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We have generalized a quasiclassical model for Weyl semimetals with a tilted band in the presence of an
externally applied magnetic field. This model is applicable to ballistic, moderately disordered, and samples
containing a high density of nonmagnetic impurities. We employ this formalism and show that a self-biased
supercurrent, creating a ϕ0 junction, can flow through a triplet channel in Weyl semimetals. Furthermore, our
results demonstrate that multiple supercurrent reversals are accessible through varying junction thickness and
parameters characterizing Weyl semimetals. We discuss the influence of different parameters on the Fraunhofer
response of charge supercurrent, and how these parameters are capable of shifting the locations of proximity-
induced vortices in the triplet channel.
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I. INTRODUCTION

The topological state of matter has been a striking topic
during the past decade and attracted extensive attention both
theoretically and experimentally [1]. The topological phases
can host topologically protected intriguing phenomena and
exotic particles, which offer promising prospects to a prac-
tical arena such as topological quantum computation [1].
The research efforts in this context have so far been fruitful
and led to the exploration of topological insulators [2,3] and
Weyl semimetals [4–10], for instance. A topological insulator
possesses insulating characteristics in its bulk material and
shows perfect conducting features in its surface channels.
Also, the band touching points of Weyl semimetals are the
so-called Weyl nodes where the Fermi surface, encompassing
the nodes, has a nonzero Chern number, thus topologically
is nontrivial. The interplay of topological phase with super-
conductivity is expected to result in topological superconduc-
tivity, hosting Majorana fermions governed by non-Abeian
statistics [11–13].

The conventional BCS superconductivity in Weyl
semimetals can occur due to the intervalley couplings
while the unconventional triplet correlations may arise by the
intravalley pairings [14–29]. The latter case, if energetically
favorable, might create superconducting correlations with
finite momentum that places these correlations in the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [14,18].
The FFLO phenomenon was first predicted for conventional
BCS superconductors near their critical magnetic field where
the BCS superconductivity is suppressed and the amplitude
of singlet Cooper pairs is highly oscillatory [30]. Considering
the topological phase transition, which is inherent to the
bulk material of ballistic Weyl semimetals, the existence of
superconductivity in such materials can provide a unique
platform to reveal the interplay of superconductivity and
topology [31–35] that has both theory and experiment
attention [9,26,27,36–57]. In particular, quite recent

experimental progresses have observed enhancements in
the critical temperature of superconducting MoTe2, from 0.1
to 8.2 K, under pressures of the order of 11.0 GPa or from 0.1
to 1.3 K through partially substituting the tellurium ions by
sulfur [31,32]. This enhancement is attributed to the interplay
of topology and superconductivity [31,32]. Nonetheless, this
enhancement might be due to the emergence of type-II Weyl
semimetal phase in which the transition from type-I to type-II
phase increases the available density of states near the Weyl
nodes as recently explored in theory [58–60]. This transition
can be achieved by tensile stress or doping [58–60].

