treatment of vibrations. We directly map the Born-Oppenheimer surface of Li, allowing the extension
of the normal quasi-harmonic treatment of vibrations to a “quasi-anharmonic” approach, where the effects of
anharmonicity are included. The Gibbs free energies of the fcc, bcc, hcp, and 9R phases are derived using a
variety of equations of state. We find that the anharmonic contribution to the Gibbs free energies of Li phases
is of the same order as the differences between phases. Anharmonicity also makes a noticeable difference to
the 0-K phonon dispersion of the bcc phase, with the largest difference at the N -point phonon. The ordering of
phase transitions that we find agrees with the calculations of Ackland et al. [Science 356, 1254 (2017)], even
when anharmonic effects are included, suggesting that a quasi-harmonic treatment is sufficient for correct phase
behavior. We show explicitly that the martensitic phase transition from close-packed to bcc lithium upon heating
is driven by entropic contributions to the phonon free energy.
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I. INTRODUCTION

Lithium is the lightest simple metal in the periodic ta-
ble. It has two stable isotopes, Li-7, which we focus on in
this work, and the much rarer Li-6, both of which exhibit
a martensitic (diffusionless) phase transition from bcc to a
close-packed mixed phase upon cooling [1–4]. Such phase
transitions are of significant practical importance, for exam-
ple, in the martensite-austenite transition in steel, upon which
many thermomechanical treatments and alloying methods are
based [5]. Martensitic transformations are also crucial to
phenomena such as shape memory of materials [6]. Li is
the simplest metal that undergoes such a transformation and,
because it is such a light element, quantum-nuclear effects
make a significant contribution to the free energies [3,7,8].
In particular, at low temperatures Li exhibits close-packed
polytypism, whereby the martensitic transition results in a
mixture of metastable close-packed phases that can be de-
scribed by hexagonal layers. The formation of such a mixed
close-packed martensitic phase means that Li is a useful
model system for understanding transformation kinetics and
characterization of mixed phases, especially where vibrational
effects are important [1,9,10]. Here we demonstrate a general
framework for deriving the phase behavior of such systems.

One of the most challenging aspects of predicting the
structures and stability of Li phases is the small energy
differences between candidate phases, which are of the order
of a few meV per atom [1,8]. This is because the electronic
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structure is free-electron-like and therefore relatively insensi-
tive to the nuclear positions [11]. The computational results
obtained may therefore be extremely sensitive to numerical
accuracy and convergence parameters. We have calculated
well-converged energies for the most important structures of
Li, such as the bcc, fcc, hcp, and 9R phases. These energies
include vibrational effects, and we report both quasi-harmonic
and fully anharmonic results.

Density functional theory (DFT) calculations were per-
formed using the CASTEP [12] plane-wave pseudopotential
code and ultrasoft pseudopotentials. We use the ab initio ran-
dom structure searching approach (AIRSS [13–15]) to derive
candidate phases and to study a wider range of relevant struc-
tures and the resulting energy scales. The AIRSS approach
consists of the construction of pseudorandom initial structures
with a set of optional constraints on the symmetry, interatomic
distances, coordination numbers, structural units (based on the
bonding that is indicated by chemical considerations), and the
dimensionality of the system, etc. These structures are then
relaxed using DFT geometry optimization in order to sample
candidate low-energy structures.

II. VIBRATIONAL ENERGIES

Vibrational contributions are of crucial importance to the
thermodynamics of Li phases [1,8,16]. A hierarchy of approx-
imations allow a systematic, fully quantum-mechanical treat-
ment of such systems. The Hamiltonian within the harmonic
approximation is

H (2) =
∑

i

− 1

2mi

∇2
i + 1

2

∑
i,j

δiδj
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FIG. 1. The possible hexagonal-layer stacking sequences from 2 to 5 layers, showing the stacking sequence, the space group, and the
electronic energy per atom relative to the fcc (ABC stacking) electronic ground state. Note that the energy differences are on the meV scale.
The inset is an illustration of the A-, B-, and C-type layers. Structures which are not close packed as a result of having the same first and last
layer in the sequence are labeled as such.

where xi are the nuclear coordinates, δi are the displacements
of the nuclei from their equilibrium positions, and V (x) is the
static lattice energy. Using a suitable change of variables [17],
Eq. (1) can be rewritten as

