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We study the fractional boundary charges (FBCs) occurring in nanowires in the presence of periodically
modulated chemical potentials and connect them to the FBCs occurring in a two-dimensional electron gas in the
presence of a perpendicular magnetic field in the integer quantum Hall effect (QHE) regime. First, we show that
in nanowires the FBCs take fractional values and change linearly as a function of phase offset of the modulated
chemical potential. This linear slope takes quantized values determined by the period of the modulation and
depends only on the number of the filled bands. Next, we establish a mapping from the one-dimensional system
to the QHE setup, where we again focus on the properties of the FBCs. By considering a cylinder topology with
an external flux similar to the Laughlin construction, we find that the slope of the FBCs as function of flux is
linear and assumes universal quantized values, also in the presence of arbitrary disorder. We establish that the
quantized slopes give rise to the quantization of the Hall conductance. Importantly, the approach via FBCs is
valid for arbitrary flux values and disorder. The slope of the FBCs plays the role of a topological invariant for
clean and disordered QHE systems. Our predictions for the FBCs can be tested experimentally in nanowires and
in Corbino disk geometries in the integer QHE regime.
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I. INTRODUCTION

Topological phases in condensed matter physics have
gained considerable interest over the past decades, which
was triggered by the experimental discovery of the integer as
well as of the fractional quantum Hall effect (QHE) [1–8].
Fractionalization of charges has been discussed in different
topological systems and can emerge for various reasons. In
the fractional QHE, strong electron-electron interactions are
responsible for generating fractional excitations [9–12]. How-
ever, fractional charges can occur also in noninteracting mod-
els as was first proposed in the Jackiw-Rebbi model [13,14]
and later in the Su-Schrieffer-Heeger model [15–17]. In these
models, the fractional charge of e/2 is localized at domain
walls [14,16]. Afterwards, such models were extended to de-
scribe also fractional charges localized at the boundaries [18–
20]. In contrast to fractional excitations in the fractional QHE,
which were investigated in transport and shot-noise experi-
ments [21–24], the fractional boundary charges (FBCs) are
far less explored experimentally, which is partially connected
to the fact that the Jackiw-Rebbi and Su-Schrieffer-Heeger
models are toy models. However, in recent years, there was a
revival of interest in FBCs with several models being proposed
that are realizable in condensed matter systems [25–39].

In this work, we first focus on the properties of FBCs in
one-dimensional nanowires (NWs) with periodically modu-
lated chemical potentials (see Fig. 1). Such a system is known
to host in-gap bound states for a certain set of the offset phases
α, if the period of modulation λ is tuned to half of the Fermi
wavelength λ = π/kF , where kF is the Fermi wave vector
[40]. However, as was shown subsequently, the FBCs in such
setups do not not rely on the presence of such in-gap bound
states and the FBCs are well defined even if the bound states
are absent [41]. Remarkably, the FBCs in NWs turned out to
be also very stable against moderate disorder [41]. All these

properties motivate us to study the FBCs in greater detail
and, in particular, to generalize these findings to the regime
in which the amplitude of the chemical potential modulation
is comparable to the Fermi energy, thereby going beyond
previous studies restricted to the perturbative regime [41].
In addition, we consider regimes in which λ is an integer
multiple of half of the Fermi wavelength λ = νπ/kF , with
ν being a positive integer. Interestingly, also in this case, we
find that there is a gap opening at the Fermi level. Moreover,
this gap can host bound states if α is properly tuned. We also
find that the FBCs are linear functions of α with the slope
cν = νe/2π , being universal and quantized in units of e/2π .
Again, this quantization is extremely robust against disorder,
which suggests that this slope plays the role of a topological
invariant for the system.

In principle, the FBCs can be observed directly by using,
for example, STM techniques to measure the charge at the
ends of the NWs [41]. In this way, one can also measure the
linear dependence of the FBCs on the phase offset. However,
we would like to connect the slope cν to other well-known
quantized observables. For one-dimensional systems, the be-
havior of the FBCs is connected to properties of quantum
charge pumps that transfer a quantized charge in each pump-
ing cycle [42–49]. However, no such connection between
FBCs and transport properties has been established yet in