Experimentally, the presence of disorder and nonmagnetic
impurities in the majority of samples is inevitable and may
highly influence data analyses of physical quantities sensitive
to them. A prominent example is the surface of topological
insulators that are expected to be ballistic, showing conduc-
tance values equal to those of theory predictions. However,
experimental measurement of the conductance of these sur-
face channels was inconsistent with theory predictions. This
seemingly discrepancy was resolved through magnetic scan-
ning methods and further conductance spectroscopy analyses.
It was demonstrated that disorder and impurities in these
surface channels are practically unavoidable and highly alter
the conductance of these channels [61]. To properly model re-
alistic surface channels of topological insulators with different
densities of nonmagnetic impurities, a quasiclassical approach
was recently generalized in the presence of superconduc-
tivity and arbitrary magnetization patterns, addressing both
equilibrium and nonequilibrium states [62–64]. Likewise, the
focus of literature has so far been ideal systems and less
attention paid to disordered Weyl semimetals in the presence
of superconductivity. In this paper we develop a quasiclassical
model for Weyl semimetals with the inclusion of a tilting
parameter [59] and derive Eilenberger and Usadel equations
for superconducting Weyl semimetals subject to an externally
exerted magnetic field. The Eilenberger equation supports
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ballistic systems and samples with a moderate density of
impurities while the Usadel model covers samples with a high
density of impurities and disorder that make the motion of
quasiparticles diffusive. As a practical application of the devel-
oped model, we apply the Usadel equation to Weyl semimetal
mediated Josephson junctions. We study crossovers in charge
supercurrent and demonstrate that a spontaneous supercurrent
can flow through a triplet channel, creating a ϕ0 junction,
which is well controlled via junction length and the mate-
rial parameters pertaining to Weyl semimetals that provide
experimentally efficient control knobs. We also consider a
two-dimensional junction subject to an external magnetic field
and show that the charge current has a decaying oscillatory
behavior by increasing the external magnetic field, constitut-
ing Fraunhofer-modulated diffraction patterns. In all cases,
we evaluate the influence of the tilting parameter on our
findings.

The paper is organized as follows. In Sec. II, starting
from the low energy Hamiltonian, we present the main steps
of formulating a quasiclassical model for Weyl semimetals.
Considering a standard model for nonmagnetic impurities, we
derive the Eilenberger equation which is applicable to ballistic
and moderately disordered samples. Next, we consider sam-
ples with a high density of impurities, average the Eilenberger
equation over the particles’ momentum, and derive the Usadel
equation. We then discuss the tunneling boundary conditions
and derive a charge current relationship for the model Hamil-
tonian we start with. In Sec. III we consider a Josephson con-
figuration, find solutions to the Green’s function, and derive
an analytical expression to the supercurrent phase relation.
We study the spontaneous supercurrent, current reversals,
and the effects of tilting parameter on them. In Sec. IV we
consider a two-dimensional junction subject to an external
magnetic field and study the behavior of supercurrent flow
and superconducting vortices. Finally, we give concluding
remarks in Sec. V.

II. EILENBERGER AND USADEL EQUATIONS

We first discuss the Hamiltonian of normal state Weyl
semimetal and next incorporate superconductivity. The model
Hamiltonian that governs the dynamics of low energy parti-
cles inside a ballistic Weyl semimetal subject to an external
magnetic field reads

H =
∑
σσ ′

∫
dk

(2π )3
ψ†

σ (k){γ [(kk + eAk )2 − Q2]σz

+β[(kk + eAk )2 − Q2]

+αk (kk + eAk )σk − μ}σσ ′ψσ ′ (k), (1)

in which indices σ, σ ′ ≡ ↑,↓, k ≡ x, y, z, γ characterizes
Weyl semimetal and breaks the time reversal symmetry, Q

is the splitting of Weyl nodes, β describes the tilt of the
Weyl cones, αk is the strength of the inversion symmetry
breaking parameter, and μ stands for the chemical potential.
The particles’ momentum is denoted by k = (kx, ky, kz) and
the external magnetic field is given through its associated

vector potential A = (Ax, Ay, Az). Here σ = (σx, σy, σz) are
the Pauli matrices and e is the elementary charge.

To describe a system made of Weyl semimetal, we define
propagators

Gσσ ′ (t, t ′; r, r′) = −〈T �σ (t, r′)�†
σ ′ (t ′, r′)〉, (2a)

Ḡσσ ′ (t, t ′; r, r′) = −〈T �†
σ (t, r)�σ ′ (t ′, r′)〉, (2b)

Fσσ ′ (t, t ′; r, r′) = +〈T �σ (t, r)�σ ′ (t ′, r′)〉, (2c)

F
†
σσ ′ (t, t ′; r, r′) = +〈T �†

σ (t, r)�†
σ ′ (t ′, r′)〉, (2d)

where T is the time ordering operator and t, t ′ are the imagi-
nary times at r, r′, respectively. We consider elastic impurity
scattering potentials V (r) inside Weyl semimetal by a self-
energy term