H (2) =
∑
q,σ

−1

2

∂2

∂p2
q,σ

+ 1

2
ω2

q,σ p2
q,σ , (2)

where pq,σ are the phonon coordinates. This Hamiltonian
corresponds to a series of noninteracting simple harmonic
oscillators with frequencies ωq,σ . In order to include anhar-
monic effects, the harmonic potential in Eq. (2) is replaced
by the static lattice energy of a given phonon perturbation,
V ({pq,σ }, β ) [17], leading to

H =
(∑

q,σ

−1

2

∂2

∂p2
q,σ

)
+ V ({pq,σ }, β ) , (3)

where β is the inverse temperature, which can affect the static
lattice energy through entropic effects (Mermin entropy) and
smearing of the electronic Fermi surface. We found these
effects to be negligible in our calculations, helped by the
use of a dense electronic k-point sampling which provides an
accurate resolution of the Fermi surface [18].

We calculate an anharmonic correction to the phonon
dispersion at each phonon q point independently by diago-
nalizing H in the basis of single-phonon states at that q point,
{|q, σ 〉}:

Hσ,ν (q) = 〈q, σ | H |q, ν〉 . (4)

Clearly there is an infinite number of excited states (σ ’s) at
each q point; in order to evaluate the matrix elements, we
truncate this set to the first 20 exited states, which is more
than sufficient for our purposes. The anharmonic potential
V ({pq,σ }, β ) is mapped using DFT calculations for a dis-
crete set of 31 amplitudes for each mode. The potential is
then interpolated to a large number of points (5000) using a
quadratic spline. The integral in Eq. (4) is then carried out over
these points to obtain the matrix elements of the Hamiltonian,
which is then diagonalized. The resulting eigenvalues are
the anharmonic excitation energies at a particular q point,
giving an anharmonic correction to the phonon dispersion.
These excitation energies can then be used to construct an

anharmonic phonon free-energy at any given temperature
(including entropic and zero-point effects) [19,20]. We find
that this method is around 50 times more expensive than
traditional harmonic phonon calculations.

Application of a Legendre transform to the free energies
provides the Gibbs free energy at a given temperature and
pressure via the following minimization:

G(T , P ) = min
V

[F (T , V ) + PV ] . (5)

The thermodynamically most stable phase has the lowest
Gibbs free energy at a given temperature and pressure. We
perform this minimization by fitting F (T , V ) data to a suitable
equation of state (see Results, Sec. III B). Within this method
the effects of thermal expansion and any anharmonic contri-
butions to the equilibrium volume of the system are included.

TABLE I. The lowest-energy results of a simple Li AIRSS
search. For each space group the number of times it was found
(N ) is shown. We also report, for each space group, the lowest
Helmholtz free energy found (Fmin, relative to the fcc phase) and the
corresponding volume (V ). The space groups are reported in order of
increasing Fmin. Only electronic energies are calculated; vibrational
energies are neglected in these calculations. The conventional names
for the four phases which are investigated more deeply in this work
are shown in brackets next to the space group. In total, 469 structures
were generated [18]. It is interesting to note the absence of the Dhcp
structure (see Supplemental Material [18]).

Space group Fmin (meV/atom) V (Å
3
/atom) N

Fm3̄m (fcc) 0.0 18.96827 39
P 63/mmc (hcp) 0.8115 18.97343 17
Im3̄m (bcc) 1.3684 18.94680 26
R3̄m (9R) 2.0593 18.94582 3
I4/mmm 2.1320 18.94480 30
C2/m 2.5273 18.97458 10
Cmcm 2.7300 18.93219 5
Immm 5.2318 18.97877 2
P 21/m 11.781 18.99312 3
P 6/mmm 14.167 19.05003 3
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FIG. 2. Simulated and experimental neutron diffraction patterns for Li. The experimental pattern (<20 K at ambient pressure) from [27]
is shown, as well as patterns derived by thermodynamically weighting close-packed Li structures and AIRSS structures using DFT energies
[see Eq. (6)]. For the close-packed patterns, all unique close-packed sequences consisting of fewer than 16 hexagonal layers are included. A
Gaussian broadening was applied to the derived patterns, with a width derived from a best fit to the experimental data.

