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Quantum critical phenomena in heat transport via a two-state system
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We present a theoretical study of the quantum critical behavior in heat transport via a two-state system with
subohmic reservoirs. We calculate the temperature dependence of the thermal conductance near the quantum
phase transition via the continuous-time quantum Monte Carlo method and discuss its critical exponents. We
also propose a superconducting circuit to realize the subohmic spin-boson model that can be used to observe
quantum critical phenomena.
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I. INTRODUCTION

Quantum critical phenomena (QCP) induced by second-
order quantum phase transitions (QPTs) are a central topic
in condensed matter physics [1]. Although QPTs have been
studied in various highly-correlated systems, it is still chal-
lenging to realize them in controlled experimental systems.
Recently, QCP have been studied for the multichannel Kondo
effect realized in artificial nanostructures [2–7], and quantum
critical behavior observed experimentally via electronic trans-
port properties is in good agreement with theoretical results
[8–10]. This great success encourages further study of QCP
in transport properties using different mesoscopic systems.

Heat transport in nanostructures is another important topic
in mesoscopic physics. In particular, heat transport carried by
photons (phonons) via a two-state system has been studied
in several theoretical works [11–19], because it has consider-
able similarities to electronic transport in quantum dots. The
heat transport via a two-state is described by the spin-boson
model, whose properties are characterized by the spectral
density function I (ω) ∝ ωs [20,21]. For subohmic reservoirs
(0 < s < 1), this model displays a QPT at zero temperature
when a system-reservoir coupling is tuned to a critical value
[21–29]. In a recent paper by the authors and the other two
co-authors [30], the temperature dependence of thermal con-
ductance is studied in detail for all types of reservoirs (arbi-
trary s) via continuous-time quantum Monte Carlo (CTQMC)
simulations. For subohmic reservoirs, however, QCP near the
transition point have not been discussed.

The recent, rapid development in nanostructure fabrication
and experimental heat measurement that has enabled us to
experimentally access heat current in nanoscale objects is
remarkable [31–33]. It has been demonstrated that transmis-
sion lines coupled to a superconducting qubit indeed real-
ize the spin-boson model with an ohmic (s = 1) reservoir
[31,32,34–37]. However, to the best of our knowledge, the
design of a superconducting circuit to realize the subohmic
spin-boson model has only been discussed in Ref. [38], in
which experimental realization of the subohmic reservoirs of
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s = 0.5 is discussed. To study QCP, considering the realiza-
tion of the subohmic spin-boson model for an arbitrary value
of s is advantageous.

In this paper, we investigate QCP in heat transport via a
two-state system carried by photons or phonons for subohmic
reservoirs. The temperature dependence of the thermal con-
ductance is calculated using the CTQMC method [24,30,39].
In the previous work [30], it has been shown that the thermal
conductance is always proportional to T 2s+1 at low tempera-
tures when the system-reservoir coupling is below a critical
value, reflecting a nondegenerate ground state of the system.
However, in the quantum critical regime near QPT, the power
of the temperature dependence changes into a different value,
reflecting the nature of QPT. We discuss the critical exponents
related to QPT in detail. We also consider a superconducting
circuit to realize the subohmic spin-boson model with arbi-
trary value of s.

This paper is organized as follows. The spin-boson model
is described in Sec. II, and the heat current via a two-state sys-
tem is formulated in Sec. III. The critical temperature depen-
dence of the heat current near the quantum phase transition is
shown in Sec. IV, which is our main result. A superconducting
circuit is proposed that could be used to realize the spin-boson
model with subohmic reservoirs in Sec. V. Finally, our results
are summarized in Sec. VI. Throughout this paper, we employ
the unit of kB = h̄ = 1.