�imp(r, r′) = 〈V (r)G(r, r′)V (r′)〉, (3)

where we average over the positions of impurities. To obtain
the above self-energy term, we treat the impurity potentials
as perturbation and expand the Green’s function in terms of
the unperturbed Green’s function up to the second order. We
find the mean free time of particles in the disordered Weyl
semimetal as τ−1 = 2πniN0

∫
d�nF (4π )−1|v(�)|2 in which

v(�) is the Fourier transform of the scattering potential that
depends on the relative angle � between the incident and
scattered direction of particles, N0 is the density of states per
spin at the Fermi level of the system, and ni is the concen-
tration of impurities. Note that, for the sake of simplicity in
the subsequent calculations, we have neglected the intervalley
scatterings and anisotropic terms and their effects on the mean
free time. In the particle-hole space we find the following
equation for the Green’s function:(

−iωn + Ĥ (r) −�̂(r)

�̂∗(r) iωn + σyĤ
∗(r)σy

)
Ǧ(ωn; r, r′)

= δ(r − r′) + 1

2πN0τ
Ǧ(ωn; r, r)Ǧ(ωn; r, r′), (4)

in which ωn = π (2n + 1)kBT is the Matsubara frequency,
n ∈ Z, kB is the Boltzman constant, T is temperature, and
�̂(r) is the superconducting gap inside Weyl semimetal. The
matrix form of the Green’s function is given by

Ǧ(ωn; r, r′) =
(

−Ĝ(ωn; r, r′) −iF̂ (ωn; r, r′)σy

−iσyF̂
†(ωn; r, r′) σy

ˆ̄G(ωn; r, r′)σy

)
.

We have denoted 2 × 2 matrices by “hat” symbol (�̂) and 4 ×
4 matrices by “check” symbol (�̌). Next, we subtract from
Eq. (4) its conjugate and perform a Fourier transformation
with respect to the relative coordinates: R = (r + r′)/2 and
δr = r − r′. In order to simplify our calculations, we assume
that the Fermi energy is the largest energy scale in the system,
and thus the Green’s function is localized at the Fermi level
(with Fermi velocity vF ). Hence, define the quasiclassical
Green’s function

ǧ(ωn; R, nF) = i

π

∫
dξpǦ(ωn; R, p), (5)
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in which dξp = vF dp. Incorporating these assumptions we
finally arrive at the Eilenberger equation [65]

pk
F

{
L, ˇ̃∇kǧ

} + [
ωnτz + �̌k + 1

2τ
〈ǧ〉, ǧ] = 0,

L = γ σz + β, (6)

ˇ̃∇kX̌ ≡ ∇̌kX̌ − [ieAkτz, X̌],

�̌k = −i�̌ − ipk
Fαkτzσk + iγQ2σz + iβQ2,

where τ = (τx, τy, τz) are Pauli matrices in particle-hole
space, pF = (px

F, py

F, pz
F), and ∇̌k ≡ ∂̌x,y,z. The average over

disorder is shown by 〈· · · 〉. In the above calculations we have
neglected contributions of the order of L−2 and ωc/μ � 1,
where ωc is the cyclotron frequency and L is a length scale,
large enough compared to the Fermi wavelength L � λF.
Also, it is assumed that L is the leading term in the Hamil-
tonian.

The Eilenberger equation can be more simplified in sys-
tems with numerous impurities so that 1/τ > |ωn|, |�|. In
this case, the quasiparticles move diffusively with random
directions and trajectories, which is the so-called diffusive
regime [66]. In the diffusive regime, we integrate the quasi-
classical Green’s function, Eq. (5), over all possible directions
of quasiparticles’ momentum:

〈ǧ(ωn; R, nF)〉 ≡
∫

d�nF

4π
ǧ(ωn; R, nF), nF = pF

|pF| . (7)

In this regime, the Green’s function can be expanded through
the first two harmonics: s-wave and p-wave

