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We present an effective model for surface states at the Si-terminated (001) surface of ternary rare earth (R)
intermetallic compounds RT 2Si2 with the transition metal element T = Ir or Rh. The model is based on a fully
ab initio derivation of the relativistic k·p Hamiltonian and is thereby capable of accurately reproducing the spin
polarization of the spin-orbit split surface states, which is very different from the classical Rashba effect. The
reliable treatment of spin in our model enables a predictive analysis of the effect of magnetic exchange interaction
of the surface-state electrons with ferromagnetically ordered 4f moments of the subsurface rare-earth layer in
the magnetic phases of the RT 2Si2 compounds.
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I. INTRODUCTION

In the last two decades, the effort in spin-based information
technology has motivated the search for new materials as
well as for spintronics-related phenomena at surfaces and
interfaces, in which the spin-orbit interaction (SOI) plays
the key role [1–3]. In this regard, the few-layer structures
or crystal surfaces hosting two-dimensional (2D) Rashba or
Dirac surface states are very promising for controlling spin
transport, spin accumulation, and spin polarized tunneling
[4–9].

Recently, the RT 2Si2 intermetallic compounds have been
suggested to be a promising candidate for applications in spin-
based devices [10–14]. Here R stands for a rare-earth element
(Sm, Eu, Gd, Ho, or Yb) and T for a transition metal (TM)
element (Ir or Rh). These compounds have a layered ThCr2Si2

type structure [15], with the rare-earth layers separated by
Si-T-Si trilayers. In the magnetic phase, the rare-earth 4f

magnetic moments are ferromagnetically ordered within the
layer and antiferromagnetically aligned with the nearest-
neighbor rare-earth layers [11,12,16,17]. The Si-T-Si-R four
layer of the Si-terminated (001) surfaces of these ternary com-
pounds gives rise to fascinating surface phenomena brought
about by the competition between the Rashba effect and
magnetic exchange interaction, where the former causes a
momentum-dependent spin-orbit splitting of surface states
and the latter introduces a Zeeman-like splitting of states with
the opposite spin.

To facilitate the treatment of the 2D electronic system as
part of a nanodevice and perform large-scale quantum trans-
port calculations, one must separate out its essential properties
from those of the actual three-dimensional (3D) system. This
is traditionally achieved by constructing an effective k·p
Hamiltonian capable of a simple and accurate model descrip-
tion of the 2D states. A famous and classical example of such

a Hamiltonian is the Rashba model [18,19]. However, it relies
on the spin of the state as a dynamic variable, so it cannot
be applied to systems with strong spin-orbit interaction in
which an electron state cannot be ascribed a definite spin. Here
we report an effective model to study the competing effect
of the two fundamentally different spin-splitting mechanisms
on the behavior of surface states. Our model is based on
the recently suggested method [20] to microscopically derive
the k·p Hamiltonian from relativistic wave functions. Strictly
speaking, it is k · π , where π includes the SOI term in a
nonperturbative manner in contrast to many approaches that
employ a nonrelativistic (or scalar-relativistic) basis. We have
extended this method to ensure a transfer of the momentum-
dependent spin polarization of a subset of the true ab initio
states to the states of the reduced Hilbert space of the effective
model. This model offers a tool to study the modification of
the spin-orbit split states by continuously varying a model
parameter accounting for magnetic exchange interaction.

In this paper we apply the model to the Si-terminated
surfaces of the RT 2Si2 compounds with T= Ir or Rh. We
start from ab initio band-structure calculations for the sur-
faces of two representatives—the paramagnetic YbIr2Si2 and
YbRh2Si2, which underlie the derivation of k·p Hamiltonians
for our effective model. In our ab initio calculations we have
found that the TM-related surface states exhibit a k-dependent
splitting and spin polarization very different from the classical
Rashba effect. On a microscopic level, this manifests itself in
a curious hidden spin polarization of the surface states: for a
given k the spin at the two TM sublattices has the opposite
sign. Because our model has absorbed all the microscopic in-
formation it closely reproduces the nontrivial behavior of both
the surface state dispersion and their observable spin structure.
Furthermore, the knowledge of the true spin structure (as
opposed to pseudospin or effective spin) at the k·p model