II. MODEL

We consider heat transport between two bosonic reservoirs
via a two-state system (see Fig. 1). The model Hamiltonian
is given by H = HS + ∑

ν HB,ν + ∑
ν HI,ν , where HS, HB,ν ,

and HI,ν describe a two-state system, a bosonic reservoir ν (=
L,R), and the system-reservoir coupling, respectively. Each
term of the Hamiltonian is given as follows:

HS = −�

2
σx − εσz, (1)

HB,ν =
∑

k

ωνkb
†
νkbνk, (2)

HI,ν = −σz

2

∑
k

λνk (b†νk + bνk ), (3)
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FIG. 1. Schematic of the model comprises a two-state system
coupled to two bosonic reservoirs (L and R) with temperatures TL

and TR , respectively. If TL > TR , a heat current flows from reservoir
L to reservoir R via the two-state system.

where σα (α = x, y, z) is the Pauli matrix, and bνk (b†νk) is an
annihilation (a creation) operator of bosonic excitation with
the wave number k in the reservoir ν. The Hamiltonian of
the two-state system, HS, is obtained by truncating a double-
well potential system with the lowest two eigenstates, where
� and ε are the tunneling amplitude and detuning energy,
respectively. The energy dispersion of the reservoirs and the
system-reservoir coupling strength are denoted by ωνk and
λνk , respectively. In this paper, we consider heat transport
for the symmetric case (ε = 0). The detuning energy ε is
used only for the detailed discussion on critical exponents in
Appendix A.

The property of the reservoirs is determined by the spectral
density function:

Iν (ω) ≡
∑

k

λ2
νkδ(ω − ωνk ). (4)

For simplicity, the spectral density function is taken in the
following form:

Iν (ω) = ανĨ (ω), (5)

Ĩ (ω) = 2ω1−s
c ωse−ω/ωc , (6)

where αν is the dimensionless system-reservoir coupling
strength, and ωc is the cutoff frequency, which results in
much larger energies in comparison with other characteristic
energies. Herein, we focus on the subohmic case (0 < s < 1),
for which a second-order quantum phase transition occurs.

III. FORMULATION

The heat current operator from the reservoir ν into the two-
state system is defined as follows:

Jν ≡ −dHB,ν

dt
= i[HB,ν , H ]

= −i
σz

2

∑
k

λνkωνk (−bνk + b
†
νk ). (7)

Using the standard procedure of the Keldysh formalism
[40–42], the following Meir-Wingreen-Landauer-type exact
formula [43] for the heat current is derived [13,44,45]:

〈JL〉 = αγa

8

∫ ∞

0
dω ω Im[χ (ω)]Ĩ (ω)[nL(ω) − nR (ω)], (8)

where α = αL + αR , γa = 4αLαR/α2 is an asymmetric factor,
nν (ω) is the Bose-Einstein distribution in the reservoir ν, and

χ (ω) is the dynamic susceptibility of the two-state system
defined by

χ (ω) = −i

∫ ∞

0
dt eiωt 〈[σz(t ), σz(0)]〉. (9)

The thermal conductance is obtained from Eq. (8) as

κ = lim
�T →0

〈JL〉
�T

= αγa

8

∫ ∞

0
dω Im[χ (ω)]Ĩ (ω)

[
βω/2

sinh(βω/2)

]2

, (10)

where �T = TL − TR and β = 1/T (= 1/TL = 1/TR). To
evaluate the thermal conductance, the dynamic susceptibility
χ (ω) must be calculated in thermal equilibrium.

We numerically calculate the dynamic susceptibility χ (ω)
using CTQMC simulations (for details on the CTQMC
method, refer to Refs. [24,30]). Using the CTQMC method,
we calculate the spin-spin correlation function C(τ ) =
〈σz(τ )σz(0)〉eq, where σz(τ ) is the imaginary time path (0 <

τ < β), and 〈· · · 〉eq indicates the thermal average. The dy-
namic susceptibility is obtained as:

C̃(iωn) =
∫ β

0
dτ eiωnτC(τ ), (11)

χ (ω) = C̃(iωn → ω + iδ). (12)

The analytic continuation is performed numerically by the
Padé approximation [46,47].