ǧ(ωn; R, nF) = ǧs (ωn; R) + nk
Fǧk

p(ωn; R), (8)

where the s-wave harmonic in the expansion above (8) is
isotropic and its magnitude is much larger than the p-wave
harmonic: ǧs � ǧk

p. By substituting this expanded Green’s
function into Eq. (6) and performing an integration over
momentum directions we find

ǧk
p = −τpk

Fǧs{L, ˇ̃∇k ǧs} + τpk
Fǧs[iαkτzσk, ǧs]. (9)

Next, by substituting Eq. (9) into Eq. (6) and assuming
that ∇kγ = ∇kβ = ∇kαk = ∇kAk = 0, we find a generalized
Usadel model for tilted Weyl semimetals [66]:

pk
F

3

{
L, ˇ̃∇k ǧk

p

} − pk
F

3

[
iαkτzσk, ǧk

p

] + [ωnτz + �̌k, ǧs] = 0.

(10)
Solving Eqs. (6) and (10), one finds appropriate Green’s

function that contains all information describing observable
physical properties of various systems. Hence, we now pro-
ceed to apply our formulated quasiclassical model to hybrid
structures made of disordered Weyl semimetals and super-
conductors, which are practical platforms that the Eilen-
berger and Usadel equations are able to describe properly.
It is worth mentioning that the quasiclassical Eilenbeger
and Usadel approaches were also generalized for spin-orbit
coupled systems [67–72], surface channels of topological
insulators [62–64], and black phosphorus monolayer (phos-
phorene) [27] in the presence of superconductivity and a
Zeeman field. A specific configuration is depicted in Fig. 1.
As seen, two superconductors are coupled through a dis-
ordered Weyl semimetal of thickness d and width W . The
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FIG. 1. Schematic of a Josephson junction made of a disordered
Weyl semimetal. The junction plane is placed in the zy plane and
the tunneling interfaces between the Weyl semimetal and supercon-
ductors are located at z = ±d/2. The macroscopic phase of the left
and right superconductors are labeled by θl and θr , respectively. The
width of the junction is W and an external magnetic field H is
applied along the x axis, perpendicular to the junction plane.

interfaces are located at z = ±d/2 in the xy plane. The
macroscopic phases of the left and right superconductor ter-
minals are denoted by θl and θr , respectively. We consider
low transparent interfaces (the so-called tunneling limit) be-
tween the superconductors and Weyl semimetal and neglect
the inverse proximity effect at the interfaces. We therefore
find the following expression to the boundary conditions
[62–64,73,74]:

ζnk ǧk
p = [ǧs , ǧSC], (11)

in which nk is a unit vector perpendicular to a boundary,
ζ controls the opacity of interfaces, and ǧSC is the Green’s
function of the bulk superconductors. To study the quantum
transport, we derive an expression to the charge current flow
(due to the superconducting phase gradient across the device,
in our case). The quantum definition of current density is
expressed through the Hamiltonian Eq. (1) as follows:

∂ρ

∂t
= lim

r→r ′

∑
σσ ′

1

ih̄
[ψ†

σ (r ′)Hσσ ′ (r )ψσ ′ (r )

−ψ†
σ (r ′)H †

σσ ′ (r ′)ψσ ′ (r )], (12)

where the left-hand side is the time variation of charge density
ρ. Throughout our calculations we consider a steady state
regime and, therefore, set ∂ρ/∂t = 0. We use the Fourier
representation of the Keldysh Green’s function in equilibrium:∑

n

∫
dp

(2π )3
eip·rǦK (ωn; R, p), (13)

and we finally arrive at an expression for the current density
in the ballistic regime. By applying the quasiclassical approx-
imations described above and making use of the harmonics
expansion to the Green’s function, Eq. (8), we find the follow-
ing expression for the current density in the diffusive regime:

Jk = ieπ

3
N0pk

FT
∑

n

Tr
[
τz(γ σz + β )ǧk

p

]
. (14)
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To derive Eq. (14) we have assumed sufficiently small αk and
neglected terms of the order of αk (pk

F)−1.