FIG. 1. Sketch of a one-dimensional NW (blue cylinder) in the
presence of a chemical potential (black) which is periodically modu-
lated, for example, by gates, with period λ.
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two-dimensional QHE setups. In this work, we attempt to
fill this gap by connecting the quantized slope of the FBCs
to quantized values of the Hall conductance in the integer
QHE regime. To achieve this, we make use of the formal
mapping between a one-dimensional (1D) NW with periodic
modulations and a two-dimensional (2D) QHE system [50].
Such methods of dimensional extension or reduction were
successfully employed to study properties of quasicrystals in
different systems [45,48,49]. If periodic boundary conditions
are imposed along one direction, giving rise to a cylinder
topology, the FBC can be controlled by flux insertion, thereby
implementing the Laughlin setup [4]. Physical realizations of
such a cylinder topology are given by Corbino disks in the
QHE regime [8,51–56]. Quite remarkably, the FBCs depend
linearly on this flux and again with a slope cν that is universal
and quantized like in the single NW case. We show that
this slope quantization is again very stable against disorder
in the whole sample (including the edges) as long as the
bulk gaps are not closed. Finally, the quantized values of the
slope cν can be connected to the quantized values of the Hall
conductance νe2/h. This connection clearly illustrates that
all the occupied bulk states (via contributing to the FBCs)
contribute to the Hall conductance and not just the edge states
(which are responsible for the jump from one quantum Hall
plateau to another). In addition, the approach via FBCs shows
that the Hall current changes continuously with an arbitrary
change in the flux, unlike in the Laughlin argument where the
Hall current is determined only for integer multiples of the
flux quantum ϕ0 = h/e [4]. Importantly, since our results are
valid in the presence of disorder in the whole sample, we can
consider the universal quantized slope of the FBCs, cν , as a
topological invariant in integer QHE systems. The quantized
slope can be accessed by charge measurements, thus opening
up alternative ways to study QHE systems experimentally,
beyond standard measurements via charge currents.

The outline of the paper is as follows. In Sec. II, we in-
troduce the model consisting of a single one-dimensional NW
with periodically modulated chemical potential and calculate
the FBCs for different values of the phase offset as well as
for different number of filled bands. We identify characteristic
features of the FBCs numerically and, in addition, provide
analytical arguments to explain them. In Sec. III, we map the
aforementioned model to an integer QHE system consisting
of an array of coupled NWs in the presence of magnetic field
applied perpendicular to the NW plane. Next, we study the
local particle density and the FBCs for the QHE system in
the presence of an external flux both in the absence (Sec. IV)
and presence (Sec. V) of disorder. In Sec. VI, we relate the
quantized linear slopes of the FBCs to the quantization of the
Hall conductance. Finally, in Sec. VII, we conclude with a
summary and outlook.

II. FBC IN SINGLE NANOWIRE

A. Model

First, we consider a one-dimensional single-subband NW.
Here and in what follows, we neglect the spin degree of free-
dom and work with spinless electrons. The chemical potential
is assumed to be periodically modulated, for example, by

external local gates, creating the charge-density-wave (CDW)
type modulation [57,58] with the amplitude 2V and period λ

along the entire length of the NW as depicted in Fig. 1. The
tight-binding Hamiltonian of such a system has the following
form:

H1D = −tx

N−1∑
n=1

(ψ†
n+1ψn + H.c.)

−
N∑

n=1

[
2 V cos

(
2 π n

ax

λ
+ α

)
+ μ− 2 tx

]
ψ†

nψn, (1)

where ψn is an annihilation operator acting on an electron
located at site n of the NW of length l = (N − 1)ax , with N

being the number of sites. The hopping amplitude tx and the
lattice spacing ax determine the effective electron mass. The
chemical potential μ is taken from the bottom of the band.
The phase offset α of the CDW, defined uniquely between
(−π, π ], sets the value of the chemical potential at the left
end of the NW (at site n = 1).

B. Energy spectrum

If the CDW amplitude is small, V � tx , we can study the
model analytically in the continuum regime [40,59,60]. We
begin by linearizing the continuum model Hamiltonian close
to the Fermi momenta ±kF , defined in terms of the chemical
potential as kF ax = arccos(1 − μ/2tx ), and by writing the
fermion operators in terms of slowly varying right and left
movers denoted by R(x) and L(x), respectively, as

ψ (x) = R(x)ei kF x + L(x)e−i kF x . (2)

We neglect the fast oscillating terms and rewrite the kinetic
part of the Hamiltonian as

Hkin = ih̄ vF

∫
dx [L†(x) ∂x L(x) − R†(x) ∂x R(x)]. (3)

Here, vF is the Fermi velocity given by h̄vF = 2 tx a2
x kF . The

CDW term has following form in the linearized model:

HCDW = −V

∫
dx[e2 i x(π/λ−kF )+iα + e−2 i x(π/λ+kF )−iα]

× R†(x)L(x) + H.c. (4)