IV. RESULT

For the subohmic case (0 < s < 1), a quantum phase tran-
sition occurs at zero temperature when the reservoir-system
coupling reaches a critical value αc, where αc is a function
of s and �/ωc [21,23,25]. For α < αc, the ground state is
described by a coherent superposition of two wave functions
localized at each well (σz = ±1) and is called a “delocalized
state.” For α > αc, the ground state becomes twofold degen-
erate because the coherent superposition is completely broken
owing to the disappearance of quantum tunneling between the
two wells. This state is called a “localized state.” The phase
diagram of the spin-boson model determined by the CTQMC
simulations for �/ωc = 0.1 is shown in Fig. 2 (for details on
determining the critical value, αc, refer to Refs. [24,30,48]).
The transition separating the two phases is of second order
for the subohmic case (the empty squares) or of the Kosterlitz-
Thouless-type [49,50] for the ohmic case (the filled circle).
This phase diagram is consistent with previous numerical
studies [24,25].

In Fig. 3, we show the temperature dependence of the ther-
mal conductance for s = 0.5 and �/ωc = 0.1, where the crit-
ical system-reservoir coupling is αc = 0.1074. Figures 3(a)
and 3(b) show the delocalized-phase side (α � αc) and the
localized-phase side (α � αc), respectively. In general, at the
critical point, the thermal conductance exhibits distinctive
power-law behavior determined by the nature of QPT:

κ ∝ T c, (α = αc), (13)
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FIG. 2. The phase diagram of the subohmic spin-boson model
for �/ωc = 0.1. The solid line indicates the second-order transition
line separating the delocalized and localized phases. The empty
squares indicate the critical system-reservoir coupling that is nu-
merically determined for the subohmic case (0 < s < 1), whereas
the filled circle represents the known transition point αc = 1 for the
ohmic case (s = 1).

where c is the critical exponent dependent on s. As shown in
Fig. 3, the exponent c is 1 for s = 0.5. As the system-reservoir
coupling is reduced below the critical value (α < αc), the
temperature dependence of the thermal conductance deviates
from one at the critical point. For a sufficiently small system-
reservoir coupling [e.g., α = 0.07 in Fig. 3(a)], the thermal
conductance becomes proportional to T 2s+1 at low tempera-
ture, presumably for heat transport due to co-tunneling (see
Appendix B). The temperature dependence of the thermal
conductance also deviates as the system-reservoir coupling is
increased above the critical value (α > αc). Its temperature
dependence cannot be explained by a simple formula such as
the noninteracting-blip approximation, which is expected to
hold in the localized phase [30], up to α = 0.13.

Let us discuss the critical exponent c defined in Eq. (13) for
general values of s. The static susceptibility is expressed by:

χ0 = β〈m̄2〉eq, (14)

m̄ = 1

β

∫ β

0
dτ σz(τ ). (15)

Combining Eq. (14) with Eq. (15), the static susceptibility is
expressed as χ0 = ∫ β

0 dτC(τ ) with the spin-spin correlation
function C(τ ) = 〈σz(τ )σz(0)〉eq. At the critical point, the
spin-spin correlation function exhibits the power-law decay:

C(τ ) = C(β − τ ) ∼ τ−η, (ω−1
c 	 τ 	 β/2), (16)

where η is the critical exponent related to the spin dynamics.
Then, the temperature dependence of the static susceptibility
at the critical point is obtained:

χ0 ∼ β1−η. (17)

By using Eqs. (11) and (12), the critical behavior of the
imaginary part of the dynamic susceptibility is obtained:

Im[χ (ω)] ∼ ωη−1. (18)

Substituting this into Eq. (10), the thermal conductance at
the critical point behaves as κ ∼ T c, where the exponent is