2469-9950/2018/98(24)/245415(9) 245415-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.245415&domain=pdf&date_stamp=2018-12-17
https://doi.org/10.1103/PhysRevB.98.245415


I. A. NECHAEV AND E. E. KRASOVSKII PHYSICAL REVIEW B 98, 245415 (2018)

FIG. 1. (a) Upper half of the unit cell of the bulk-truncated symmetric 31-layer slab with the equivalent Si-terminated opposite surfaces
and density profiles of the surface states at the M̄ point. (b) Upper right quadrant of the surface Brillouin zone showing the M̄-X̄ line, the CEC
region of k space around M̄ , and the color code for the spin y and x projections. Band structure along M̄-X̄ for YbIr2Si2 (c) and YbRh2Si2

(d) by the ab initio Hamiltonian H LDA
k is shown by red (Sy < 0) and blue (Sy > 0) fat bands revealing the spin polarization calculated as

in-plane spin projection onto the four outermost layers of the upper half of the slab. Gray lines are the band structure of the same surface in a
19-layer slab geometry (space group P 4/nmm, No. 129), which simulates the behavior of the surface state bands near the M̄ and X̄ points in
the semi-infinite limit (see also Ref. [14]). Spin-resolved ab initio CECs for the surface states of YbIr2Si2, (e) and (f), and YbRh2Si2, (g) and
(h), are calculated at 0.05, −0.2, −0.1, and −0.35 eV, respectively.

level allowed us to simulate magnetic exchange interaction
by a trivial Zeeman term. We then consider the surface states
of our model as a prototype of those of a paramagnetic phase
of an RT 2Si2 compound and tune the relative strength of the
competing spin-orbit and exchange interactions in order to
illustrate how the surface states at the Si-terminated surface
are influenced by the ferromagnetically ordered 4f moments
of the subsurface rare-earth layer in a magnetic phase of this
compound. The modification of the surface electronic struc-
ture suggested by the model is in full accord with the experi-
mental ARPES (angle-resolved photoemission spectroscopy)
observations and the corresponding ab initio calculations for
magnetic phases of the RT 2Si2 compounds [11,12,21].

II. METHOD AND RESULTS

We consider the Si-terminated (001) surface of two para-
magnetic crystals YbIr2Si2 and YbRh2Si2 [22], which exem-
plify the surface electronic structure of a wide class of RT 2Si2

compounds with Ir or Rh as the transition-metal element.
We focus on the properties of the surface states at the Si-
terminated (001) surface, Fig. 1(a), which we simulate by

Si-terminated centrosymmetric 31-layer slabs of space group
P 4/mmm (No. 123). The experimental crystal lattice param-
eters of YbIr2Si2 and YbRh2Si2 are taken from Ref. [23].
Band structure calculations with 4f electrons treated as part
of the frozen core are performed with the extended linear
augmented plane wave method [24] within the local density
approximation (LDA) for the exchange-correlation functional
using the full potential scheme of Ref. [25].

Figures 1(c) and 1(d) show the calculated spin-resolved
band structure of the surface states of both compounds around
the k point M̄ , which has the same symmetry as �̄. At first
glance, in the direction M̄ → X̄, the surface states demon-
strate spin polarization typical of the Rashba effect: the spin
expectation values of the two branches of the spin-orbit split
state have opposite signs, and the spin is locked perpendicular
to the momentum. In Fig. 1(a) the three surface states are
numbered in order of increasing energy. The highest state
n = 3 is largely localized near the outermost Si layer [marked
by the green circles in Figs. 1(c) and 1(d)], whereas the lower
surface states n = 1 and 2 (brown and orange circles) have the
dominant contribution from the subsurface transition-metal
atoms. State 3 will also be referred to as the Si surface state,
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and states 1 and 2 as TM surface states. The spin-resolved
picture suggests that while for n = 3 the Rashba parameter
αR is positive, for n = 1 and 2 it is negative. In the vicinity of
M̄ , however, the behavior of the TM states strikingly deviates
from the textbook Rashba splitting (especially for YbIr2Si2):
both for n = 1 and for n = 2, the state is spin-orbit split, but
the two branches have the same sign of the spin expectation
value Sy (rather small for both branches), so they cannot be
understood as spin split.