Generally, such rapidly oscillating terms average out to zero
unless the resonance condition kF = ν π/λ, with ν being an
integer, is satisfied. We first analyze the special case ν = 1
and then consider general ν. In this case, HCDW couples right
and left movers at the Fermi level, and as a result a gap of size
�(1)

g = V opens in the spectrum [40] (see Fig. 2).
In the basis ψ̃ = (R,L), the total linearized Hamiltonian

in the resonance case (kF = π/λ) has the form H1D =∫
dx ψ†Hψ with Hamiltonian density H = h̄ vF k̂ σz −

V cos(α)σx + V sin(α)σy , where k̂ = −i ∂x is the momen-
tum operator with eigenvalue k. The bulk spectrum is given
by E± = ±[(h̄vF k)2 + V 2]1/2. For an infinitely long NW,
no states reside inside the bulk gap as the spectrum is
fully gapped for all values of k. To explore the possibil-
ity of bound states in the gap [61], we consider a finite
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FIG. 2. Energy spectrum of a NW with CDW modulation of
strength V and period λ as a function of phase offset α. Bulk gaps
are opened by resonant scattering between the two Fermi points
caused by the periodic modulation. If the chemical potential μ is
tuned inside these gaps and the phase offset α is properly adjusted,
bound states localized at the NW ends with energies inside the bulk
gap emerge. The three colored horizontal lines correspond to the
position of μ inside the first (μ/tx = −0.1, yellow solid line), second
(μ/tx = 0.5, orange dotted line), and third (μ/tx = 1, green dashed
line) bulk gap. The FBCs will be calculated at these values of μ.
The parameters are chosen as N = 600, V/tx = 0.6, λ/ax = 10, and
μ/tx = −0.1.

NW of length l with the condition that l � ξ [62], where
ξ is the localization length of the bound state. Next, we
impose vanishing boundary condition at the left (right)
end of the NW, x = 0 (x = l), such that R(0) + L(0) =
0 [R(l) + L(l)e−2ikF l = 0]. The spectrum of the bound
state localized at the left (right) edge of the NW depends
on the phase offset α and is given by ε(α) = V cos(α)
[ε(α) = V cos(α + 2kF l)] under the constraint sin(α) < 0
[sin(α + 2kF l) > 0]. If the latter constraints are not satisfied,
there is no bound state. The corresponding wave functions
have the form φ̃ ∼ sin(kF x) exp(−x/ξ ) (φ̃ ∼ sin[kF (x −
l)] exp[(x − l)/ξ ]) with the localization lengths defined as
ξ = −h̄vF /[V sin(α)] (ξ = h̄vF /[V sin(α + 2kF l)]).

Next, we can generalize these results to arbitrary positive
integer ν where the condition kF = ν π/λ also allows for
resonant scattering between left and right movers in higher
orders of perturbation theory [63,64]. In this case, the gap
is opened in the νth order of perturbation expansion and is
of order of �(ν)

g ≈ V ν/Eν−1
0 , where E0 is the characteristic

energy which depends on the chemical potential of the system.
We refer to Appendix A for further details. The gap �(ν)

g is
reduced by a factor (V/E0)ν−1 in comparison with the direct
gap �(1)

g , which implies that as the value of ν increases the
gap decreases. The spectrum of the bound states can also
be calculated in a similar way as done before for kF = π/λ.
However, we note here that one can directly recalculate the
energy spectrum by rescaling α → να and also V → �(ν)

g

(see Appendix A for more details). As an important conse-
quence, in this perturbative regime, the spectrum of bound
states at one given NW end satisfies ε(α) = ε(α + 2πp/ν) for
p = 0, . . . , ν − 1. This feature ensures that as one changes
α from −π to π , there will be ν bound states, localized at
each NW end, at any given energy inside the νth bulk gap
(see Fig. 2).
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FIG. 3. The profile function f L
n (f R

n ) is defined to capture fea-
tures of the FBC at the left (right) NW end as a function of lattice
site n. The used parameters are N = 600, n1 = 200, and n2 = 10.

As the amplitude of the CDW grows, V � tx , the CDW
cannot be treated perturbatively anymore. The size of the bulk
gaps gets larger compared to the perturbative regime up to the
point at which the energy bands get flat (see Fig. 2). However,
as the bulk gap never closes upon increasing V , one can
conclude that the bound states are still present in the spectrum
and, moreover, their number inside a given gap is also not
changing. When the chemical potential lies inside the lowest
gap, the bound states obtained above were discussed before in
different contexts in Refs. [40,65,66]. Here, we have shown in
addition that the number of bound states increases as one tunes
the chemical potential inside the bulk gaps opened at higher
energies. Furthermore, we also note that the commensurability
relation between λ and ax does not play any role in our setup,
which is also confirmed by the analytical solutions obtained
in continuum limit.

