
PHYSICAL REVIEW B 98, 245405 (2018)

Excess equilibrium noise in a topological SNS junction between chiral Majorana liquids
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We consider a Josephson contact mediated by 1D chiral modes on a surface of a 3D topological insulator
with superimposed superconducting and magnetic layers. The system represents an interferometer in which 1D
chiral Majorana modes on the boundaries of superconducting electrodes are linked by ballistic chiral Dirac
channels. This model may be realized also in recently fabricated heterostructures based on quantum anomalous
Hall insulators. We investigate the noise of the Josephson current as a function of the dc phase bias and
the Aharonov-Bohm flux. Starting from the scattering formalism, a Majorana representation of the Keldysh
generating action for cumulants of the transmitted charge is found. At temperatures higher than the Thouless
energy ETh, we obtain the usual Johnson-Nyquist noise, 4G0kBT , characteristic for a single-channel wire with
G0 ≡ e2/(2πh̄). At lower temperatures, the behavior is much richer. In particular, the equilibrium noise is
strongly enhanced to a temperature-independent value ∼G0ETh if the Aharonov-Bohm and superconducting
phases are both close to 2πn, which are points of emergent degeneracy in the ground state of the junction. The
equilibrium noise is related to the Josephson junction’s impedance via the fluctuation-dissipation theorem. In a
striking contrast to usual Josephson junctions (tunnel junctions between two s-wave superconductors), the real
part of the impedance does not vanish, reflecting the gapless character of Majorana modes in the leads.
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I. INTRODUCTION

Noise of current as well as higher cumulants of charge
fluctuations provide full information about quantum transport
in mesoscopic systems [1–3]. The theoretical technique of
choice for the investigation of noise is the method of full
counting statistics (FCS), introduced by Levitov and Leso-
vik [4,5] and adjusted later for the Keldysh description of
transport in quantum circuits [6,7]. This method allows for
calculating the cumulant generating function (CGF) by means
of a path integral with the generating term in the effective
action. It has been found that the statistics of charge transfer is
sensitive to electronic interactions which make individual tun-
neling events correlated. Thus the correlations may be probed
by measuring the zero-frequency noise, i.e., the transferred
charge fluctuations normalized by a counting period. For
example, in a superconductor-normal metal-superconductor
(SNS) junction, the Cooper correlations in the terminals re-
sult, in a certain range of parameters, in a giant equilibrium
noise [8,9]. This noise results from dissipative processes:
since the supercurrent flows in the ground state, an ideal
Josephson junction is noiseless.

During the last decade, a considerable interest was gen-
erated by transport in topological superconductors hosting
neutral Majorana edge modes [10]. The 1D Majorana chiral
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channels can appear in artificial hybrid structures based on 3D
topological insulators (3DTI). As shown by Fu and Kane [11],
if one half of a surface of a 3D topological insulator is covered
by an s-wave superconductor and another half by a magnetic
insulator, a gapless and chiral Majorana mode emerges at the
border between the two coverings. Signatures of 1D gapless
Majorana modes were observed in STM spectroscopy of the
Pb/Co/Si(111) structure [12], in conductance of NS junction
with quantum anomalous Hall insulator (QAHI) realized in
thin films of (Cr0.12Bi0.26Sb0.62)2Te3 [13,14] and in heat con-
ductance of 2D α-RuCl3 realizing the state of Kitaev quantum
spin liquid [15].

Combining magnetic and superconducting interfaces on
top of 3DTI allows implementing new quantum interferom-
eters. The transport between normal metal terminals linked
by the coherently propagating Majorana edge modes was
studied in several papers. The Mach-Zehnder devices where a
Y junction splits an electron into two Majorana fermions were
addressed in Refs. [11,16]. The scattering theories of Fabry-
Pérot and FCS of Hanbury Brown-Twiss interferometers were
proposed in Ref. [17] and Refs. [18,19], respectively. It was
shown that 3DTI based junctions with chiral Majorana chan-
nels reveal an unusual interferometry and cross-correlation
of noise in terminals. Other realizations of chiral junctions
with Majorana edge modes were proposed in Refs. [20–24].
Very recently, implementation of topological quantum gates
and braiding protocols based on chiral Majorana modes were
addressed in Refs. [25,26].
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FIG. 1. (a) The chiral Josephson junction as a hybrid structure on a surface of a 3D topological insulator. Two s-wave superconducting
terminals, biased by the dc phase difference �dc, have a proximity effect with the 2D Dirac surface. The magnetic insulator film with two
domain walls fills the space between the leads. (b) The schematic view of the chiral 1D liquids on the 2D Dirac surface. The induced topological
superconductivity under the s-wave terminals is marked by gray color. The chiral Majorana liquids, marked by single arrows, are the edge
modes supported by the interface of the superconducting and magnetic films. Magnetic domain walls separate Zeeman gaps of opposite signs
±M and support spinless Dirac channels ψa,b marked by double arrows. The direction of an arrow stands for chirality which depends on
the direction of the magnetization. These channels are coupled by four Y junctions with different scattering phases αi (i = 1, 2, 3, 4). The
interferometer contour is threaded by the Aharonov-Bohm (A-B) flux f resulting in the phase φAB = πf/�0, where �0 = h/(2e) is the
superconducting flux quantum. The Majorana channels χl and χr are the equilibrium incident modes. Their quantum fields are used in the
effective action. The Dirac complex fermions ψa and ψb describe the chiral Dirac channels connecting the two superconductors. The counting
variable ξ , generating the FCS of the transmitted charge, is introduced in the middle of the Dirac channels.

In this work, we study noise of the dc supercurrent carried
through a single-channel link (normal part of the interferom-
eter) which connects two 2D superconductors induced on the
surface of a 3D topological insulator. Such measurements are
experimentally feasible; studies of noise in related topological
structures, such as hybrid 3DTI-based NS junctions and edge
modes of 2DTI, were reported in Refs. [28,29]. The topo-
logical SNS junction under consideration is a quantum inter-
ferometer with chiral 1D Majorana liquids in the leads. The
gapless nature of the leads provides an additional scattering
channel along with the Andreev one. The Andreev states in the
1D normal wire can be viewed as scattering states [3] of the
incident Majorana fermions. This spectrum can be tuned into
the degeneracy points by means of the gauge-invariant super-
conducting phase difference between the superconductors and
by the Aharonov-Bohm phase in the normal channel. We show
that this degeneracy leads to a strong enhancement of noise.

The studied Josephson setup and its schematic presentation
in terms of a chiral SNS junction on a 2D surface of a
3D topological insulator are shown in Figs. 1(a) and 1(b)
respectively. The chiral Dirac modes (the N part of the SNS)
separate the areas of Zeeman gaps with the opposite signs
±M . This setup, previously studied in Ref. [27], is based on
the ideas of the above mentioned interferometers [11,16–19],
but it is actually dual to those interferometers because in
our case the normal Fermi-liquid contacts are replaced by
superconductors and Majorana edges while the interference
loop involves the normal channels.

While we focus on 3DTI based setup, our model is also
applicable to alternative realizations such as QAHI structures
with superconducting terminals hosting a single Majorana
chiral mode [13,14]. The distinction from 3DTI based system
is that the QAHI possesses an internal exchange field and,
hence, the magnetic insulators are not needed.