III. SELF-BIASED SUPERCURRENT AND
SUPERCURRENT REVERSALS

In order to find the charge current density, one has to solve
either Eq. (6) (in the ballistic regime [64]) or Eq. (10) (in
the diffusive regime [62,63]) together with proper boundary
conditions (11) and substitute the resultant Green’s function
into Eq. (12). In the diffusive regime, the Usadel equation
(10) results in nonlinear boundary value differential equations
that have to be solved numerically [75]. To obtain decoupled
linear differential equations that are simpler to solve and
provide analytical solutions, we expand and linearize the

Green’s function around the bulk solution ǧ0(ωn; R), i.e.,
ǧ(ωn; R) ≈ ǧ0(ωn; R) + f̌ (ωn; R) [73]. This approximation
is experimentally relevant and accessible in a low proximity
limit either close to the superconducting critical temperature
or devices with low transparent interfaces [73]. The external
magnetic field is given by its associated vector potential that
satisfies the Lorentz gauge ∇ · A = 0 and Hx = ∇ × A. As
depicted in Fig. 1, we consider a situation where the external
magnetic field is directed towards x direction, perpendicular
to the junction plane, and, therefore, can be described by
A = (0, 0, yHx ). The Usadel equation (10) for the triplet
channel in the presence of the external magnetic field within
a tilted Weyl semimetal results in the following decoupled
linear differential equations:

(β + γ )2∇2
k f↑↑(ωn) − [αz + 2eAz(β + γ )]2f↑↑(ωn) − 2i(β + γ )[αz + 2eAz(β + γ )]∇zf↑↑(ωn) + ωn

D2
f↑↑(ωn) = 0, (15a)

(β − γ )2∇2
k f↓↓(ωn) − [αz − 2eAz(β − γ )]2f↓↓(ωn) + 2i(β − γ )[αz − 2eAz(β − γ )]∇zf↓↓(ωn) + ωn

D2
f↓↓(ωn) = 0, (15b)

(β + γ )2∇2
k f̃↑↑(ωn) − [αz + 2eAz(β + γ )]2f̃↑↑(ωn) + 2i(β + γ )[αz + 2eAz(β + γ )]∇zf̃↑↑(ωn) + ωn

D2
f̃↑↑(ωn) = 0, (15c)

(β − γ )2∇2
k f̃↓↓(ωn) − [αz − 2eAz(β − γ )]2f̃↓↓(ωn) − 2i(β − γ )[αz + 2eAz(β − γ )]∇zf̃↓↓(ωn) + ωn

D2
f̃↓↓(ωn) = 0. (15d)

Here index k runs over y, z in a two-dimensional system and x, y, z in a three-dimensional junction.
To begin, we first set the external magnetic field zero, i.e., Hx = 0 in Eqs. (15). By considering the low proximity limit,

described above, we find appropriate expressions to the components of Green’s function. For example, the components f↑↑(ωn; z)
and f̃↑↑(ωn; z) become

f↑↑(ωn; z) = F (ωn) exp

(
−2iαzdz

β + γ

){
exp

(
i[αzd(z + 1) + θr (β + γ ) + λnD

−1(1 − z)]

β + γ

)

+ exp

(
i[αzd(z + 1) + θr (β + γ ) + λnD

−1(z + 1)]

β + γ

)
+ exp

(
i[αzdz + βθl + γ θl − λnD

−1(z − 2)]

β + γ

)

+ exp

(
i
z(αzd + λnD

−1)

β + γ
+ iθl

)}
, (16a)

f̃↑↑(ωn; z) = F (ωn) exp

(
−i

αzd + (β + γ )(θl + θr )

β + γ

){
exp

(
i[αzd(z + 1) + θr (β + γ ) − λnD

−1(z − 2)]

β + γ

)

+ exp

(
i[αzdz + (β + γ )θl + λnD

−1(1 − z)]