FIG. 3. The temperature dependence of the thermal conductance
for (a) α � αc and (b) α � αc. The plots represent the CTQMC
simulation results for s = 0.5 and �/ωc = 0.1, for which the critical
system-reservoir strength is αc = 0.1074.

given by:

c = s + η. (19)

The critical exponent η is a function of s and has been
analyzed in previous theoretical studies [24,51]. The
phase transition for 0 < s � 1/2 belongs to the mean-field
universality class and leads to η = 1/2. This conclusion
is consistent with the critical exponent c = 1 obtained
by the CTQMC simulation for s = 1/2 (see Fig. 3). For
1/2 < s < 1, η is a nontrivial function of s and is evaluated
by the ε expansion [51] (see Appendix A). In summary, the
exponent of the thermal conductance is given as follows:

c =
{
s + 1/2 (s � 1/2),
1 − ε/2 − ε2A(s)/3s + O(ε3) (s > 1/2),

(20)

where ε = 2s − 1 and A(s) = s[ψ (1) − 2ψ (s/2) + ψ (s)].
Finally, we emphasize that the critical behavior near QPT

can be observed for other physical quantities [24,38,51]. We
summarize the critical exponents for measurable quantities in
Appendix A.
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FIG. 4. (a) A superconducting circuit composed of a flux qubit
and two transmission lines. (b) The circuit of the transmission lines
proposed to realize the subohmic spin-boson model, consisting of
resistances Ri , inductances Li , and capacitances Ci .

V. EXPERIMENTAL REALIZATION

In this section, we discuss a superconducting circuit that
realizes a spin-boson Hamiltonian with subohmic reservoirs.
A previous theoretical study [38] has shown that a spatially-
uniform transmission line can realize a subohmic reservoir
with s = 0.5. For a controlled experiment of the QPT, how-
ever, it is favorable to realize a subohmic reservoir with an
arbitrary value of s. We propose a superconducting circuit
to realize a subohmic reservoir for arbitrary s by introducing
spatial dependence to the circuit elements.

We consider a flux qubit coupled to two transmission lines
(or two junction arrays), as shown in Fig. 4(a). The flux
qubit is composed of three small Josephson junctions [52].
By tuning the external magnetic field, the flux qubit acts like a
double-well potential system, and its effective Hamiltonian is
given by Eq. (1) (for detailed derivation, see Appendix C).
Then, the flux qubit coupled to the transmission lines can
be described by the spin-boson model. Using linear response
theory [38,53,54], the spectral density function is expressed
by the joint impedance of the two transmission lines (Z(ω) =∑

ν Zν (ω)) as follows:

I (ω) =
∑

ν

Iν (ω) = 4φ2
0〈ϕ−〉2

π
I0(ω), (21)

I0(ω) = ωRe[Z(ω)−1], (22)

where φ0 = h̄/2e, and ±〈ϕ−〉 is an expectation value of
the phase at the flux qubit. Detailed discussion is given in
Appendix C.

To realize a subohmic reservoir with an arbitrary expo-
nent s, we propose a superconducting circuit, as shown in
Fig. 4(b). The circuit comprises resistances Rj , inductances
Lj , and capacitances Cj (j = 1, 2, · · · , N). For simplicity,
we assume that the two transmission lines are constructed by
the same circuit. The joint impedance of the two transmission
lines is then calculated as Z(ω) = 2ZN (ω), where Zj (ω)
(j = 1, 2, · · · , N) is given by a recurrence relation:

Zj (ω) = Rj + iωLj + 1

Zj−1(ω)−1 + iωCj

, (23)

with Z0(ω)−1 = 0.

FIG. 5. The spectral density function of the superconducting
circuit for s = 0.5 and 0.25, corresponding to (n,m) = (2, 2) and
(6,6). The circuit parameters are set as N = 104, R0 = 1 k�, L0 =
13 nH, and C0 = 1 pF.