A detailed analysis of the Si surface state confirms the typ-
ical Rashba splitting and the characteristic spin-momentum
locking around the point M̄ within the gray region indicated in
Fig. 1(b), see the two closed constant energy contours (CECs)
in the center of Fig. 1(e). A similar situation is observed for
the surface state 1 for momenta immediately outside the exotic
region around M̄ , Fig. 1(h). The other TM-related surface
state n = 2, both close to M̄ and far from M̄ , has a complex
spin structure of the CECs very different from the classical
Rashba effect, see Figs. 1(e) and 1(f) for Ir and 1(g) for Rh.

We focus on this surface state because in all compounds
of this family it crosses the Fermi level, so it is essential for
transport properties. Clearly the traditional Rashba Hamilto-
nian is not sufficient here, so we will construct an effective k·p
model following the microscopic approach of Ref. [20]. This
method allows us to derive a k·p Hamiltonian of a desired size
from ab initio wave functions as a second-order k·p expansion
around a TRIM (time reversal invariant momentum) for sys-
tems with inversion symmetry. The size of the Hamiltonian
is determined by the dimension of the Hilbert space spanned
by physically chosen basis functions—ab initio spinor wave
functions, which are unitary transformed to diagonalize the
expectation value of the z component of the total angular
momentum J = L + S, see Ref. [20]. Here we will further
develop the method to make it applicable to a surface simu-
lated by a thick centrosymmetric slab and to ensure a transfer
of the momentum-dependent spin polarization of the chosen
ab initio states to the states of the reduced Hilbert space of the
effective model.

In our study the basis comprises the surface states con-
sidered above: n = 1, 2, and 3. Being eigenfunctions of a
centrosymmetric Hamiltonian H LDA

k at M̄ , they form six
Kramers-degenerate pairs with spinor wave functions �mμ

(μ =↑ or ↓ indicates the z projection of J) grouped in three
twin pairs with m = 2n − 1 and m = 2n. Since the M̄ point
is a TRIM, the spinors �mμ are also parity eigenfunctions.
Thus, the symmetry properties of the basis functions are
completely defined by the M̄-point-projected Hamiltonian
H LDA

k=M̄
of our 31-layer slab. It is noteworthy that in the

spinor wave functions with n = 3 (the Si surface state) the
largest weight is provided by the Si-atomic sphere, where
pz orbitals dominate, while for n = 1 and 2 (the TM sur-
face states) the subsurface TM atomic spheres are most
important, with the largest contribution coming from dx2−y2

orbitals.
Because of the finite thickness of the slab, at the M̄ point,

each twin pair is represented by two doubly degenerate slab
levels E2n−1 and E2n separated by �n = E2n − E2n−1 of a
few meV due to the bonding-antibonding interaction. The two
pairs have different parity, so we transfer to the new basis

�±
nμ = 1√

2
(�2n−1μ ± �2nμ), in which the original 12 × 12

Hamiltonian Hkp reads

Hkp −→ H ′
kp =

(
H

Surf(+)
kp Hint

H
†
int H

Surf(−)
kp

)
. (1)

The new basis functions are not parity eigenfunctions any-
more, and now they are localized at one of the two surfaces
of the slab denoted “+” or “−,” see Fig. 1(a). By neglecting
the small coupling of the surfaces due to the overlap between
the + and − new basis functions, Hint → 0, we arrive at the
6 × 6 Hamiltonian H

Surf(+/−)
kp for the surface states at one of

the surfaces. In the following we will consider only the +
surface, so we omit the superscript +. Thus, we start with the
Hamiltonian for a centrosymmetric system that comprises two
inversely stacked copies of a noncentrosymmetric subsystem
and arrive at the reduced Hamiltonian that we ascribe to a
single surface.

Note that at the M̄ point the electron group velocities
vanish by symmetry ∇kEn = 0, so with the proper choice
of the spinor-wave-function phases [20] the above scheme
can imitate a Rashba-like k·p Hamiltonian HR

kp of a non-
centrosymmetric system. Usually the Rashba Hamiltonian is
given in a scalar basis with zero velocities at the TRIM to
yield an approximate solution to the Dirac equation up to the
second order in c−1, see Refs. [18,19]. The SOI is considered
as a perturbation, and the eigenvalues E(k) of HR

kp acquire
SOI-induced nonzero slopes due to the nondiagonal terms
[26]. The simplest example is the 2 × 2 Rashba Hamiltonian,
which is readily reproduced with our method if we consider
one of the three spin-orbit split surface states separately
[see the 2 × 2 panels in Figs. 2(a) and 2(c)]:

Hn =
(

Mnk
2 iαnk−

−iαnk+ Mnk
2

)
, (2)

where k± = kx ± iky , and k =
√

k2
x + k2

y . However, in our
method the Rashba parameter αn is mainly determined by the
contribution coming from the matrix elements of the nonrela-
tivistic (classical) velocity in the basis of the relativistic wave
functions [27]. Still, this parameter is a measure of the Rashba
effect: for YbIr2Si2 its absolute values are more than three
times larger than for YbRh2Si2, as one would expect from Ir
being heavier than Rh, see Table I.

The microscopically derived k·p Hamiltonian that covers
all the considered surface states has the form

H Surf
kp =

⎛⎜⎝E1 + H1 H̃1 H0

H̃
†
1 E2 + H ∗

2 H̃
†
2

H0 H̃2 E3 + H3

⎞⎟⎠, (3)

where En = εnI2×2 and

H̃n =
(−iα̃nk+ dn(k)

−d∗
n (k) −iα̃nk−

)
, (4)

with dn(k) = Dnk
2
+ − Nnk

2
−. For the considered materials, the

parameters in Eq. (3) are listed in Table I (note the opposite
sign of α3 and α1,2). The six-dimensional vectors Cλ

k that
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FIG. 2. Band structure of the Si-terminated surface of YbIr2Si2

(a) and YbRh2Si2 (c) by the k·p Hamiltonian (3) shown by fat bands
for the momentum k within one-fifth of the M̄-X̄ interval. The CECs
at −0.2 eV for YbIr2Si2 is shown in (b) and at −0.1 eV for YbRh2Si2

in (d). Blue (red) fat bands show Sy > 0 (Sy < 0) surface states �̃λ
k

of the model. The contributions form the basis states �+
n↑(↓) with

n = 1, 2, and 3 are shown by brown, orange, and green fat bands,
respectively. Due to the symmetry, the Sx CECs are the Sy ones
rotated clockwise by π/2 as in Figs. 1(f) and 1(g). Gray lines are
the LDA bands.

diagonalize the Hamiltonian (3)

H Surf
kp Cλ

k = Eλ
kCλ

k

yield the spinor solution �̃λ
k = ∑

nμ Cλ
knμ�+

nμ. The calculated
eigenvalues Eλ

k are shown in the 6 × 6 panels of Figs. 2(a) and
2(c) with the contributions

∑
μ |Cλ

knμ|2 presented by brown,
orange, and green fat bands for n = 1, 2, and 3, respectively.
Note that the k·p calculation highly accurately reproduces the
true bands over one-tenth of the M̄-X̄ interval.

Apart from the band dispersion curves Eλ
k , our method also

reproduces the ab initio spin structure of the surface states
under study in the vicinity of the M̄ point, Fig. 1. The spin
expectation value in a state |�̃λ

k〉 within our Hilbert space is

〈Skλ〉 = 1

2

〈
�̃λ

k

∣∣σ ∣∣�̃λ
k

〉
= 1

2

∑
nμlν

Cλ∗
knμCλ

klν

[
SSurf

kp

]nμ

lν
, (5)

TABLE I. Parameters of the six-band k·p Hamiltonian (based
on calculations for 31-layer slabs with the lattice parameter a =
7.583 a.u. for YbRh2Si2 and a = 7.624 a.u. for YbIr2Si2). We use
Rydberg atomic units: h̄ = 2m0 = e2/2 = 1.