β + γ

)
+ exp

(
i[αzdz + (β + γ )θl + λnD

−1(1 + z)]

β + γ

)

+ exp

(
i[αzd(z + 1) + (β + γ )θr + λnD

−1z]

β + γ

)}
. (16b)

Here we have defined F (ωn) = iD{λnζ [exp ( 2iλnD
−1

β+γ
) − 1]}−1

ft , D2 = 2p2
Fτ/3, and λ2

n = −ωn/d
2. Our analyses of the

boundary conditions and the Usadel equation demonstrate that the supercurrent in this system can flow through a triplet
channel. Therefore, we assume a triplet component ft to ĝSC in Eq. (11). This finding may explain a recent experiment where a
long-ranged supercurrent was observed through a Josephson junction made of WTe2 Weyl semimetal [50], inline with previous
works [67,68,70–72]. In the singlet channel we recover the results of a conventional SNS junction (up to the zero order of
αzp

−1
F ). We only presented two representative components of ˜̂f (ωn; z) and f̂ (ωn; z). To obtain the total charge current passing

through the junction Ic, we substitute these solutions into Eq. (14) and, after performing calculations, find the following charge
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FIG. 2. Normalized charge current through the disordered Weyl semimetal Josephson junction as a function of junction thickness d (πξS )−1.
(a) The supercurrent is shown for differing values of β = 0.15, 0.30, 0.45, 0.60, and 0.75 with fixed γ = 0.1 and αz = 0.5. (b) The supercurrent
is shown for differing values of αz = 0.2, 0.4, 0.6, 0.8, and 1.0 with fixed γ = 0.1 and β = 0.6.

supercurrent phase relation

Ic = eπN0AD3T
∑

n

f 2
t

ζ 2λn

csc

(
λnD

−1

β − γ

)
csc

(
λnD

−1

β + γ

){
(β − γ ) sin

(
λnD

−1

β + γ

)
sin

(
αzd

β − γ
− ϕ

)

− (β + γ ) sin

(
λnD

−1

β − γ

)
sin

(
αzd

β + γ
+ ϕ

)}
, (17)

in which A is the cross section of the Weyl
semimetal/superconductor interface, ϕ = θl − θr , and we
define I0 = eπN0A. As seen in Eq. (17), the supercurrent
experiences a total phase shift �0(β, γ, αz) made of
ϕ±

0 = dαz/(β ± γ ) that renders the junction grand state into
values other than the standard 0 or π states in conventional
Josephson junctions. This phase shift causes a self-biased
supercurrent at zero phase difference ϕ = 0. Note that ϕ±

0 are
independent of D. This finding illustrates that the addressed
phase shift is robust against the density of impurities
considered in the system, i.e., ϕ±

0 are independent of τ .
Hence, this phenomenon can obviously occur in moderately
disordered and ballistic regimes as quite recently explored in
experiment [76] inline with theory predictions for topological
insulator surface channels [62–64] and black phosphorus
monolayer [26,27]. Also, the explored ϕ0 state in this paper
relies on the inherent parameters of Weyl semimetal without
involving Zeeman field [26,27,62–64,76,77]. It is worth
mentioning that the appearance of 4π -periodic current phase
relation in topological insulator Josephson junctions might
be due to the presence of Majorana fermions although such a
4π -periodic supercurrent phase relation can be theoretically
obtained in the trivial regime of a ballistic topological
insulator as well [64,78]. Figure 2 illustrates the normalized
charge supercurrent as a function of the thickness of Weyl
semimetal d normalized by the superconducting coherence
length ξS for differing values of the tilting parameter β,
Fig. 2(a), and strength of inversion symmetry breaking