The equilibrium Josephson transport, the thermoelectric
effect and the heat conductance controlled by the Aharonov-

Bohm flux, enclosed by the chiral loop [see Fig. 1(b)], were
explored in Refs. [27,30] for this system. The current-phase
relationships have spikes or infinite derivatives where both
Aharonov-Bohm and the bias phases approach 2πn, the points
where the otherwise broadened spectrum of Andreev states
becomes discrete. Generally, the density of states of the
junction is continuous due to the coupling with the gapless
contacts. At the degeneracy points the spectral current is
rearranged and consists of singular points corresponding to
discrete Andreev levels.

The central results of this paper are related to the quan-
tum regime, T � ETh, where the Thouless energy ETh is
inversely proportional to the dwell time in the interferometer
loop. We show that the zero-frequency noise in this limit
(i) reveals periodic pattern as a function of superconducting
and Aharonov-Bohm phases and (ii) is much larger (at the
degeneracy points) than the thermal noise.

From the technical point of view, we use the method
of FCS in order to calculate the fluctuations of the charge
transmitted in the Dirac wires, where the definition of the
current operator is straightforward. Our consideration is based
on the FCS theory of SNS junction [31], which is formulated
in terms of the Keldysh-Green functions in contacts and
uses the scattering approach. The generating term (counting
field) is introduced in the normal link, as shown in Fig. 1(b).
Taking into account that the Dirac fermions in the normal
channels are enslaved to the scattering states of incident
Majorana modes, the generating Keldysh action is formulated
in terms of Majorana variables and their equilibrium Green
functions. We derive a generalized Levitov-Lesovik formula
for CGF and, after that, the zero-frequency noise is obtained
by performing the second order expansion in the quantum
component of the counting field.

The paper is organized as follows. In Secs. II and III,
the chiral Josephson junction and scattering formalism are
introduced. In Sec. IV, the generating Keldysh action for
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cumulants is presented. In Sec. V, the path integral is calcu-
lated and an expansion for the cumulant generating function
is obtained. In Sec. VI, the results for zero-frequency noise
and current are derived with the use of the FCS. Specifically,
in Sec. VI A, the general expression for zero-frequency noise
is presented, in Sec VI B, the result of Ref. [27] for the
equilibrium current is rederived, while in Secs. VI C, VI E,
and VI F the noise is calculated for the low-, intermediate-,
and high-temperature regimes, respectively. In Sec. VII, we
summarize and discuss obtained results.

II. CHIRAL JOSEPHSON JUNCTION

We assume the temperature to be much lower than the
superconducting (�) and magnetic (M) gaps induced in the
2D surface, T < min{�,M} (see Fig. 1). This allows us
considering the system as a circuit of 1D wires and using
the 1D scattering formalism. The transport of Cooper pairs
under the phase bias �dc is governed by interference between
the fermions in the neutral (Majorana) and charged (normal,
Dirac) 1D channels with energies in the subgap domain. The
scattering matrix of Andreev processes is modified by the
presence of the additional reflection channel into the Majorana
edge mode (see Fig. 1). This is an important distinction from
a conventional SNS contact: the charged modes in the normal
link are the scattering states, or superpositions, of the incident
Majorana fermions. In particular, the gapless nature of inci-
dent modes results in a considerable thermal conductance (see
Ref. [30]), which is in contrast to its exponential suppression
due to the quasiparticle gap in regular SNS contacts. Also,
it is important that Andreev pairs are nonlocal in the split
Dirac channels. Hence the magnetic flux f threading the
area between the Dirac channels induces the single-electron
Aharonov-Bohm phase φAB = 2πef/h. The period of the
critical current pattern is doubled as compared to conventional
SQUIDs, i.e., it is given by 2�0 = h/e. Besides, the geomet-
ric asymmetry of contacts in the split normal channel together
with the broken time-reversal symmetry allows for the “ϕ-
junction effect” (Ref. [32]). Namely, a nonzero supercurrent
can flow without a phase bias or temperature gradient.

The incident chiral Majorana mode emerges in the 2D
surface at an interface between superconducting and Zeeman
gaps [11]. The Hamiltonian under consideration involves the
spin-orbital interaction term of Rashba or Dresselhaus type
and two terms related to the proximity effect of magnet (x > 0
half-plane) and s-wave superconductor (x < 0 half-plane).
The corresponding solution of the Bogolyubov-de Gennes
equation was found to be nondegenerate. The latter means
that the Bogolyubov quasiparticle operator corresponding to
this solution is a real Majorana fermion with

χ̂k = χ̂+
−k. (1)

The dispersion of this mode reads εk = [signM]vk where the
direction depends on the sign of the Zeeman field and v is
the Fermi velocity of the 2D Dirac surface. The chirality
and gapless dispersion follows from the broken time reversal
symmetry by the magnet. In contrast to Bogolyubov quasipar-
ticles in conventional superconductors, the chiral Majorana
excitation of a momentum k is composed of four compo-
nents: electronlike states of k and −k with the opposite spin

orientations and their holelike counterparts. The neutrality fol-
lows from the fact that four components of the Nambu eigen-
function have equal magnitudes for all the subgap energies.
The gapless dispersion means that the Majorana quasiparticles
are excited at arbitrary low temperatures in contrast to the
case of a conventional superconductor with a quasiparticle
gap. The isolated Majorana edge mode transfers energy with
the heat conductance which equals to 1/2 of that of the
normal single channel because the particle and antiparticle
are not independent excitations. The Majorana mode is elec-
trically neutral and does not carry charge or possess charge
fluctuations. Nevertheless, the superposition of two Majorana
fermions mixed in tunnel or Y-junction transports charge and,
consequently, generates charge noise.

In our setup [Fig. 1(a)], there are two s-wave superconduct-
ing terminals, biased by the dc phase difference �dc, which
both cover the surface of 3DTI. The space between the leads
is filled with magnetic insulator film with two domain walls.
The superconductor/magnetic insulator structures and domain
walls allows to implement the interferometer consisting of
four Y junctions in 2D surface, see Fig. 1(b). The proximity
induced topological superconductivity in the helical 2D Dirac
states is marked by gray color with the Majorana edge modes
are marked by single arrows. The direction of each arrow
stands for chirality which depends on the magnetization sign.
Magnets induce Zeeman gaps of different signs leading to
the emergence of two chiral channels with spinless Dirac
fermions (marked by double arrows). They form the split
single channel Josephson link. The Cooper pairs are carried
through these two chiral Dirac channels via the nonlocal
Andreev pairs. The typical widths of the guiding channels for
Majorana and Dirac modes are given by coherence lengths
in gapped magnetic or superconducting sectors. All the 1D
modes are spinless, due to the spin-momentum locking in the
Dirac cone, meaning that there is no spin degeneracy, and that
the wave function in the guiding channels has a spin texture.
The latter results in nontrivial effects of Berry phase on the
scattering phases αi in the Y junctions’ nodes. The single
electron Aharonov-Bohm phase φAB is induced by an external
magnetic flux f threading the interferometer bar.