III. RESULTS AND DISCUSSION

A. Structure searching

The fcc, bcc, hcp, and 9R structures have all been proposed
in the past to explain the experimental data for Li [1,21–23].
We find that these structures can be recovered very quickly
from first-principles calculations using AIRSS [13–15] us-
ing only very simple constraints on the initial structures. In
particular, we constrain the volume per atom to be within
50% of the known value (based on the density of solid bcc
Li) and require that no two atoms are within 1 Å of one
another (approximately 1/3 of the nearest-neighbor distance
in bcc Li). The unit cells are generated to contain between
1 and 6 atoms. Once a cell has been generated according to
these rules, we perform a DFT geometry optimization. This
minimizes the electronic free energy and locates a locally
stable structure (neglecting expensive-to-calculate vibrational
effects). The results of an AIRSS search with these constraints
are shown in Table I. We see that it is possible to obtain a
good heuristic understanding of the energy landscape, even
when the effects of vibrations are neglected. The electronic
energies of these phases are extremely similar to one another,
with differences on the order of meV/atom. Several other
searches were also carried out with additional constraints on
the symmetry of the initial structures [18], but this was not
found to be useful in this case.

1. Close-packed structures

In the previous section we saw that the AIRSS searches
quickly recovered the fcc, bcc, hcp, and 9R structures. Most
of the other structures found in the searches consist of various
close-packed polytypes. Any repeating sequence of hexagonal
layers, where no two adjacent layers are of the same type (the
layer types are labeled A, B, and C; see Fig. 1), gives a close-
packed structure. As a result, there is an infinite number of
different close-packed polytypes. Many of these are realized
in the martensitic phase of Li that is observed experimentally
at ambient pressure and low temperatures; this phase consists
of a mixture of close-packed phases and remnants of the
high-temperature bcc phase [1]. This is an example of one
of the most common forms of martensitic transformation

(bcc → close-packed) [24], in which anharmonic effects may
play an important role [25]. Close-packed crystal structures
with a short repeating sequence of hexagonal layers are more
likely to be realized in such a mixed phase, as several repeats
are more likely to fit between defects. Layer-layer interactions
also diminish rapidly with interlayer separation [26]. This
justifies the truncation of the infinite set to smaller sequences
that are below a certain repeat length. In particular, we in-
vestigate the energetics of all of the possible close-packed Li
structures with a sequence of 15 or fewer layers. There are
10 922 such structures,1 489 of which are unique, labeling
equivalent structures following Ref. [26].2 For a given unique
structure i, we call the number of equivalent structures wi .

The powder neutron diffraction pattern is simulated for
each of these unique structures, and the resulting overall
mixed-phase pattern is obtained by thermodynamic weighting
of the individual patterns. Neglecting defect energies, the
resulting neutron pattern at temperature T is given by [18]

I (2θ ) = aIbcc(2θ ) + b
∑

i

Ii (2θ )
wi

exp
(

Ei−μ

kBT

) − 1
, (6)

where Ii (2θ ) is the pattern for the ith structure, Ei is the
energy per atom, and wi is the multiplicity of the structure (as
defined in the previous paragraph). a, b, μ, and T are fitted to
the experimental pattern. The resulting combined patterns are
shown in Fig. 2.

In agreement with Ackland et al., the experimental data
are well described by a martensite consisting of a mixture of
close-packed phases and bcc remnants [1]. We give the results

1This number is ∼ 2
3 214. In general, the number of close-packed

structures with �n hexagonal layers is ∼ 2
3 2n. The factor of 2n arises

from the number of leaves in a tree such as Fig. 1, and the 2
3 arises

from the 1
3 of such structures which have the same initial and final

layer in the sequence (meaning they do not correspond to a close-
packed structure).

2We note a minor error in Ref. [26], where it is stated that the
number of unique close-packed sequences with up to ten atomic
layers is 43. There are, in fact, only 38.
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FIG. 3. The Helmholtz free energy per atom vs volume per atom
at 300 K for fcc and bcc lithium. The solid lines show the Birch-
Murnaghan fit used to derive the 300-K data in Figs. 4 and 5.

for such weighted close-packed patterns both at a fixed vol-
ume per atom and after optimizing the volume of each phase.
The latter case is equivalent to allowing density variations
across the sample based on the local crystal structure. We see
little difference in the resulting patterns, likely because the
optimized volumes are all very similar.

Simply weighting the close-packed phases thermodynam-
ically in this way reproduces many of the non-bcc charac-
teristics of the experimental pattern, but not as accurately as
the large-scale molecular dynamics calculations performed in
Ref. [1]. This is because transformation kinetics are not fully
included by a simple thermodynamic weighting of phases, as
energy barriers along transition pathways between phases also
play an important role [9]. Such kinetic effects can be captured
by molecular dynamics simulations using suitable interatomic
potentials [1,28]. We are investigating the exploration of tran-
sition states from first principles in order to better understand
these effects.