C. Fractional boundary charge

Next, we turn to the FBC in a single NW with CDW
modulation. To begin with, we define the FBC at each of two
NW ends as [41]

Qs
ν,1d =

N∑
n=1

f s
n (e 〈ψ†

nψn〉 − ρ̄ν ), (5)

where we have subtracted from the expectation value of
the charge density in the ground state at site n, e 〈ψ†

nψn〉,
the average bulk charge per site ρ̄ν . Here, e is the electron
charge. If the chemical potential is tuned inside the νth
bulk gap, we have ρ̄ν = e ν ax/λ. To capture the FBCs at
the left (s = L) and right (s = R) NW ends separately, we
introduced a profile function f s , which has spatial support
only at one of the two NW ends (see Fig. 3). Without
loss of generality, we work with the following profile func-
tion defined by two cutoffs n1, n2 > 0 (for sharp transition,
n2 = 1):

f L
n = �(n1 + n2 − n)

− n − n1

n2
[�(n − n1) − �(n − n1 − n2)], (6)

where �(x) is the Heaviside step function. The profile func-
tion at the right f R

n is mirror symmetric to the function at
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FIG. 4. The FBCs, QL
ν,1d [blue, (a)–(c)] and QR

ν,1d [red, (d)–(f)], measured in the units of electron charge e as a function of the phase offset
α obtained numerically for the CDW-modulated NW. The number of filled bands is controlled by the chemical potential that is tuned inside
the first [(a), (d)], second [(b), (e)], or third [(c), (f)] bulk gap (see Fig. 2). The FBCs vary linearly as a function of α and the absolute value of
the slope is quantized for (a),(d), (b),(e), and (c),(f) as 1/2π , 2/2π , and 3/2π . The sign of the slope is opposite at two ends. The FBCs jump
by ±e at the bound states cross the chemical potential. The parameters are chosen to be the same as in Figs. 2 and 3.

the left given by f L
n = f R

N+1−n, where 1 � n � N . A well-
defined FBC should be independent of the form of the profile
function and of the precise choice of the two cutoffs as long
as n1ax � ξ and n2ax � λ (see Appendix B). Note that all
states filled up to the Fermi level contribute to the FBC
including a possible bound state.

After defining the FBCs, we calculate it numerically for
the left and right NW ends and for different positions of the
chemical potential μ inside the νth gaps (see Fig. 4). We
observe the following four salient features: (1) The FBCs
change linearly as a function of the phase offset α, which
allows us to define the slope of the linear function describ-
ing this dependence. (2) The slope is given strictly by the
universal value ±eν/2π . Thus, the slope is quantized and
depends only on the number of filled bands or, in other
words, on the band gap inside which the chemical potential
is tuned. The position of the chemical potential inside the
band gap does not affect the slope. The signs of the slope
defined for the right and left FBCs are opposite. (3) The
FBCs change continuously and can take positive and negative
values. These values are usually bounded between −e and e.
(4) The FBCs jump by the amount ±e as the energy of the
bound states localized at the corresponding NW end flips its
sign, as one changes α. Indeed, if the bound state energy is
negative (positive), the corresponding state is filled (empty),
and, thus, it contributes (does not contribute) with charge
e to the FBCs. Consequentially, as the bound state crosses
the chemical potential, the FBCs should change by ±e. The
position of such jumps depends on the precise position of the
chemical potential inside the νth gap. In contrast to that, the

number of jumps is determined by the number of bound states
and is quantized and given by ν.

D. Linear dependence of FBCs on phase offset

In this section we discuss the functional dependence of
FBCs on the phase offset α and provide analytical arguments
to support the linear dependence between these two quantities
established numerically in the previous subsection. For this
we need to generalize the approach given in Ref. [41] for
ν = 1 to arbitrary integer values of ν. For simplicity, we carry
out the proof in the tight-binding model description, where we
also assume that λ and ax are commensurable. However, this
is not a crucial requirement and this constraint can be loosened
if one switches to the continuum description. We define the
total charge Q1d of the NW decomposed into three parts [41],

Q1d = Qb
ν,1d + QL

ν,1d + QR
ν,1d , (7)

where Qb
ν,1d = Nρ̄ν = Ne ν ax/λ is the charge of the con-

stant (uniform) bulk background and Q
L/R

ν,1d the FBCs at the
left/right end of the NW. In what follows, the chemical po-
tential μ is assumed to be inside the νth bulk gap, such that
Q1d is an integer multiple of e. Below, we study the change
in the FBCs, Q