YbIr2Si2 YbRh2Si2

ε1 −0.038 −0.020

ε2 −0.026 −0.016

ε3 −0.003 0.001

α1 −0.228 −0.073

α2 −0.126 −0.030

α3 0.260 0.082

α̃1 −0.087 −0.033

α̃2 0.315 0.336

α0 0.280 0.329

M1 3.20 1.92

M2 2.81 1.82

M3 0.50 0.68

D1/N1 1.66/1.37 1.37/0.87

D2/N2 0.56/0.41 0.21/0.16

M0 0.72 0.14

gz
1/s

z
1 0.39/−0.73 0.67/−0.97

g
�

1/s
�

1 −0.62/−0.13 −0.34/−0.02

gz
2/s

z
2 0.97/0.94 0.94/0.99

g
�

2/s
�

2 −0.19/0.02 −0.16/0.00

gz
3/s

z
3 0.54/0.74 0.42/0.97

g
�

3/s
�

3 0.55/−0.86 0.36/−0.98

g̃
�

1/s̃
�

1 −0.69/−0.88 −0.29/−0.98

g̃
�

2/s̃
�

2 0.57/−0.35 0.97/−0.12

gz
0/s

z
0 −0.79/−0.65 −0.09/−0.24

g
�

0/s
�

0 0.57/0.33 1.11/0.12

where [SSurf
kp ]

nμ

lν
= 〈�+

nμ|σ |�+
lν〉 are the elements of the spin

matrix [28]

SSurf
kp =

⎛⎜⎝S1 S̃1 S0

S̃∗
1 S∗

2 S̃∗
2

S0 S̃2 S3

⎞⎟⎠, (6)

with Sn = (s�nσ �, s
z
nσz), S̃n = s̃�n exp(iπσy/2)σ �, and σ � =

(σx, σy ), where σx , σy , and σz are the Pauli matrices. As
seen in Figs. 2(a) and 2(c), with the parameters listed in
Table I, the model spin structure (the blue and red fat bands)
reproduces in detail the nontrivial spin polarization of the ab
initio relativistic states, including the constant energy contours
[Figs. 2(b) and 2(d)] for the transition-metal surface states,
which are very different from the typical CECs of Rashba-
split states. In contrast, the Si surface state has the well-known
Rashba spin structure [as in Fig. 1(e)] with spin polarization
less than 100% (see s

�

3 in Table I) [29].
It is worth noting that to analyze the effect of an external

magnetic field B the spin matrix (6) should be used in the (triv-
ial) Zeeman term H Surf

kp,Z0
= 1

2μBg0SSurf
kp · B, where μB is the

Bohr magneton and g0 = 2.0023 is the free-electron Landé g
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FIG. 3. Model Si-terminated surface band structure of magnetic phases of RT2Si2 compounds with T = Ir (a) and T = Rh (c). The 4f

moments of the subsurface rare-earth (R) atomic layer are ferromagnetically ordered along the y axis. The effect of exchange (magnetic)
interaction on the bands along M̄ → X̄ and corresponding CECs at −0.2 eV (b) and at −0.1 eV (d) is modeled by the inclusion of the trivial
Zeeman term H Surf

kp,Z0
with J = 40 meV for T = Ir and J = 8 meV for T = Rh. Green solid lines in (a) are the k·p bands obtained with the

“indirect” exchange for electrons in the Si surface state (see text).

factor. The effective-mass contribution to the g factor [30,31]
leads to the following form of the Zeeman Hamiltonian:

H Surf
kp,Z =

⎛⎜⎝HZ1 H̃Z1 HZ0

H̃
†
Z1 H ∗

Z2 H̃
†
Z2

HZ0 H̃Z2 HZ3

⎞⎟⎠, (7)

where

HZn = μB

2

(
gz

nBz g�

nB−
g�

nB+ −gz
nBz

)
, (8)

H̃Zn = μB

2

(
g̃�

nB+ 0

0 −g̃�

nB−

)
, (9)

with B± = Bx ± iBy . Similar to the trivial Zeeman term
H Surf

kp,Z0
, this Hamiltonian can be presented as the scalar prod-

uct of the magnetic field B and the effective g-factor ma-
trix GSurf

kp , which has the same structure as the spin matrix

(6) but with g
β
n (g̃β

n ) in place of s
β
n (s̃β

n ). The full Zeeman
term H Surf

kp,Z0
+ H Surf

kp,Z is, thus, defined by the Hamiltonian (7)

with the effective Landé g factor g
β
n (g̃β

n ) → g
β
n + g0s

β
n (g̃β

n +
g0s̃

β
n ) or, equivalently, by the term 1

2μB (GSurf
kp + g0SSurf

kp ) · B.
As seen in Table I, in the chosen six-band representation the
effective-mass contribution to the g factor is substantially
smaller than the free-electron g factor. However, for the

transition-metal surface states, for the in-plane orientation of
B this contribution can significantly enhance the effect of the
external magnetic field (compared with the trivial Zeeman
term), see, for example, g