Now, we assume that circuit elements have spatial depen-
dence:

Rj = R0(1 − j/N )n, (24)

Lj = L0, (25)

Cj = C0(1 − j/N )m, (26)

where n and m are non-negative real numbers. We show the
spectral density function, I0(ω), of this circuit in Fig. 5 for
(n,m) = (2, 2) and (6,6). The parameters are set to R0 =
1 k�, L0 = 13 nH, C0 = 1 pF, and N = 104 and referred to
experimental studies on Josephson junction arrays [55]. In
Fig. 5, we added 1% relative randomness for each circuit ele-
ment to introduce tolerance to circuit parameter fluctuations.

We determined that the spectral density function is approx-
imately proportional to ωs in a certain range of the frequency
with the exponent 0 < s < 1. This indicates that the present
circuit can realize a subohmic reservoir with an arbitrary value
of s. Certainly, the analytic calculation concludes:

I (ω) ∝ ω2/(m+2), (ω∗ 	 ω 	 ωc). (27)

The detailed calculation is given in Appendix D. This result
is in good agreement with Fig. 5; m = 2 and 6 corresponds
to s = 0.5 and 0.25, respectively. The lower frequency limit
for the subohmic spectral density function, ω∗, is calculated
as follows:

ω∗ =
[( m

2N

)2n Rm+2
0

Cn
0 Lm+n+2

0

]1/(m+2n+2)

. (28)

Therefore, the exponent n for the resistance (24) controls
the lower limit of the subohmic spectral density function. In
contrast, the higher frequency limit, ωc, is a complex function
of the circuit parameters.

In summary, the conditions for realizing a quantum phase
transition are as follows: First, the tunneling amplitude �

must be in the range of ω∗ 	 � 	 ωc. Second, the dimen-
sionless system-reservoir coupling α should be tuned around
the predicted critical point αc. For a typical value of the
tunneling amplitude, � = 25 GHz, for the flux qubit [32],
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we determined that both of the conditions are satisfied for
the parameters used in Fig. 5 for s = 0.5 (m = 2). For this
parameter set, the critical behavior of the thermal conductance
at QPT described by Eq. (13) is expected in the temperature
range of ω∗ < T < �, when the system-reservoir coupling is
tuned as αc.

VI. SUMMARY

We studied quantum critical phenomena in heat transport
by using a spin-boson model with subohmic reservoirs. By
implementing continuous-time quantum Monte Carlo simu-
lations, we show that the thermal conductance at the critical
point has a characteristic power-law temperature dependence
determined by the nature of QPT. We also clarify the means
by which the critical exponent of the thermal conductance
is related to other critical exponents discussed in previous
theoretical studies. Finally, we propose a superconducting
circuit that realizes subohmic reservoirs for an arbitrary value
of the exponent s.

We expect that our study will provide a platform for
experiments attempting to access quantum phase transitions
directly upon measuring the transport properties of meso-
scopic devices. Although we used the flux qubit to realize
the spin-boson model, other types of qubits such as a charge
qubit or a transmon qubit could be considered. We will present
detailed descriptions of the other types of qubits in other
studies.
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APPENDIX A: CRITICAL EXPONENTS

In this Appendix, we briefly discuss the critical expo-
nents of several observables at the quantum phase transition
for subohmic reservoirs [24–26]. Figure 6 shows schematics

FIG. 6. Population 〈σz〉 as a function of the detuning energy ε.
For the delocalized phase (blue line; α < αc), 〈σz〉 is a continuous
function of ε, and the susceptibility χ0 can be defined by the slope at
ε = 0. At the critical point (green line; α = αc), 〈σz〉 is continuous,
but the susceptibility diverges at ε = 0. For the localized phase (red
line; α > αc), 〈σz〉 is discontinuous at ε = 0.

TABLE I. Summary of the critical exponents.