For completeness, the pattern that results from combining
the structures found in our AIRSS search using Eq. (6) is also
given in Fig. 2.

FIG. 4. The Gibbs free energy of the fcc and bcc Li phases
at a range of temperatures. This data was obtained by fitting the
Birch-Murnaghan equation of state to data for F (V, T ) from DFT
calculations (see main text). The standard fitting error is shown as
a shaded region. The result of including the anharmonic correction
from Fig. 6 is also shown.

FIG. 5. From the same calculation as Fig. 4, but showing the
derived equilibrium volume and thermal expansion.

B. Free-energy calculations

Quasi-harmonic calculations of the Gibbs free energy are
performed for the fcc and bcc phases of lithium using a
well-converged parameter set. We use plane-wave DFT with
a Perdew-Burke-Ernzerhof (PBE) functional, a plane-wave
cutoff of 3 keV, and an electronic k-point grid with a spacing

of 0.02 Å
−1

. The phonon Brillouin zone is sampled using the
highly efficient nondiagonal supercells method [29], which
is significantly faster than a normal phonon supercell calcu-
lation, without any loss of accuracy. The phonon dispersion
is calculated on a 10 × 10 × 10 grid in reciprocal space
and then interpolated to a 40 × 40 × 40 grid using Fourier
interpolation. The Helmholtz free energy is calculated for a
range of volumes around the equilibrium volume and fitted
to the Birch-Murnaghan equation of state [30] to extract the
Gibbs free energy. An example of such a fit at 300 K is
shown in Fig. 3. The resulting Gibbs free energy is shown
in Fig. 4 for a range of temperatures between 0 and 350 K.
The Murnaghan, Rose-Vinet, and Poirier-Tarantola equations
of state [31–33] give essentially identical results. A transition
from the fcc to a bcc phase occurs upon heating at 217 ± 13 K.
This phase transition is observed on isobaric heating of the
fcc phase experimentally; however, the calculated transition
temperature is somewhat above the experimental range of
110–200 K [1,4,34–37]. The reverse bcc → fcc transition
is not seen experimentally upon isobaric cooling at ambient
pressure. The fcc phase is instead prepared via a high-pressure
route [1] to avoid formation of the martensitic phase investi-
gated in Sec. III A 1. Isothermal compressibilities and thermal
expansion coefficients closely match the experimental results
[18,38,39].

FIG. 6. The correction to the Gibbs free energy of bcc and fcc Li
that results from including the effects of anharmonic vibrations via
Eq. (4).
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FIG. 7. The Gibbs free energy of Li phases at a range of temper-
atures. The data was obtained by fitting the Birch-Murnaghan equa-
tion of state to data for F (V, T ), obtained using DFT calculations
(see main text). The standard fitting error is shown as a shaded region.

Using the method outlined in Sec. II, we calculate an an-
harmonic correction to the Helmholtz free energy, effectively
moving from the quasi-harmonic regime into the “quasi-
anharmonic.” The resulting correction to the Gibbs free en-
ergy is shown in Fig. 6. The effect on the fcc → bcc transition
is included in Fig. 4. Anharmonic effects are much stronger
in the bcc phase, with the fcc → bcc transition temperature
increasing by 15 K (to 232 K) as a result.

It is also interesting to note the difference between the
lowest-lying eigenvalues of the harmonic and anharmonic
Hamiltonians [Eqs. (2) and (4), respectively], shown in
Figs. 10 and 11. These corrections are present even at zero
temperature, as they result directly from the anharmonicity
of the 0-K Born-Oppenheimer surface. The most significant
effect is a stiffening of the N -point (0, 0.5, 0) phonon in bcc
Li by ∼1 meV (around 30% stiffer than the harmonic case).
It has been suggested that stiffening of this mode could be
important in stabilizing bcc phases [40]; however, we find that
this mode is dynamically stable to begin with (contrary to bcc
Zr in Refs. [40,41]).

To complement these results, we perform a second set
of similar calculations which include the 9R and hcp struc-
tures. These calculations are carried out with an local den-
sity approximation (LDA) functional and with less intensive

convergence parameters (1-keV plane-wave cutoff, 0.035 Å
−1

electronic k-point grid spacing, and an 8 × 8 × 8 phonon q-
point grid). This is done in order to investigate the sensitivity

FIG. 8. As Fig. 7, but neglecting the entropic contribution to the
phonon free energy. With this modification we see that the phase
transitions in the 0–300 K range disappear.