�

1(2) and s
�

1(2) in Table I.
In magnetic phases of the RT 2Si2 compounds, the four

outermost atomic layers of the Si-terminated surfaces contain
one rare-earth atomic layer (Eu, Gd, or Ho) with ferromag-
netically ordered 4f moments [11,12]. This leads to the
exchange interaction of surface-state electrons with magnetic
moments of this monolayer. To model the magnetic exchange
interaction in the presence of the Rashba effect, we treat J =
μBB as a tunable exchange interaction parameter (as, e.g., in
Refs. [32,33]) in the trivial Zeeman term H Surf

kp,Z0
. An in-plane

orientation of the ferromagnetically ordered 4f moments in
the rare-earth layer is implied (specifically, along the y axis,
i.e., J = J ŷ). By restricting the Hilbert space to the TM-
surface states, for sufficiently small J , the energy distance
between the doubly degenerate states n = 1 and n = 2 at M̄

depends on J as �̃ =
√

(ε2 − ε1)2 + (J g0s̃
�

1 )2 [34]. Each
of these degenerate states acquires a splitting proportional to
∼g0|s�1(2)J |.

We start with the Ir surface states of an RIr2Si2 compound
and choose the value of the exchange parameter J = 40
meV. As illustrated in Fig. 3(a), in the spectrum along the
kx axis (perpendicular to the in-plane alignment of the 4f
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FIG. 4. Same as in Figs. 3(c) and 3(d), but for the exchange-
interaction parameter J = 33 meV and with green lines showing the
effect of the “indirect” exchange for the Si surface state (see text).

moments), this is sufficient to cause a tangible asymmetry
with respect to the M̄ point. Note that the Ir surface states
have a negligible splitting at the M̄ point as a consequence
of the rather small s

�

1(2) (in contrast to the Si surface state,
which manifests the behavior typical of Rashba-split states
in an exchange field [35]). Along the ky axis, i.e., parallel to
the magnetization direction of the ferromagnetically ordered
4f moments, the TM surface-state bands change slightly, re-
taining the symmetry with respect to M̄ and the characteristic
exotic region related to the Sx spin component. The CECs at
−0.2 eV are considerably distorted, see Fig. 3(b), but the spin
structure with the specific spin-momentum locking appears to
be preserved.

In an RRh2Si2 compound, for the Rh surface states, a
similar effect can be obtained at a substantially smaller value
of J = 8 meV, since initially they are much less separated
in energy, Figs. 3(c) and 3(d). To increase the gap �̃ by
∼40% by switching on the exchange interaction, as is the case
in the experiment on EuRh2Si2 for an in-plane orientation
of the 4f moments [12], the exchange parameter must be
increased to J = 33 meV. The resulting band dispersions
and CECs are shown in Fig. 4. Note that our model gives a
negligible splitting of the Rh states (∼1 meV, which cannot
be experimentally resolved) in accord with the observations
of Ref. [12]. Most important here is that the sign of Sy does
not vary along the outer or inner CEC, and the absolute value
of the spin y projection is nearly constant, Fig. 4(b). Only
the specific motif of the rather small Sx component along the
CECs is a remainder of the original spin-momentum locking.

III. DISCUSSION AND CONCLUSIONS

According to our model, the modification of the CECs of
the TM-surface states by the magnetic exchange interaction
mostly consists in stretching out along the line perpendicular
to the in-plane alignment of the 4f moments—in opposite
directions for the outer and inner CEC. With increasing the
exchange parameter J the contours deform until they touch.
A further increase of J lifts the degeneracy at the points of
touch, and the CECs may become close in shape to those
for small J . However, for large J the spin is almost par-
allel (or antiparallel) to the magnetization direction of the

ferromagnetically ordered 4f moments. Here the exchange
interaction dominates over SOI. The stronger the SOI due to
the transition-metal atoms the larger the 4f magnetic moment
necessary to “decouple” spin from momentum. Note that
in the above cases the surface states are entirely in-plane
polarized, and Sz component vanishes. It becomes finite when
the 4f magnetic moments have an out-of plane component
(not shown). For example, for RRh2Si2 we found that for z

orientation of the moments the parameter J = 33 meV (close
to the case of HoRh2Si2 [12]) causes up to ∼90% of the
out-of-plane polarization, but Sx and Sy remain substantial,
with the in-plane spin-momentum locking inherent to the
paramagnetic phase (the CECs also remain symmetric). For
comparison, for z orientation of the moments in RIr2Si2 (as,
e.g., in HoIr2Si2 [36]), with J = 40 meV, the surface states
acquire up to ∼40% of the out-of-plane polarization, and their
in-plane spin structure is only slightly affected.