Exponent Definition Condition

γ χ0 ∝ (αc − α)−γ α < αc, T = 0
β ′ mz ∝ (α − αc )β

′
α > αc, T = 0

η mz ∝ T η/2 α = αc, T > 0
x χ0 ∝ T −x α = αc, T > 0

of the population 〈σz〉 as a function of the detuning energy ε

near the critical point, α = αc. In the delocalized phase (α <

αc), the slope at ε = 0 corresponds to the static susceptibility:

χ0 = lim
ε→0

〈σz〉eq

ε
. (A1)

The static susceptibility χ0 diverges as the value of α ap-
proaches αc from below. In the localized phase (α > αc), 〈σz〉
jumps from −mz to mz at ε = 0, where mz = 〈σz〉|ε→+0 is the
spontaneous magnetization.

In Table I, we summarize the critical exponents. All of the
exponents can be determined experimentally by measuring the
population 〈σz〉. By using y∗

h and y∗
t , two exponents related to

the QPT fix point, these critical exponents are expressed as
follows [24]:

β ′ = (1 − y∗
h )/y∗

t , (A2)

γ = (2y∗
h − 1)/y∗

t , (A3)

η = 1 − x = 2 − 2y∗
h. (A4)

Since the transition occurs above the upper critical dimension,
for 0 < s � 0.5, the exponents y∗

t and y∗
h are given by mean-

field theory as follows:

y∗
t = 1/2, y∗

h = 3/4. (A5)

Therefore, we obtain

β ′ = 1/2, γ = 1, η = 1/2, x = 1/2. (A6)

For s > 0.5, y∗
t and y∗

h are nontrivial functions of s. By the ε

expansion, the exponents are calculated as [51]:

y∗
t = s + ε/6 − 4ε2A(s)/9s + O(ε3), (A7)

y∗
h = (1 + s)/2 + ε/4 − ε2A(s)/6s + O(ε3), (A8)

where ε = 2s − 1, A(s) = s[ψ (1) − 2ψ (s/2) + ψ (s)], and
ψ (x) is the digamma function. The results of the criti-
cal exponents are confirmed in previous numerical stud-
ies [24,26,51,56].

APPENDIX B: ASYMPTOTICALLY-EXACT FORMULA
FOR CO-TUNNELING

When the ground state is a delocalized state (α < αc), heat
transport is induced by the virtual excitation of the two-state
system for T 	 �eff , where �eff is a renormalized tunneling
amplitude. This process is called co-tunneling. By utilizing
the generalized Shiba relation [57], the asymptotically-exact
formula for the thermal conductance in the co-tunneling
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regime (T 	 �eff ) is derived as follows [30]:

κco = πχ2
0

8

∫ ∞

0
dω IL(ω)IR (ω)

[
βω/2

sinh(βω/2)

]2

, (B1)

where χ0 is the static susceptibility defined by Eq. (A1). This
formula leads to thermal conductance proportional to T 2s+1.

APPENDIX C: CIRCUIT MODEL

In this Appendix, we consider a flux qubit coupled to trans-
mission lines (see Fig. 4) and derive the effective spin-boson
model [37]. For example, we consider a uniform transmission
line with constant capacitance and inductance (Ci = C, Li =
L) while neglecting resistance (Ri = 0). We then derive a
general linear response relation between the spectral density
function and the circuit impedance.

The Hamiltonian of the present circuit is given by

H = HS + HB + HI, (C1)

HS =
3∑

k=1

[
Q2

J,k

2CJ,k

− EJ,k cos(φJ,k/φ0)

]
, (C2)

HB =
∑

ν

N∑
j=1

[
Q2

ν,j

2C
+ (φν,j+1 − φν,j )2

2L

]
, (C3)