In order to formulate the scattering approach we introduce
the Hamiltonians of the Majorana and Dirac chiral liquids,
ĤM and ĤD . They describe coherent propagation of neutral
and charged 1D fermions and are derived from the Gor’kov-
Nambu Hamiltonian for the 2D Dirac surface in proximity
with magnets and superconductors. For the chiral Majorana
liquid, one has

ĤM = v

2

∑
k

kχ̂ (−k)χ̂ (k), (2)

where the real fermion operators obey the condition (1). The
prefactor of 1/2 is the consequence of the excitations with
momenta k and −k being nonindependent. For the chiral
Dirac mode, we have a standard chiral Hamiltonian with
complex fermions ψ (k) �= ψ+(−k),

ĤD = v
∑

k

kψ̂+(k)ψ̂ (k). (3)

The Bogolyubov operators ψ̂ (k) and χ̂ (k) and the ef-
fective 1D Hamiltonians follow from the solution of the
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Bogolyubov-de Gennes equation (see Ref. [30] for details).
They involve the electronic and hole operators of bare 2D
states in the surface.

III. SCATTERING APPROACH

Here we describe the scattering approach to the investi-
gation of the interferometer. The detailed derivation can be
found in Ref. [30]. Let us illustrate this derivation for the
left contact between the superconducting area and the split
Dirac channels. In the Y junction No. 1, an electron and
a hole from the Dirac channel convert into two outgoing
Majorana fermions [Fig. 1(b)]. Incoming Majorana fermions
are scattered in the Y junction No. 2. The general form of the
scattering matrix of the Y junction No. 1 is given by [16]

Sin,α1 =
⎡
⎣1/

√
2 1/

√
2

i/
√

2 −i/
√

2

⎤
⎦

⎡
⎣eiα1 0

0 e−iα1

⎤
⎦, (4)

where the phase α1 depends on microscopic details of the
junction. For the Y junction No. 2 the scattering matrix has
the form Sout,α2 = ST

in,α2
. A conversion between Dirac and

Majorana fermions is accompanied with a spin rotation and,
hence, a geometric Berry phase is gained. This is contained in
αn which may be obtained from a solution of Dirac equation
for a particular geometry of magnetic and superconducting
sectors. The value of αn is left arbitrary and is assumed to
be independent of the momentum k of the scattered particles.

We eliminate the Majorana leg of length d, which connects
between the Y-junction nodes No. 1 and No. 2 and in which
the dynamic phase kd is acquired. As a result we obtain the S

matrix of the left combined chiral contact. This S matrix de-
scribes the scattering of one incoming Dirac and one incoming
Majorana modes into one outgoing Dirac and one outgoing
Majorana modes. It acts on the vector of three amplitudes. The
vector consists of the incident electron, Majorana fermion,
and hole fields, (ψ̂in,k, χ̂in,k, ψ̂+

in,−k )T . The outgoing fields
are thus obtained through the S matrix as

⎡
⎣ ψ̂l,out,k

χ̂l,out,k

ψ̂+
l,out,−k

⎤
⎦ =

⎡
⎢⎢⎣

1
2eikd+i(α1+α2 ) ieiα2√

2
1
2eikd−i(α1−α2 )

ieiα1√
2

0 − ie−iα1√
2

1
2eikd+i(α1−α2 ) − ie−iα2√

2
1
2eikd−i(α1+α2 )

⎤
⎥⎥⎦

⎡
⎢⎣

ψ̂l,in,k

χ̂l,in,k

ψ̂+
l,in,−k

⎤
⎥⎦, (5)

where the subscript l refers to the left contact. To account
for the nonzero superconducting bias phase �dc of the
left superconducting contact, we employ the transformation
ψ̂l → ei�dc/2ψ̂l .

The left and right leads confine the Dirac channels
and the electronic states in the normal region become enslaved
to the incident Majorana modes in the left and right leads.
Due to the partial Andreev reflection the electrons and holes
of momenta k and −k are not independent. After some algebra
we find a linear nonunitary transformation Rk ,[

ψ̂a (k)
ψ̂b(k)

]
= Rk

[
χ̂l (k)
χ̂r (k)

]
, (6)

which relates the fermionic fields in the middle of the lower
and upper Dirac channels ψ̂a and ψ̂b to the fields χ̂l and χ̂r of
the incident channels, as shown in the Fig. 1(b). The matrix Rk

is derived by eliminating the outgoing Majorana modes from
the left and right lead’s S matrix relations (5). A k-dependent
dynamical phases in the chiral Dirac links of length L and the
Aharonov-Bohm and superconducting phases are included in
the matrix elements. For further convenience we introduce the
phases � and φ, which include the scattering phases αi . For
the dc phase bias, this is akin to a “ϕ shift” (Refs. [32,33]),
i.e.,

� = �dc + 1
2 (α1 − α2 − α3 + α4). (7)

For the Aharonov-Bohm phase, the shift reads

φ = φAB + (α1 + α2 + α3 + α4),

see Ref. [30] for details. For the rectangular setup of Fig. 1(b),
the matrix Rk is parametrized by the coefficients r1(k, φ,�)

and r2(k, φ,�) as follows:

Rk =
(

r1(k, φ,�) r2(k, φ,�)
r2(k, φ,−�) r1(k, φ,−�)

)
. (8)

We obtain

r1(k, φ,�) = i
√

2e
1
4 i(2Lk+φ−�)(1 + ei(�+φ) − 2ei(φ−ϕk ) )

1 + 2eiφ cos � + e2iφ − 4ei(φ−ϕk )
,

(9)

r2(k, φ,�) = 2
√

2e
1
4 i( 2Lk

v
−2ϕk+5φ−�) sin

(
�+φ

2

)
1 + 2eiφ cos � + e2iφ − 4ei(φ−ϕk )

, (10)

where the dynamic phase and the Thouless energy are given
by

ϕk = h̄vk

ETh
, ETh = h̄v

2d + 2L
.

At a first glance, relation (6) indicates the reduction of the
number of degrees of freedom, making operators of scattered
electrons and holes ψ̂+

a,b(−k) and ψ̂a,b(k) not independent of
each other. This is, however, not the case because it rather
reflects a rearrangement of the degrees of freedom with their
number being conserved (see a discussion in Sec. VI D).

The variety of the interference patterns, encoded by r1 and
r2, influence the transport of Cooper pairs. As shown previ-
ously [27], the interference amplitudes define the spectral cur-
rent which is 2πETh-periodic function of the energy and 2π -
periodic function of the dc phase bias �. The remaining free
parameter, the Aharonov-Bohm phase φ, modifies the width
and the spectral shape of the spectral current. Analogously, a
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periodic in phases function will appear in the energy integral
providing the value of the zero-frequency noise S(�, φ, T ).

IV. GENERATING ACTION

In this section, we use relation (6) in order to find the ef-
fective Keldysh action, which leads to the generating function
for the FCS of the transmitted charge. We use the Majorana
representation, for which the path integral is formulated in
terms of the real (Majorana) Grassmann variables. The matrix
of the Green functions of the Majorana modes is diagonal
in the channel space and correspond to the equilibrium free
modes of momentum k. We introduce the counting field ξ in
the center of the Dirac counter propagating channels. This
is a natural choice because the electric current is defined
straightforwardly in the 1D chiral channels rather than in
the sectors covered by superconductors. Namely, the current
operator is the difference between the chiral currents which
flow in the upper and the lower Dirac channels

Î = (−e)v(ψ̂+
a ψ̂a − ψ̂+

b ψ̂b ). (11)

Here, e is electron charge and v is the Fermi velocity of the
surface Dirac states. Note that our method is distinct from that
of Ref. [31], where the counting field was inserted in one of
the superconductors and the generating term was gauged out
from the action by means of a transformation of the Green
function of the corresponding lead.