Regarding the behavior of the transition-metal surface
states, our k·p results are in full accord with the ARPES
measurements on RT2Si2 (with R = Gd, Ho, Eu and T= Rh, Ir)
magnetic compounds and corresponding ab initio calculations
[11,12,21]. Since the low-temperature magnetic phases of
these compounds undergo a transition to paramagnetic phases
when the temperature is increased, this was suggested to be a
way to gradually tune the splitting of the states and their spin
orientation in a given compound [11,12]. In our model we
describe and visualize this effect by continuously changing
the exchange parameter J with an additional possibility to
rotate the moments (simulating their different orientation in
different compounds) in order to predict the modification of
CEC and study the interplay between exchange and spin-orbit
interaction.

In order to explicitly relate the SOI induced splitting and
the effect of the magnetic field, let us introduce the analog of
the “Rashba magnetic field” BR = (ky,−kx, 0). It allows us
to rewrite the k-linear term in the Hamiltonian (3) as H Surf

kp(1) =
Sα · BR , where the matrix Sα has only x and y components,
which reproduce the structure of the respective components of
the spin matrix (6) with s�n (s̃�n) replaced by αn (α̃n). We can
thus collect all the terms related to “spin-orbital-magnetic”
interactions as the sum Sα · BR + 1

2μB (GSurf
kp + g0SSurf

kp ) · B.
By comparing this operator with the Hamiltonian (3), we are
able to express the effect of the in-plane component of the
magnetic field B as the conversion of the matrix elements
∓αnkx,y and ∓α̃nkx,y in Eqs. (2) and (4) into αn(k0

nx,y ∓ kx,y )
and α̃n(k̃0

nx,y ∓ kx,y ), respectively, where − (+) should be
used for kx (ky). The new quantities here are the shifts in k
space:

k0
nx,y = μB

2αn

(g�

n + g0s
�

n)By,x,

k̃0
nx,y = μB

2α̃n

(g̃�

n + g0s̃
�

n)By,x.

We see that these shifts occur in the direction perpendicular to
the in-plane orientation of B, as in a classical Rashba system.

Now we turn back to our modeling of the RT2Si2 magnetic
compounds with the in-plane orientation of the ferromagnet-
ically ordered 4f moments J = J ŷ. In this case we have
nonzero shifts k0

nx = J s�n/αn and k̃0
nx = J s̃�n/α̃n (here g0/2 is
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put to unity for simplicity). This means that in the presence
of the Rashba effect the sensitivity of the band dispersions
to the magnetic exchange interaction J is stronger the larger
the ratios s�n/αn and s̃�n/α̃n, see Table I. For example, the
sensitivities s�n/αn for n = 1, 2 associated with the Ir and Rh

surface states are very small, less than 0.1 eV−1 Å
−1

(absolute
value), which is related to a spin cancellation in the exotic
region. Furthermore, the sensitivity of their hybridization with
the Si surface state, expressed by s

�

0/α0 and s̃
�

2/α̃2, is also

rather small, around 0.2 eV−1 Å
−1

. At the same time, for
the Si surface state the absolute value of the ratio s

�

3/α3

is 0.5 eV−1 Å
−1

for RIr2Si2 and even 1.7 eV−1 Å
−1

for
RRh2Si2. As a result, see Figs. 3(a) and 3(c), the degeneracy

point of the Si surface state shifts by k0
3x = −0.02 Å

−1
and

−0.01 Å
−1

, respectively, away from M̄ , while those of the
TM-related surface states stay almost unaffected. However, in
each compound, the strongest sensitivity is observed for the
hybridization between the TM-related surface states s̃

�

1/α̃1 =
1.4 (4.1) eV−1 Å

−1
for the Ir (Rh) surface states. It is the

high sensitivity of these states that is responsible for their
modifications by the magnetic exchange interaction.