parameter αz, Fig. 2(b), at zero phase difference, i.e., ϕ = 0.
In Fig. 2(a), considering representative values, we set
αz = 0.5, γ = 0.1 fixed and vary β, whereas in Fig. 2(b),
β = 0.6, γ = 0.1 are set fixed and αz varies. We see that the
supercurrent decays and experiences multiple sign changes as
a function of d in both cases. The sign change occurs faster
by decreasing β and increasing αz. This can be understood
by Eq. (17). Increasing αz or decreasing β, the phase shift
increases and, therefore, by varying d, faster oscillations
occur. Equation (17) demonstrates that β, in the absence
of αz, is unable to induce phase shift in this channel while
in the presence of a finite αz, the tilting parameter changes
the magnitude and sign of the phase shifts, making a total
phase shift �0(β, γ, αz). The inversion symmetry breaking
parameter, αz, may respond to a mechanically exerted
deformation efficiently [26,27] and, thus, the spontaneous
supercurrent and current reversals might be effectively
controllable through external knobs regardless of the density
of impurities and disorder present in the system.

The tilting parameter competes with the inversion
symmetry breaking parameter in inducing supercurrent
reversals. The increase of β results in shifting the locations
of current reversal points and, in general, reduces the number
of crossovers that can appear in a specific interval of junction
thickness, Fig. 2(a). This is opposite to the effect of αz

shown in Fig. 2(b). Furthermore, by increasing β, the
supercurrent vs the junction thickness enhances and decays
slower, whereas αz is unable to influence the degree of
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supercurrent decay. From Eq. (17), the supercurrent is
proportional to (β ± γ )csch[1/d(β − γ )]csch[1/d(β +
γ )]sinh[1/d(β ∓ γ )] sin(ϕ±

0 ). It is apparent that αz is unable
to effectively enhance or suppress the magnitude of total
supercurrent while β and γ can highly alter the total charge

current. If we set αz = 0, the supercurrent as a function of
junction thickness d decays with no current reversal, showing
long-ranged characteristics [50]. We now proceed to study
Weyl semimetal Josephson junctions subject to an external
magnetic field.

IV. FAUNHOFER RESPONSE AND PROXIMITY VORTICES

In order to study the response of charge current to an external magnetic field in a Weyl semimetal mediated Josephson
junction, we consider a two-dimensional configuration with H = (Hx, 0, 0) depicted in Fig. 1. We assume that W � d,
define � = πWdHx , �0 = h/2e a quantum flux, and � = �/�0 [62,73,75]. The resultant Green’s function components
f↑↑(ωn; z, y), f̃↑↑(ωn; z, y) and calculated current density flowing in the z direction are given by

f↑↑(ωn; z) = F (ωn) exp

(
− i[z(αzd + λnD

−1) − 2β�y(z − 1) − 2γ�y(z − 1)]

β + γ

)

×
{

exp

(
i[αzd + θr (β + γ ) + λnD

−1(2z + 1)]

β + γ

)
+ exp

(
i[αzd + θr (β + γ ) + λnD

−1]

β + γ

)

+ exp

(
i[β(2�y + θl ) + γ (2�y + θl ) + 2λnD

−1z]

β + γ

)
+ exp

(
2iλnD

−1

β + γ
+ 2i�y + iθl

)}
, (18a)

f̃↑↑(ωn; z) = F (ωn) exp

(
− i[αz(d − dz) + β(2�yz + θl + θr ) + 2γ�yz + γ (θl + θr ) + λnD

−1z]

β + γ

)

×
{

exp

(
i[αzd + (β + γ )θr + 2λnD

−1z]

β + γ

)
+ exp

(
i[αzd + θr (β + γ ) + 2λnD

−1]

β + γ

)

+ exp

(
i[(β + γ )(2�y + θl ) + λnD

−1(2z + 1)]

β + γ

)
+ exp

(
i[(β + γ )(2�y + θl ) + λnD

−1]

β + γ

)}
, (18b)

Jz(y) = eπN0D
3T

∑
n

f 2
t

ζ 2λn

csc

(
λnD

−1

β − γ

)
csc

(
λnD

−1

β + γ

){
(β − γ ) sin

(
λnD

−1

β + γ

)
sin

(
αzd

β − γ
+ 2�y − ϕ

)