The cumulants of the transported charge N during the
counting time 0 < t < t0 are given by the logarithmic deriva-
tives of the corresponding partition function Z[ξ ]. Namely,
the CGF is given by

CGF(ξ ) = ln
Z[ξ ]

Z[0]
(12)

with the cumulants are

Cn = (−i)n
∂nCGF(ξ )

∂ξn

∣∣∣∣
ξ=0

. (13)

The partition function is given by the path integral with the
time-ordered exponent [34] along the Keldysh contour C,

Z[ξ ] = 〈
T ei

∫
C

σz
2 ξ (t )I (t )dt

〉
. (14)

The variable ξ is the amplitude of counting field ξ (t ) which is
fully quantum in terms of Keldysh formalism, i.e., we should
take σz = +1 for the forward and σz = −1 for backward parts
of the contour. Moreover,

ξ (t ) = ξθ (t )θ (t0 − t ), (15)

i.e., the counting field is switched on and off at t = 0 and
t = t0, respectively. Upon transition to the physical time t ,
the quantum counting field ξ (t ) is coupled to the classical
component of the current defined as

Icl(t ) = I (t+) + I (t−)

2
,

where t+ and t− represent the physical time t at the upper and
lower branches of the Keldysh contour, respectively.

For the averaging in Eq. (14), we need the fermionic action
describing the dynamics of the Dirac fields ψa,b, ψ̄a,b in the
split normal channel. As mentioned above, it is most natural

to express these fields in terms of the two incident Majorana
variables χl,r and to perform the path integration in terms
of these Grassmann variables. After this transformation, the
current Icl(t ) becomes a nondiagonal object.

The diagonal action S0 for the incident Majorana fermions
reads on the Keldysh contour

S0 =
∑

k,γ=L/R

∫
C
dt

(
i

2
χγ (−k)∂tχγ (k) − Hγ

)
(16)

with the Hamiltonians

Hγ = v

2

∑
k

kχγ (−k)χγ (k). (17)

The factor of 1/2 in time derivative of S0 is because we are
dealing with real fermions. Thus we obtain

S0 = 1

2

∑
k,γ=l,r

∫
C
dt χγ (t,−k)G−1

γ,γ (t, t ′, k)χγ (t ′, k), (18)

where G−1
i,j (t, t ′, k) is the equilibrium inverse Green’s function

of usual charged fermions.
For the partition (generation) function, we obtain

Z[ξ ] =
∫

D[X] exp(iSξ [X]), (19)

where the corresponding Grassmann fields after the Keldysh
rotation are collected in the vector Xk (t ),

XT
k (t ) = [χ1,l (t, k); χ2,l (t, k); χ1,r (t, k); χ2,r (t, k)].

Here the first index (1,2) indicates the Keldysh component,
whereas the channel index γ = l, r stands for free modes
incoming from the left/right leads. The Keldysh rotation is
defined as

χ1(t ) = χ+(t ) + χ−(t )√
2

, χ2(t ) = χ+(t ) − χ−(t )√
2

, (20)

where +/− stand for direct/inverse branches of C contour.
The Gaussian integration over the real (Majorana) Grassmann
variables gives∫

D[X] exp

(
−1

2
XT Â X

)
=

√
DetÂ .

The action Sξ in Eq. (19) reads

Sξ [X]
∑
k,p

∫
dtdt ′XT

−p(t )

×
[

1

2
δp,kǦ−1

k (t, t ′)+ξ (t )δ(t−t ′)J̌p,k

]
Xk (t ′). (21)

This is a sum of the action S0[X] of the incident Majorana
channels and the generating term ξ (t )J̌p,k . The bold font
stands for the matrix structure in channel space and “check”
symbol means the Keldysh space. The structure of the matrix
J̌p,k , which parametrizes the current in the center of normal
channels via the fields Xk , is to be derived with the help of Rk

matrix.
At this step, we define the matrix Green function in

Eq. (21),

Ǧk (t, t ′) =
[
Ǧl (t, t ′, k) 0

0 Ǧr (t, t ′, k)

]
. (22)
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The diagonal blocks Ǧl,r are the Keldysh Green’s functions

Ǧl (t, t
′, k) =

[
GK

l (t, t ′, k) GR
l (t, t ′, k)

GA
l (t, t ′, k) 0

]
, (23)

Ǧr (t, t ′, k) =
[
GK

r (t, t ′, k) GR
r (t, t ′, k)

GA
r (t, t ′, k) 0

]
. (24)

We remind that these Green functions describe free chiral
fermions. Let us introduce a Fourier representation of X−k (t )
and Xk (t ) in Eq. (21) by the following rule:

X−k (t ) =
∫

dω′

2π
X−k (ω′)eiω′t , (25)

Xk (t ) =
∫

dω

2π
Xk (ω)e−iωt . (26)

Then, the inverse Green function from the action (21) is
transformed into

Ǧ−1
l,r (ω,ω′, k)

= 2πδ(ω′ − ω)

[
2io(1 − 2nl,r (k)) ω − vk + io

ω − vk − io 0

]
. (27)

In turn, the frequency representations of retarded (R), ad-
vanced (A), and Keldysh (K) components in Eqs. (23) and
(24) read

GR
l,r (ω, k) = 1

ω − vk + io
, GA

l,r (ω, k) = 1

ω − vk − io
,

(28)

GK
l,r (ω, k) = −2π iδ(ω − vk)(1 − 2nl,r (k)). (29)

The only constraint for the distribution function nL/R (k)
follows from the fact that Majorana mode χ is real. It
reads

nL/R (k) = 1 − nL/R (−k). (30)

Next, we calculate the current matrix J̌p,k acting in the basis of
Xk . The definition for the current in terms of usual Grassmann
variables reads

I = (−e)v(ρa − ρb ), ρa = ψ̄aψa, ρb = ψ̄bψb. (31)

The classical and quantum components of the charge densities
read

ρcl = 1
2 (ρ+ + ρ−) , ρq = 1

2 (ρ+ − ρ−). (32)

For the fermion variables, we introduce the Keldysh indices 1
and 2 exactly as for χ :

ψ1,2(t ) = ψ+(t ) ± ψ−(t )√
2

,

ψ̄1,2(t ) = ψ̄+(t ) ± ψ̄−(t )√
2

. (33)

Using (33), we obtain

Icl = (−e)v

2
(ψ̄a,1ψa,1 + ψ̄a,2ψa,2 − ψ̄b,1ψb,1 − ψ̄b,2ψb,2),

(34)

which can be rewritten as

Icl(t ) =
∑
p,k

∑
γ,σ

ψ̄γ,σ (t, p)Ǐγ γ,σσψγ,σ (t, k). (35)

Here, σ = 1, 2 is the Keldysh index and

Ǐ = −ev

2
γ zσ 0, (36)

where γ z is the Pauli matrix in the channel space (a/b) and
σ 0 is the unity matrix in the Keldysh space.