Our model can be further refined by considering the density
profiles of the surface states. For example, as seen in Fig. 1(a),
there is a negligible direct overlap of the Si surface state
with the rare-earth layer. Therefore, the exchange interaction
that couples the electrons in this state with 4f moments
may act through an intermediary, whose role can be played
by subsurface transition-metal electrons. For such indirect
exchange, the parameter J may differ (in value and even in
sign) from that for the TM states. Indeed, for the Si surface
state, a two times smaller exchange interaction J of the
opposite sign makes the spectra much more consistent with
ab initio calculations for RRh2Si2 magnetic compounds with
R = Eu, Gd, Ho [11,12], see green lines in Figs. 3(a) and 4(a).

It is noteworthy that in the transition-metal plane the true
unit cell, which we use in our ab initio calculations, contains
two TM sublattices, Fig. 5(a). The corresponding surface
Brillouin zone (SBZ) can be thought of as a folded SBZ
(as, e.g., in Ref. [37]), so one can imagine an effective unit
cell with one TM atom and a bigger unfolded SBZ (USBZ),
see Fig. 5(b). In this case, the M̄ point of the SBZ corresponds
to the X̄ point of the USBZ (X̄′), while the M̄ point of the
USBZ (M̄ ′) coincides with the �̄ point, since the X̄-M̄ ′ line
folds into the �̄-X̄ one. The X̄′-M̄ ′ line is superimposed on
�̄-M̄ . The Ȳ direction (the X̄-M̄ line) is, thus, the fold of the
“envelope,” Fig. 5(b).

We now decompose the momentum-dependent spin ex-
pectation value of the n = 1 and n = 2 states into contri-
butions from each of the two sublattices and show them
with spin-resolved fat bands in Fig. 5(c). Along the M̄-X̄
line, in the exotic region around the M̄ point, we see the
typical Rashba spin splitting. Within our effective model, the
presented sublattice-resolved spin structure can be perfectly
reproduced (not shown) by manually setting the parameters of
the spin matrix (6) for these states as s

�

1 = −s
�

2 = s
�

R , where
s
�

R = |s�3| for sublattice A and s
�

R = −|s�3| for sublattice B,
i.e., is a typical Rashba in-plane spin polarization. One may
now look at the TM surface states from the point of view of

FIG. 5. (a) Projection of the outermost three layers of the Si-
terminated surface onto the transition-metal atomic plane. (b) True
(folded, green) and effective (unfolded, brown) Brillouin zones
corresponding to the 2D unit cells highlighted green and brown
in (a), respectively. Red arrow marks the treated M̄-X̄ direction.
(c) Spin-resolved contribution from the sublattices “A” and “B” of the
transition-metal subsurface layer as obtained from LDA calculations
for YbIr2Si2 and YbRh2Si2. Blue (red) fat bands correspond to
Sy > 0 (Sy < 0) 31-layer slab states.

the classical Rashba Hamiltonian and use the spin expectation
value at one of the TM sublattices as a dynamic variable. Such
a model, however, would suffer from an ambiguity because
the Rashba parameter has a different sign depending on what
sublattice one chooses to define spin. This means that in the
RT 2Si2 compounds (with T= Ir or Rh) the resulting (total)
spin structure of the TM-surface states in close vicinity of
M̄ has a vanishing in-plane spin expectation value due to
an almost total cancellation of the contributions from the
sublattices with the opposite spin polarization. This can be
considered as a vivid example of a phenomenon known as a
hidden spin polarization [38], which here is associated with
two symmetry related sublattices of a single layer.

To summarize, we have developed an effective model for
the Si-terminated surface states of the rare-earth ternary com-
pounds based on the fully ab initio k·p perturbation approach
to generate model Hamiltonians of a desired size. We have
extended the approach to make the model capable of correctly
reproducing the true spin polarization of the spin-orbit split
states under study. This improvement also enables a proper
treatment of the effect of exchange interaction of surface-state
electrons with a ferromagnetic monolayer. By applying our
model to the surface states of the RT 2Si2 compounds with
T= Ir or Rh, we have demonstrated how their relativistic
splitting and spin polarization not typical of the Rashba effect
depend on the relative strength of the competing spin-orbit
and exchange interactions.
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