− (β + γ ) sin

(
λnD

−1

β − γ

)
sin

(
αzd

β + γ
− 2�y + ϕ

)}
. (19)

To obtain the total charge current flowing through the
junction, we integrate the charge current density flowing
in the z direction, Eq. (19), over the y direction (perpendicular
to the current direction), i.e., Ic = ∫ +W/2

−W/2 Jz(y)dy, assuming
that the junction width is equal to W . This integration leads
to the standard Fraunhofer diffraction pattern vs the external
magnetic flux with a multiplication of Eq. (17). Therefore, the
charge current in the presence of an external magnetic field
perpendicular to the junction plane has a form of

Ic ∝
(

�

�0

)−1

sin

(
�

�0

)
[I1 sin(ϕ+

0 + ϕ) + I2 sin(ϕ−
0 + ϕ)].

(20)

When the inversion symmetry breaking parameter vanishes,
the tilting parameter only controls the magnitude of total
supercurrent passing through the triplet channel. The pres-
ence of inversion symmetry breaking parameter induces more
oscillations in the charge current (and thus the Fraunhofer
pattern) subject to an external magnetic field when increasing
the tilting parameter.

To gain more insight, we plot the spatial map of the abso-
lute value of Cooper pair wave function (i.e., the anomalous
Green’s function at equal times) within the junction area in
Fig. 3. We have set the external flux fixed at � = 2�0, γ =
0.1, and the inversion symmetry breaking parameter αz = 0.5.
The rest of parameters are equal to those of Fig. 2. From left to
right, we increase the tilting parameter β = 0.15, 0.35, 0.45,
0.60, 0.75, and 0.90. The external magnetic field induces two
vortices (n vortices for � = n�0) along the junction interface
in the y direction at the middle of junction x = 0 [62,73,75].
Increasing β, the vortices move along the junction width in
the y direction. This increase also reforms the vortices so
that the pointlike cores at β = 0.15 turn to lines with finite
sizes expanded in the z direction and the destruction of the
pair wave function is no longer limited to the junction area
and extends into the superconductors. Our further investigates
show that varying the strength of inversion symmetry breaking
parameter αz only drives the proximity vortices and shifts
the locations of vortex cores along the y direction without
changing the shape of the vortices’ profile, whereas varying
the tilting parameter when αz = 0 only changes the shape
of vortices the same as what is shown in Fig. 3 from left to
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FIG. 3. Spatial map of absolute value of the Cooper pair wave function, inside the two-dimensional Josephson junction, normalized by its
maximum value (dark blue and dark red are equal to zero and unity, respectively). The coordinates z and y are normalized by the junction
length and width d and W , respectively. The superconductor parts are connected to the disordered Weyl semimetal in the z direction along
the y axis at z = ±d/2. We set different values to the titling parameter β = 0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 in the presence of a finite
inversion symmetry breaking parameter αz = 0.5 and γ = 0.1.

right, ignoring the location shifts. This is fully consistent with
the influences of αz and β on the charge current discussed in
passing and can be directly inferred from the dependence of
charge current density, Eq. (19), on β, γ , and αz.

V. CONCLUSIONS

In summary, we have generalized a quasiclassical model,
including the Eilenberger and Usadel equations, for Weyl
semimetals with impurities subject to an external magnetic
field. As a preliminary step in the application of these gen-
eralized techniques to practical systems, we have studied su-
percurrent flow through a diffusive Weyl semimetal Josephson
junction. We have found that the supercurrent can be carried
through a triplet channel with a nonzero threshold made of
dαz/(β ± γ ) in which d is the thickness of Weyl semimetal,

αz is the strength of inversion breaking parameter, and β, γ

characterize Weyl semimetal. Our results demonstrate that
the tilting parameter β can control the induction of current
crossovers and the self-biased supercurrent independent of the
density of impurities present in the samples. We also consider
a two-dimensional Josephson junction and study the effect of
αz and β on the Cooper pair wave function, superconducting
vortices, and the response of charge current to an externally
applied magnetic field.
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