At this step, we introduce the complex Dirac field �k in the
extended Gor’kov-Nambu τ space

�T (t, k) = [ψa,1(t, k), ψa,2(t, k), ψb,1(t, k), ψb,2(t, k),

ψ̄a,1(t, k), ψ̄a,2(t, k), ψ̄b,1(t, k), ψ̄b,2(t, k)],

(37)

with τ z = +1 for ψ-components and τ z = −1 for ψ̄ com-
ponents. Such an extension is necessary in order to take into
account superconducting correlations of Dirac fermions. In
terms of these fields, the current now reads

Icl(t ) =
∑
p,k

�̄T (t, p)
τ z

2
Ǐ�(t, k). (38)

The relation between scattered Dirac and incoming Majorana
modes is given by Eq. (6). The extension of Rk to the Keldysh
σ -space requires a simple direct product with σ 0. The relation
between the four-dimensional Xk and the eight-dimensional
�k reads

�(t, k) =
[

σ 0RkXk

σ 0R∗
−kXk

]
. (39)

The Hermitian conjugation of the (39) reads

�̄T (t, k) = [
XT

−kσ
0R+

k XT
−kσ

0RT
−k

]
. (40)

Using Eq. (38), we obtain the expression for the current Icl(t )
written in the X basis. The Nambu τ index is trivially traced
out and the current in Majorana basis now reads

Icl(t ) =
∑
p,k

XT
−p(t )J̌p,kXk (t ), (41)

where the kernel matrix J̌p,k is obtained as follows:

J̌p,k = −ev

4

(
R+

p γ zRk − RT
−pγ zR∗

−k

)
σ 0. (42)

This matrix provides the generating counting term in the
Majorana representation.

V. INTEGRATION OVER MAJORANA FIELDS

In this section, we perform the integration over the Ma-
jorana field Xk (t ) in the path integral (19). We start from a
transformation of the action (21) into a frequency integral.
After that it is transformed into a discrete sum with a step
of �ω and, finally, the CGF is found. The generating part of
the action Sξ (21) with ξ (t ) = ξθ (t )θ (t0 − t ) transforms as
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follows in the frequency representation∫
XT

−p(t )ξ (t )J̌p,kXk (t )dt

= ξ

∫
f (ω′, ω)XT

−p(ω′)J̌p,kXk (ω)
dωdω′

(2π )2
. (43)

In the integral (43), we introduced f (ω′, ω), which is the
Fourier transformation of ξ (t ):

f (ω′, ω) =
∫ t0

0
dt ei(ω′−ω)t = i

1 − ei(ω′−ω)t0

ω′ − ω
. (44)

Discretization assumes that dω and dω′ are replaced by �ω

and the delta function transforms into Kronecker symbol as
�ωδ(ω′ − ω) → δω′,ω and f (ω′, ω) is considered as matrix.
The generating action now reads as

Sξ [X] =
∑

p,k;ω′,ω

X−p(ω′)
[
δω′,ωδp,k

1

2
Ǧ−1(ω, k)

�ω

2π

+ ξf (ω′, ω)J̌p,k

(
�ω

2π

)2
]
Xk (ω). (45)

Calculation of the path integral with the discretized ac-
tion from (45) and the definition (12) gives the generalized
Levitov-Lesovik formula for CGF of the contact

CGF(ξ ) = 1

2
Tr ln

[
δω′,ωδp,kγ

0σ 0

+ 2ξǦ(ω′, p)f (ω′, ω)J̌p,k

�

2π

]
. (46)

The factor of 1/2 in Eq. (46) results from square root of
the determinant in integration over real Grassman variables.
The sign Tr assumes the trace taken over p, k, ω′, ω and
σ, γ indices. Calculation of the trace in a compact form is
challenging due to the nondiagonal structure in momentum
space of the generating term J̌ in the new Majorana basis. The
formula (46) allows us to obtain the cumulants Cn through
the logarithm expansion up to the nth order in ξ and using
the definition (13). The second cumulant provides the central
result of this paper for zero-frequency noise and is discussed
in the next section.

VI. RESULTS FOR ZERO-FREQUENCY NOISE

A. General expressions for the average current and the noise

In this section, we obtain the general expression for the
zero-frequency noise of the current S, which is the quantity
of central interest of this work. The spectral density of noise
Sω(φ,�, T ) is related to the symmetrized correlator as

Sω(φ,�, T ) =
∫

dt (〈I (t )I (0)〉 + 〈I (0)I (t )〉 − 2I 2)eiωt .

(47)

The zero-frequency value S ≡ Sω=0 is given by the second
cumulant introduced above as

S = lim
t0→∞ 2

C2

t0
. (48)

In order to calculate C2, we expand CGF(ξ ) up to the second
order in ξ and transform sums into integrals over frequencies:

CGF(ξ ) = ξ
∑

k

∫
dω

2π
f (ω,ω)tr[Ǧ(ω, k)J̌k,k]

− ξ 2
∑
k,p

∫
|f (ω,ω′)|2

× tr[Ǧ(ω,p)J̌p,kǦ(ω′, k)J̌k,p]
dωdω′

(2π )2
. (49)

Here, tr denotes the trace over σ and γ indices only. In
the integrand of the second term, we took into account that
f (ω,ω′)f (ω′, ω) = |f (ω,ω′)|2. For the first cumulant, we
obtain

C1 = t0
ev

2

∑
k

[(nl (k) + nr (k) − 1)trγ [R+
k γ zRk]

+ (nl (k) − nr (k))trγ [γ zR+
k γ zRk]], (50)

where trγ denotes the trace over the channel indices only. The
first term in Eq. (50) is responsible for the Josephson current
while the second one gives the thermoelectric effect discussed
in Ref. [30]. The corresponding dimensionless spectral cur-
rents are given by trγ [R+

k γ zRk] and trγ [γ zR+
k γ zRk], respec-

tively. Note that Eq. (50) was simplified by accounting for the
constraint (30) on the distribution functions of the Majorana
fermions and using the limit of (44), which gives

lim
ω′→ω

f (ω′, ω) = t0.

For the second cumulant, we have |f (ω,ω′)|2 in the
integrand. Assuming the measurement time t0 is long, i.e.,
t0  E−1

Th , T −1, we get the delta-function, i.e.,

|f (ω,ω′)|2 = 2(1 − cos(ω′ − ω)t0)

(ω′ − ω)2
≈ 2πt0δ(ω′ − ω).

Performing the integration over ω in the second line of (49)
and summation over p in the continuous limit via

∑
p →∫

dp

2π
, we obtain

C2 = 2t0
∑

k

(
4

v

)[(
J̌(1,1)

k,k

)2
nl (k)nl (−k)

+ (
J̌(2,2)

k,k

)2
nr (k)nr (−k)

+ J̌(1,2)
k,k J̌(2,1)

k,k [nl (k)nr (−k) + nr (k)nl (−k)]
]
, (51)

where the distribution functions nl (k) and nr (k) are arbitrary.
The upper indices of Jk,k are related to the channel space γ .
Let us emphasize that the results (50) and (51) are quite gen-
eral and can describe a nonequilibrium steady-state regime.
In particular, temperatures of incident Majorana modes may
be different. On the other hand, the voltage is assumed to be
zero in order to avoid the ac Josephson effect. In the case
of a finite voltage, the multiple Andreev reflection processes
should be accounted for, which requires a modification of
our formalism. As a result, the matrix Rk,p (6) acquires a
nondiagonal structure in momentum space. The calculation of
transport properties of the junction is an interesting problem
and is left for a future research.
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For the particular case of identical distribution functions,
n(k) = nl (k) = nr (k), we obtain

C2 = t0e
2v

∑
k

n(k)n(−k)trγ [(R+
k γzRk )2

− R+
k γzRk (R+

−kγzR−k )T ]. (52)

We have also performed an alternative derivation and ob-
tained the same result for C2 from a direct calculation of
the noise Sω using the operator approach. In this method
we employ the relation (6) between the Heisenberg operators
ψ̂ and χ̂ and insert them as linear combinations into the
definition for noise correlator Sω (47). In the course of the
calculation of C2, we need the thermodynamic averaging of
the cumulants of four Majorana operators, which have the
following form:

〈〈χ̂γ1 (k1)χ̂γ2 (k2)χ̂γ3 (k3)χ̂γ4 (k4)〉〉
× 〈χ̂γ1 (k1)χ̂γ4 (k4)〉〈χ̂γ2 (k2)χ̂γ3 (k3)〉
− 〈χ̂γ1 (k1)χ̂γ3 (k3)〉〈χ̂γ2 (k2)χ̂γ4 (k4)〉, (53)

where γi = l, r for i = 1, 2, 3, 4. Comparing these two ap-
proaches, we observe that all the terms given by the first trace
in Eq. (52) are identical to the second line in Eq. (53). The last
term of (52) with the minus prefactor is given by the third line
in Eq. (53).