HI = (φa − φL,N )2

2LN

+ (φR,N − φb )2

2LN

, (C4)

where HS , HB(= ∑
ν HB,ν ), and HI(=

∑
ν HI,ν ) describe the

flux qubit, the transmission lines, and the system-reservoir
coupling, respectively, and φ0 = h̄/2e is the flux quantum.
The flux qubit comprises three Josephson junctions with
Josephson energies EJ,k (k = 1, 2, 3), and the charge and flux
operator of the kth Josephson junction are denoted by QJ,k

and φJ,k , respectively. Similarly, the charge and flux operators
of the transmission line [see Fig. 4(b)] are denoted by Qν,j

and φν,k , respectively, and these operators satisfy the exchange
relations [φJ,k,QJ,k′ ] = iδk,k′ and [φν,j ,Qν ′,j ′ ] = iδj,j ′δν,ν ′ ,
respectively. The flux operators at the two sides of the flux
qubit are expressed by φa and φb [refer to Fig. 4(a)].

To make the flux qubit, the area of one junction is re-
duced by a factor of α (EJ,1 = EJ,3 = EJ , CJ,1 = CJ,3 = CJ ,
EJ,2 = αEJ , and CJ,2 = α−1CJ ). Then, the Hamiltonian of
the flux qubit Hamiltonian (C2) can be rewritten [37,52]

Hqb = Q2
J,+

2CJ,+
+ Q2

J,−
2CJ,−

+ V (φJ,+, φJ,−), (C5)

V (φJ,+, φJ,−) = −EJ [2 cos(φJ,+/2φ0) cos(φJ,−/2φ0)

+α cos((�ext − φJ,−)/2φ0)], (C6)

where φJ,± = (φJ,1 ± φJ,3)/2, its conjugate operator is de-
noted by QJ,±, and V (φJ,+, φJ,−) is the Josephson energy
that plays the role of the potential energy. When the magnetic
flux through the loop is tuned to be half of the flux quantum
(�ext = φ0/2), the Josephson energy, V (φJ,+, φJ,−), has two
energy minima on the line φJ,+ = 0. Due to quantum tunnel-
ing effects, there is an energy splitting � between the ground
state and the first-excited state. Since these lowest two eigen-

states are well separated from the other eigenstates, we can
truncate the system into the lowest two eigenstates, thus lead-
ing to the two-state system Hamiltonian (1). The wave func-
tions of the lowest two states are described as |σx = +1〉 =
(|↑〉 + |↓〉)/

√
2 and |σx = −1〉 = (|↑〉 − |↓〉)/

√
2, where |↑〉

and |↓〉 are the two-dimensional wave functions localized at
the two potential energy minima, respectively.

Introducing the variables φ± = φR,N ± φL,N and �± =
φb ± φa and using φJ,+ ∝ �+ � 0, the system-reservoir cou-
pling (C4) is rewritten as HI = −φ−�−/2LN . After trunca-
tion into the two-state system, we obtain:

HI = − φ−
2LN

φ0〈ϕ−〉σz, (C7)

where 〈↑| �− |↑〉 ≡ φ0〈ϕ−〉, 〈↓| �− |↓〉 ≡ −φ0〈ϕ−〉, and
〈↑| �− |↓〉 = 〈↓|�− |↑〉 = 0.

For simplicity, we consider the continuous limit �x → 0
while keeping the length of the transmission line, Lt = N�x,
constant, where �x is the size of each elementary island.
Then, the system-reservoir coupling can be rewritten by [37]:

HI = −1

l

∂φ(x)

∂x

∣∣∣∣
x=0

φ0〈ϕ−〉σz, (C8)

where l is the inductance per unit length. The flux φ(x) can be
expressed by:

φ(x) =
∑

k

1√
2cωk

(bk + b
†
k )

eikx

√
Lt

, (C9)

where c is the capacitance per unit length, and bk and b
†
k

are bosonic annihilation and creation operators, respectively.
Then, the Hamiltonians for the transmission lines and the
system-reservoir coupling can be rewritten as follows:

HB =
∑

k

ωkb
†
kbk, (C10)

HI = −σz

2

∑
k

λk (bk + b
†
k ), (C11)

λk = 2φ0〈ϕ−〉
vl

√
Lt

√
ωk

2c
, (C12)

where v = 1/
√

lc is the speed of light in the transmission
line. This model corresponds to the spin-boson model with
an ohmic reservoir.