FIG. 9. Phonon contributions to the Gibbs free energy of bcc Li.

of our results with respect to convergence parameters and the
functional used. The resulting Gibbs free energies are shown
in Fig. 7. The sequence of phase transitions with increasing
temperature is the same as in the PBE calculations in Fig. 4.
However, the fcc → bcc transition temperature in the LDA
calculations is 47 K higher at 264 ± 26 K. This is due to the
fact that the transition temperature is extremely sensitive to
the convergence of the differences in the Gibbs free energy;
we estimate an increase of 117 K in transition temperature
per meV increase in the bcc-fcc energy difference. The ap-
pearance of a metastable bcc → 9R transition upon cooling
through 120 K is compatible with the martensitic transition;
however, the predicted transition temperature is once again
somewhat above the experimental range [4,34–37,42].

We go on to show that the fcc → bcc transition is driven by
entropic contributions to the phonon free energy. The phonon
free energy is given by

Fph(T , V ) = 1

2

∫
ωD(ω, V )dω +

∫
ω

exp(ω/T ) − 1

×D(ω)dω − T Sph(T , V ), (7)

FIG. 10. The 0-K vibrational band structure of bcc Li. The solid
line shows the normal harmonic phonon dispersion relation from
Eq. (2). The dotted line shows the lowest eigenvalue of the anhar-
monic Hamiltonian given in Eq. (4). The Brillouin zone positions
are given in terms of primitive reciprocal lattice vectors. The shapes
of the mode potentials at points N and H in the Brillouin zone are
shown in the inset with quadratic fits (red dashed lines) to illustrate
the anharmonicity at the N point.
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FIG. 11. As Fig. 10, but for fcc Li. In this case the anharmonicity
is negligible.

where D(ω) is the phonon density of states. The first term
is the zero-point energy, the second arises from the thermal
occupation of phonon states, and the entropic term Sph is
given by [19,20]

Sph(T , V ) =
∫

ω/T

exp(ω/T ) − 1
D(ω, V )dω

−
∫

ln[1 − exp(−ω/T )]D(ω, V )dω. (8)

The importance of the entropic term becomes apparent
when its contribution is explicitly neglected, resulting in the
Gibbs free-energy landscape shown in Fig. 8 in which phase
transitions are no longer present. The individual contributions
to the phonon free-energy for bcc Li are shown in Fig. 9, in
which clearly the entropic contribution dominates the zero-
point and occupational terms. The fcc, hcp, and 9R phases
show similar behavior. Because the low-lying phonon modes
in bcc Li are softer than those of fcc (see Figs. 10 and 11),
the entropic effects are stronger, which leads to the fcc → bcc
phase transition upon heating.

IV. CONCLUSIONS

We have investigated the application of a general frame-
work for deriving the phase behavior of materials with strong
vibrations from first principles to metallic Li. The AIRSS
approach [13,14] is found to quickly pick out relevant low-
energy phases with little effort, including both the bcc phase
and numerous close-packed phases. We have found that DFT
predicts a zero-temperature fcc phase and a room-temperature

bcc phase; a metastable transition from bcc to the 9R phase is
also predicted in the region of fcc stability. These results are
consistent with experimental results, which show a (partial)
martensitic transition from bcc to various close-packed forms
on cooling [1,34–36]. Experiments also show that the fcc
phase is stable at low temperatures but may be formed via a
high-pressure pathway [1]. The predicted fcc → bcc transition
temperature is found to be extremely sensitive to changes
in the Gibbs free-energy landscape (∼117 K/meV). As a
result, effects which would normally be considered negligible
become potentially important, including the effects of anhar-
monic vibrations. We calculate an anharmonic correction of
up to 0.4 meV/atom, which increases the predicted fcc → bcc
transition temperature by 15–232 K, but find that it does not
qualitatively change the phase diagram. Our calculations show
that the N -point phonon in bcc Li is dynamically stable, con-
trary to the case for bcc Zr in Refs. [40,41] and is around 30%
stiffer when anharmonic effects are included. The anharmonic
free-energy calculations are around 50 times more expensive
than the quasi-harmonic ones, but we have found that they
can be accelerated without loss of accuracy by employing
symmetry considerations and sampling anharmonic potentials
at fewer amplitudes. We calculate the various contributions
to the Gibbs free energy and find that entropic contributions
to the phonon free energy are of crucial importance, without
which such phase transitions disappear entirely.

Supporting research data for this article may be freely
accessed [43], in compliance with the applicable open data
policies.
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