B. Equilibrium current

In this section, we calculate the cumulants C1,2 in equilib-
rium, with the temperatures of the leads being equal to each
other, Tl = Tr = T , so that the distribution function of the
incident Majorana particles reads

n(k) = 1

1 + e
vk
T

. (54)

Replacing the sum over k by the integral over the energy,∑
k → ∫

dε
2πh̄v

, we obtain

C1 = t0
e

4πh̄
sin �

×
∫

sin ϕε tanh ε
2T

dε

1 + ( cos �+cos φ

2

)2 − (cos � + cos φ) cos ϕε

,

(55)

where the dynamical phase is labeled by the index ε:

ϕε = ε

ETh
.

Via the relation I (�, φ) = C1/t0 we arrive at the current-
phase relationship obtained previously in Ref. [27]:

I (�, φ) = 4π
ekBT

h
sin �

×
∞∑

n=0

1

2 exp
(
π kBT (1+2n)

ETh

) − cos φ − cos �
.

(56)

As shown in Ref. [27], in the low-temperature limit, kBT �
ETh, the summation can be replaced by the integration and

the Josephson current shows nonsinusoidal oscillations as the
function of the phases φ and � with the amplitude propor-
tional to ETh:

I (�, φ)T �ETh = − e

π h̄
ETh sin(�)

ln
(
1 − cos φ+cos �

2

)
cos φ + cos �

. (57)

In analogy with usual SQUIDs, the Aharonov-Bohm phase
φ modulates the amplitude of the Josephson oscillations
∝ sin �, which have here an anharmonic form. The result
(57) exhibits an interesting singular behavior near the points
φ = 2πn, � = 2πm. In what follows, we conclude that at
these points the system shows large excess noise.

C. Equilibrium noise: general expression

Using Eqs. (52) and (48), we obtain the following expres-
sion for the equilibrium zero-frequency noise:

S(�, φ, T ) = G0

∫
dε

cosh ε
T

+ 1
Y (�, φ, ϕε ), (58)

where G0 is the conductance quantum, G0 = e2

2πh̄
. The kernel

function is given by

Y (�, φ, ϕε )

= −4
A0(�, φ) + A1(�, φ) cos ϕε + A2(�, φ) cos 2ϕε

(B0(�, φ) + B1(�, φ) cos ϕε )2

(59)

with

A0(�, φ) = (14 cos φ + cos 3φ) cos � + 2(cos 2φ + 6)

× cos 2� + cos 3� cos φ − 4 cos 2φ − 26;

A1(�, φ) = −2(cos 2� + 3 cos 2φ + 4) cos �

+ 5(5 − 2 cos 2�) cos φ + cos 3φ;

A2(�, φ) = 4(2 − cos 2� − cos 2φ);

B0(�, φ) = cos 2� + 4 cos � cos φ + cos 2φ + 10;

B1(�, φ) = −8(cos � + cos φ). (60)

Despite the function Y (�, φ, ϕε ) being somewhat cumber-
some, it can be simplified to a compact expression in the
low-, T � ETh, and high-, T  ETh, temperature limits.
Also, a certain simplification is possible for the degeneracy
points � = 2πm, φ = 2πn, where an analytical calculation of
(58) becomes possible for arbitrary temperatures. These three
limits are discussed below.

It is important to note that the function Y is essentially the
spectral weight of fluctuations. Its integral over the period of
the dynamical phase, −π < ϕε < π , is independent of � and
φ: ∫ π

−π

Y (�, φ, ϕε )dϕε = 4π. (61)

In the limit of zero phases � = φ = 0 (more precisely � =
2πm, φ = 2πp), the kernel Y is a sum of delta functions with
singularities at ϕε = 2πn. This is the limit of the continuum of
broadened Andreev states collapsing into a discrete set of lev-
els with energies εA = 2πnETh. The normalization condition
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(61) provides the coefficient in front of the delta functions:

Y (� = φ = 0, ε) = 4πETh

∞∑
n=−∞

δ(ε − 2πnETh) . (62)

The presence of a level with ε = 0 implies the degeneracy of
the many-body ground state.

D. Equilibrium noise: low-temperature limit

Our central results follow from Eq. (58) in the low tem-
perature limit, T � ETh. The first result is the presence of
the φ,�-dependent oscillations of the noise. The second one
is the excess noise and, as a consequence, the large real part
of the impedance of the system close to the degeneracy (as a
representative point we take � = φ = 0). Let us discuss the
latter point in more detail. If the distance from the degeneracy
point on the φ,� plane is large,

√
φ2 + �2  √

T/ETh, then
we can expand the function Y given in Eq. (59) around ϕε = 0
and we obtain

ST �ETh (�, φ)

= 8G0T
(1 − cos φ)(1 + cos �)

(2 − cos φ − cos �)2
+ 32π2G0T

3

× (cos φ − cos �)3 + 8(2 sin2 � − sin2 φ cos �)

3E2
Th(2 − cos φ − cos �)4

+ T G0O
[
T 4/E4

Th

]
, φ2 + �2  T

ETh
. (63)

The oscillations in Eq. (63) show the usual 2π -periodic pat-
tern as a function of the superconducting phase � as expected
for a system where the charge parity is not conserved. The de-
pendence on the Aharonov-Bohm phase φ is also 2π periodic,
which corresponds to an unconventional for superconducting
systems h/e period in terms of the Aharonov-Bohm flux. This
is due to the split chiral channels in our system and has been
discussed in detail in Ref. [27].

The leading term in Eq. (63) can be obtained from (58) by
replacing the thermal distribution the delta function as

1

cosh ε
T

+ 1
≈ 2T δ(ε). (64)

This delta-functional approximation is valid, however, only
far enough from the singularity point, i.e., if

φ2 + �2  T

ETh
. (65)

In this case, the distribution function constitutes a sharp peak
of width T compared to the smooth dependence of Y on the
energy. Indeed, the function Y is peaked around ε = 0 and the
width of the peak is given by

�ε = ETh
φ2 + �2

4
√

2
. (66)

This follows from the expansion of the denominator of
Y (�, φ, ϕε ), which, if

√
φ2 + �2 � π , reads

B0(�, φ) + B1(�, φ) cos ϕε ≈ O

[
ϕ2

ε +
(

φ2 + �2

4
√

2

)2
]

.