Now, we discuss the general linear response relation. The
electric current operator at the position x is defined by I (x) =
l−1∂φ(x)/∂x and is calculated at x = 0:

I0 ≡ I (x = 0) =
∑

k

iλk

2φ0〈ϕ−〉 (bk + b
†
k ). (C13)

From Eqs. (4) and (C11)–(C13), the spectral density function
can be rewritten as:

I (ω) = 4φ2
0〈ϕ−〉2

π
Im

[
GR

I0
(ω)

]
, (C14)

where GR
I0

(ω) is the Fourier transform of the current-
current correlation function defined by GR

I0
(t ) =

−iθ (t )〈[I0(t ), I0(0)]〉. Using linear response theory [54],
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GR
I0

(ω) can be related to the total impedance of the
transmission lines:

1

Z(ω)
= i

ω
GR

I0
(ω). (C15)

Substituting Eq. (C15) into Eq. (C14), we can derive Eqs. (21)
and (22) in the main text. Although we have derived them
for a special case, i.e., the case of uniform transmission lines
without damping, Eqs. (21) and (22) hold for arbitrary circuits
of the transmission lines.

APPENDIX D: ANALYTIC EXPRESSION OF THE
SPECTRAL DENSITY FUNCTION

We analyze the frequency dependence of the spectral den-
sity function for the circuit model discussed in Sec. V. As-
suming |ωCjZj−1(ω)| 	 1, the following recurrence relation
(23) is given approximately:

Zj (ω) � Rj + iωLj + Zj−1(ω) − iωCjZj−1(ω)2. (D1)

In the continuous limit N → ∞, this recurrence relation
reduces to the differential equation:

dZ(ω, x)

dx
= r (x) + iωl(x) − iωc(x)Z(ω, x)2, (D2)

where r (x), l(x), and c(x) (0 � x = j/N � 1) are the re-
sistance, inductance, and capacitance per unit length, respec-
tively. From Eq. (24), they are given as

r (x) = r0(1 − x)n, (D3)

l(x) = l0, (D4)

c(x) = c0(1 − x)m, (D5)

where r0 = R0/�x, l0 = L0/�x, and c0 = C0/�x. We note
that Z(ω) = Z(ω, x → 1). Since Ż(ω, x) = dZ(ω, x)/dx

and r0(1 − x)n are sufficiently small compared with other
terms, we can neglect them and obtain:

ZA(ω, x) =
√

l0

c0
(1 − x)−m/2, (D6)

for

1 − x∗ ≡
(

n

2ω
√

l0c0

)2/(m+2)

	 1 − x 	
(

ωl0

r0

)1/n

. (D7)

In contrast, for x � 1, we can neglect r (x) and c(x), and
obtain the following:

ZB (ω, x) = iωl0x + A(ω). (D8)

The constant of integration A(ω) can be determined by the
equation ZA(ω, x∗) = ZB (ω, x∗). Thus, we arrive at Z(ω) as
follows:

Z(ω) ∼ ZB (ω, x → 1)

= iωl0(1 − x∗) +
√

l0

c0
(1 − x∗)−m/2. (D9)

From Eq. (21), we obtain the following spectral density
function:

I (ω) ∝ ωRe[Z(ω)−1] ∝ ω2/(m+2). (D10)

This frequency dependence appears for ω∗ 	 ω 	 ωc, where
the lower bound ω∗ is obtained by considering the condition
(D7):

ω∗ =
[(m

2

)2n rm+2
0

cn
0 l

m+n+2
0

]1/(m+2n+2)

. (D11)

This corresponds to Eq. (28) in the main text.
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