A comparison of the width of Y with that of the distribution
function, �ε ∼ T , leads to the criterion (65). The second
order term in Eq. (63) as well as the higher ones are small
as (T/ETh)2n. Once we approach the singularity, i.e., once
we reach the distance

√
�2 + φ2 ∼ √

T/ETh, then all the
terms in the ϕε expansion of Y are of the same order and,
as a result, all the terms in the expansion (63) are of the
order ∼G0ETh. The strong dependence on the direction from
which the singularity is approached, i.e., on the angle θ ≡
arcsin φ√

φ2+�2
, in particular the vanishing of the leading term

for θ = 0, is washed out in the higher order terms.
Close to the singularity point, i.e., for φ2 + �2 � T

ETh
the kernel Y as a function of ε is more singular than the
distribution function. This leads to our second main result:

ST �ETh = 2πG0ETh, φ2 + �2 � T/ETh . (67)

This expression follows from the n = 0 delta-function in
Eq. (62) with the contributions of n �= 0 being exponentially
suppressed. As mentioned above, the strong dependence on
the direction from which the singularity is approached, i.e.,
on the angle θ ≡ arcsin φ√

φ2+�2
, which is so prominent in the

leading term of (63), is washed out completely as we come
close enough to the singularity, i.e., for �2 + φ2 � T/ETh.
The excess noise (67) does not vanish at T = 0. This may
seem to be in conflict with the expected behavior of the
equilibrium noise. The resolution of this apparent paradox is
the fact that the area in the �, φ plane, where this value of the
noise is obtained shrinks to zero with T → 0.

Our main result is a strong enhancement of the noise
near the singularity points �, φ = 0 (mod 2π ) in the quantum
limit of T � ETh. We use the term “excess” here because the
noise exceeds the value of the equilibrium Johnson-Nyquist
noise in a single-channel normal conductor, SJN = 4G0T .

In order to shed light on the origin of peculiar properties
of the system (manifesting themselves in strong enhancement
of the noise) at the singular points, we analyze the scattering
states in this limit. Let us consider the first and the last lines
of the left-contact scattering matrix, Eq. (5), and of its right-
contact counterpart. Absorbing αi into the Aharonov-Bohm
phase, we get the following relations for the left and right
Dirac-Majorana interfaces:

[
ψa (k)

ψ+
a (−k)

]
= Q(�, φ, ϕk )

[
ψb(k)

ψ+
b (−k)

]
+ q(�, φ, ϕk )χl (k), (68)[

ψb(k)
ψ+

b (−k)

]
= Q(−�, φ, ϕk )

[
ψa (k)

ψ+
a (−k)

]
+ q(−�, φ, ϕk )χr (k), (69)

with

Q(�, φ, ϕk ) = eiϕk/2

2

[
eiφ/2 ei�/2

e−i�/2 e−iφ/2

]
, (70)

q(�, φ, ϕk ) = ieiϕk/4

√
2

[
eiφ/4

−e−iφ/4

]
. (71)
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Excluding ψb and ψ+
b from these relations yields

[1 − Q(�, φ, ϕk )Q(−�, φ, ϕk )]

[
ψa (k)

ψ+
a (−k)

]

= Q(�, φ, ϕk )q(−�, φ, ϕk )χr (k) + q(�, φ, ϕk )χl (k).
(72)

The determinant of the matrix in the square brackets is

det[1 − Q(�, φ, ϕk )Q(−�, φ, ϕk )]

= 1 − 1
2eiϕk (cos � + cos φ). (73)

If the determinant is nonzero, the fermion modes are the
linear combinations of the incident χr and χl , as described
by the Eq. (8). For the case of zero determinant (73), which
holds for ϕk = 2πn, � = 2πm, and φ = 2πl, eigenvalues
of [1 − Q2(2πn, 2πm, 2πl)] are 1 and 0, with the corre-
sponding eigenvectors being λ1 = [1/

√
2; −1/

√
2] and λ0 =

[1/
√

2; 1/
√

2]. These two vectors define Majorana modes η

and ζ , which are eigenmodes of the junction at the degeneracy
points. The vectors λ0 and λ1 correspond to the modes

ηa,b(k) ≡ 1√
2

[ψa,b(k) + ψ+
a,b(−k)] (74)

and

ζa,b(k) ≡ i√
2

[ψ+
a,b(−k) − ψa,b(k)], (75)

respectively. Now we reformulate Eq. (72) for the upper wire
a in the new basis of η and ζ :⎡

⎣ 1−eiϕk√
2

i√
2

1−eiϕk√
2

− i√
2

⎤
⎦[

ηa (k)
ζa (k)

]
= χl

ieiϕk/4

√
2

[
1

−1

]
. (76)

For ϕk �= 2πl (and � = 2πm and φ = 2πl), we obtain the
solution of (76) in the form[

ηa (k)
ζa (k)

]
=

[
0

eiϕk/4χl (k)

]
. (77)

At first glance, it may seem contradictory that the mode η is
absent for these values of k, i.e., a part of degrees of freedom
is absent. What actually happens is a redistribution of the
continuous spectral weight of η into the singular points of
ϕk = 2πl. Oppositely, the mode ζa has a constant spectral
weight and does coincide with χl (up to the dynamical phase)
and flows out in the right Majorana edge channel without a
backscattering. The same holds for wire b, where ζb(k) =
eiϕk/4χr (k). Note that from (77), one obtains for the Dirac field
for a generic value of ϕk �= 2πl,

ψa (k) = 1√
2

(η(k) + iζ (k)) = ieiϕk/4

√
2

χl (k), (78)

ψ+
a (−k) = 1√

2
(η(k) − iζ (k)) = − ieiϕk/4

√
2

χl (k), (79)

and thus ψa (k) = −ψ+
a (−k). Similarly,

ψb(k) = −ψ+
b (−k) = ieiϕk/4

√
2

χr (k). (80)

Hence particles and holes in a particular Dirac channel are
not independent but rather form Majorana particles. This
correlation results in zero values of the cumulants of the form

〈〈ψ+
a (k)ψa (k)ψ+

a (p)ψa (p)〉〉
= 1

2δk,p[〈χl (−k)χl (k)〉〈χl (k)χl (−k)〉
− 〈χl (k)χl (−k)〉〈χl (−k)χl (k)〉] = 0. (81)

At the same time, the fermions in different wires are fully
independent, 〈ψ+

a (k)ψb(k)〉 = 0, as follows from Eqs. (78)
and (80). Consequently, there is no contribution to the noise
from the off-resonant states.

Let us discuss the redistribution of the spectral weight of
the new modes η and ζ . To this end, we first calculate the
spectral weight for arbitrary values of the phases and then
consider a transition to the singular limit, � → 0 and φ → 0.
Using the 2 × 2-matrix Rk , Eq. (8), and definitions (74) and
(75), we obtain for a given k:⎡

⎢⎣
ηa (k)
ζa (k)
ηb(k)
ζb(k)

⎤
⎥⎦ =

⎡
⎢⎣

x1,k (�, φ) x2,k (�, φ)
z1,k (�, φ) z2,k (�, φ)

x2,k (−�, φ) x1,k (−�, φ)
z2,k (−�, φ) z1,k (−�, φ)

⎤
⎥⎦[

χl (k)
χr (k)

]
. (82)

The matrix elements in the above formula are related to r1,2

from Eq. (10) as

xj,k (�, φ) = 1√
2

[rj (�, φ, k) + r∗
j (�, φ,−k)],

zj,k (�, φ) = −i√
2

[rj (�, φ, k) − r∗
j (�, φ,−k)], j = 1, 2.

(83)

The scattering amplitudes x and z determine the density of
states for the new modes in a and b wires:

ρη,a (�, φ, ε) = |x1,ε(�, φ)|2 + |x2,ε(�, φ)|2, (84)

ρζ,a (�, φ, ε) = |z1,ε(�, φ)|2 + |z2,ε(�, φ)|2, (85)

and

ρη,b(�, φ, ε) = ρη,a (−�, φ, ε),

ρζ,b(�, φ, ε) = ρζ,a (−�, φ, ε).

Calculating the limit of � → 0 and φ → 0, keeping ϕε fixed
and nonzero, one obtains that the mode ζ has constant density
of states,

ρζ,a (ε) = 1,

while the mode η has a singular spectral weight located at the
Andreev levels,

ρη,a (ε) =
∑

n

δ(ϕε − 2πn).

It should be emphasized that both singular amplitudes are
equal to each other,

|z1,ε(0, 0)|2 = |z2,ε(0, 0)|2 = 1

2

∑
n

δ(ϕε − 2πn).
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This means that the resonant mode η, which propagates in
both of the Dirac wires, is an equal-amplitude superposition
of χl and χr at the discrete energies εn. Such a resonant
correlation between the Dirac states in a and b wires—which
should be contrasted to the case of ε �= εn—is responsible for
the noise enhancement.

E. Equilibrium noise at the degeneracy point

In this section, we generalize our result for the noise at the
degeneracy point � = φ = 0 for arbitrary temperatures. From
(58) and (62), we obtain

Sdeg(T ) = 4πG0ETh

∞∑
n=−∞

1

cosh 2πnETh
T

+ 1
, (86)

where Sdeg ≡ S(� = 0, φ = 0). As already mentioned, in the
low temperature limit the only term with n = 0 survives and
we obtain (67). In the opposite limit of high temperature,
T  ETh, we replace the summation by an integral over dx =
2πETh/T and obtain the thermal noise SJN like in a normal
channel:

lim
T

ETh
→∞

T −1Sdeg(T ) = 4G0 . (87)

F. Equilibrium noise: high-temperature regime

Below we obtain the φ-dependent finite temperature cor-
rection to SJN at the regime T  ETh and zero Josephson
current (� = 0). For this case, the zero-frequency noise is
given by

S�=0(φ, T ) = G0

∫
dε

cosh ε
T

+ 1
Y (φ, ϕε ), (88)

Y (φ, ε) = (1 − cos φ)
(
1 + cos ε

ETh

)
1 + (1+cos φ)2

4 − (1 + cos φ) cos ε
ETh

, (89)

where Y (φ, ϕε ) = Y (� = 0, φ, ϕε ). At high temperatures,
the distribution function decays smoothly with the energy
while Y (φ, ϕε ) rapidly oscillates. Thus we expand the kernel
into a cosine series

Y (φ, ε) =
∞∑
0

yn(φ) cos
nε

ETh

and retain only the zeroth and the first Fourier harmonics

Y (φ, ε) ≈ y0(φ) + y1(φ) cos
ε

ETh
. (90)

We obtain y0(φ) = 2 and y1(φ) = 3 + cos φ. The zeroth har-
monic yields the usual Johnson-Nyquist noise as leading term
while the first harmonic gives a small φ-dependent correction:

S�=0(T ETh, φ) = 4G0T + 2π (3 + cos φ)G0T
2

ETh sinh πT
ETh

. (91)

This correction is exponentially suppressed for T  ETh

similar to the critical current in Eq. (56). In this case the
thermal length is shorter than the normal region perimeter and
the superconducting correlations and interference of Andreev
pairs are destroyed by thermal fluctuations.

VII. CONCLUSIONS

In this work, we have studied the equilibrium zero-
frequency noise in a chiral link between two topological
superconductors. This system can be realized on a surface of
a 3D topological insulator covered with superconducting and
magnetic films or, alternatively, in a superconductor-QAHI-
superconductor structure. Our system is a single-channel
ballistic Josephson junction where the Andreev pairs can
be thought of as being the scattering states of the incident
chiral Majorana fermions in the leads. We have derived the
effective action for the full counting statistics of the charge
transfer in the Majorana representation. We have shown that
for temperatures lower than the Thouless energy kBT � ETh

the system is characterized in equilibrium by an excess zero-
frequency noise with the maximum of S = 2πG0ETh, which
is large compared to the thermal noise in a normal channel
SJN = 4G0kBT . Here, G0 = e2/(2πh̄). Moreover, we have
obtained oscillations of the noise power as a function of the
superconducting phase bias and the Aharonov-Bohm flux.
The dependence on the Aharonov-Bohm flux has a fractional
h/e period because of the chiral nature of the split conducting
channels. The large noise is a consequence of the emergent
ground state degeneracy at even Aharonov-Bohm and super-
conducting phases of 2πn. The current-phase relation is also
singular at these points. This is distinct from nontopological
SNS contacts, where spikes are possible for odd phases of
π (2n + 1). Hence the singularities at even phases can be
considered as a signature of the gapless Majorana leads.

It is instructive to compare our results for the noise with
that obtained for ordinary ballistic SNS junctions [8,9]. There,
a large noise was obtained as a result of rare switching events
(telegraph noise) between two Andreev levels [8]. For low
temperatures, this occurs in a tiny region around π (2n + 1)
phases where the Andreev levels approach zero (thus the de-
generacy of the ground state); otherwise, the noise is exponen-
tially suppressed. In contrast, in our interferometer the noise
is never exponentially suppressed: away from the degeneracy
it saturates to SJN. The enhancement of noise in the ordinary
ballistic SNS junctions and in our Majorana interferometer
suggests a certain similarity between the two mechanisms.
Indeed, in both cases the noise is strongly enhanced near
the points where the Andreev levels approach zero and have
a small width. It should be emphasized, however, that the
analysis of Refs. [8,9] requires introduction of a rate δ of
inelastic transitions between the Andreev levels induced by
coupling to an external bath (in practice, phonons). On the
other hand, a counterpart of this δ in our problem is the
intrinsic width of the Andreev levels given by Eq. (66) due to
the gapless nature of topological superconductor contacts. It
is worth mentioning that, very recently, strong enhancement
of noise due to the presence of a zero-energy Majorana
mode was predicted for a topological multiterminal junction
[35].

An important conclusion about the real part of the low-
frequency impedance of the junction considered in this
work follows from the fluctuation-dissipation theorem, S =
4T Re[Z−1]. We observe that the inverse impedance of the
junction must have a large real part at the low temperatures
in addition to the usual inductive (imaginary) part describing
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the Josephson effect. Namely,

1

Z(ω → 0)
= 1

ZJ (ω)
+ 1

Zdiss
, (92)

where ZJ = −iωLJ and LJ = (2π/�0)(∂I (�, φ)/∂�) is
the Josephson inductance. Our result means for the dissipative
part that the following estimates hold at T � ETh,

1

Zdiss
∼ G0 for �2 + φ2  T/ETh ,

1

Zdiss
∼ G0

ETh

T
for �2 + φ2 � T/ETh . (93)

Thus our Josephson contact can be thought of as a parallel
connection of a Josephson element and a resistive shunt,
whose conductance is strongly dependent on the phases �

and φ. We notice a certain similarity with Ref. [36] where
a nonzero dissipative part of susceptibitity was predicted for
topological SNS junction with a pair of zero-energy Majorana
modes.
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