L,R
ν,1d , upon changing the system size N and the

phase offset α. First, we note that in long NWs QR
ν,1d does not

change if one extends the NW by one full period of the CDW,
i.e., by changing the size from N to N + λ. Thus, QR

ν,1d must
be a function of δ = N mod(λ/a). Let us now consider the
following steps.
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(1) We extend the NW at the right end by one site such
that the number of sites increases to N + 1. Therefore, the
bulk charge Qb

ν,1d increases by ν e ax/λ. As Q1d can take
only integer values, this change should be compensated by the
FBCs and, thus, QL,R

ν,1d have to decrease by ν e ax/λ. However,
the FBC at the left NW end QL

ν,1d should remain unaffected
by manipulations on the right NW end, thus,

QR
ν,1d (N + 1) − QR

ν,1d (N ) = −ν e ax/λ. (8)

Here, the change in the FBC is defined up to ±e.
(2) We note that, if one readjusts α, one can compensate

for the shift of the right end by one site and keep QR
ν,1d

unchanged. This would require to change α as α → α −
2 π ax/λ. Thus, QR

ν,1d is not a function of two independent
parameters α and δ but only of their combination, i.e.,

QR
ν,1d (δ, α) = QR

ν,1d

(
ax δ

λ
+ α

2π

)
. (9)

From Eq. (8) we conclude that QR
ν,1d is a linear function of δ.

Hence, it follows from Eq. (9) that the FBC, QR
ν,1d , is also a

linear function of α,

QR
ν,1d (α) = −cν α + CR, (10)

where the slope is determined by cν = e ν/2π , in full agree-
ment with our numerical findings (see Fig. 4). The piecewise
constant function CR will be neglected in what follows. We
just note that CR jumps by e as one of the bound states crosses
the chemical potential upon changing α. The number of the
bound states at each end is given by ν. Thus, the total change
of CR as α is changed continuously by 2π is eν. This ensures
the periodicity of the FBC, QR

ν,1d (α) = QR
ν,1d (α + 2π ).

As one changes α, the bulk contribution Qb
ν,1d to the

total charge stays constant. Thus, the sum of the two FBCs,
QR

ν,1d + QL
ν,1d , must also remain unchanged unless there is a

bound state crossing the chemical potential. This means that
the left FBC, QL

ν,1d , is also a linear function of α with the same
absolute value of the slope cν . However, the sign of the slope
is opposite such that QL

ν,1d (QR
ν,1d ) increases (decreases) as α

is increased. This is again in full agreement with the numerical
results (see Fig. 4).

We note that our model can be considered as a general-
ization of Jackiw-Rebbi model. However, first, in our case
the values of the FBC are not restricted to e/2, which is
the outcome of particle-hole symmetry in the Jackiw-Rebbi
model, and can take continuous set of values, which was
already noticed previously in Ref. [41]. Second, this set of
values has a large range, meaning that the difference between
the maximum FBC and the minimum FBC is between e and
νe, whereas it is always strictly e in the Jackiw-Rebbi model.

III. MAPPING FROM NW TO QHE SYSTEM

We extend now our considerations to 2D systems in the
QHE regime. First, we consider the clean case and subse-
quently add disorder. The setup considered in Sec. II, which
consists of a single NW with periodically modulated chemical
potential, can be mapped to a system of tunnel-coupled NWs
in a uniform magnetic field as follows [45,50,67–69]. We con-
sider a finite array of M tunnel-coupled NWs, in the presence
of a magnetic field which is applied perpendicular to the plane

FIG. 5. An array of one-dimensional tunnel-coupled NWs (blue
cylinders) is placed in the xy plane. The external magnetic field B is
applied along the z direction. The electron tunnels with an amplitude
tx (ty) within the NW (between two neighboring NWs). The array
models an integer QHE for appropriate values of the B field.

of the NWs, i.e., along the z direction, as shown in Fig. 5.
We work in the Landau gauge and choose the corresponding
vector potential to be along the y direction, in Cartesian co-
ordinates A = B x ŷ. Therefore, the Peierls phase, which the
electron accumulates as it tunnels between NWs, is given by
φ(x) = (e/h̄)

∫
A · dl = (eB ay/h̄) x = (2 π/λ) x, where we

have introduced λ = h/eB ay and used dl = dx x̂ + dy ŷ +
dz ẑ. In the discretized model of the NW consisting of N sites,
we have x = n ax , with 1 � n � N being an integer. Here,
ax and ay are the lattice spacings along x and y directions,
respectively. The corresponding tight-binding Hamiltonian for
this NW array is given by

H =
[

− tx

(N−1,M )∑
(n,m)=(1,1)

ψ
†
n+1,mψn,m

− ty

(N,M−1)∑
(n,m)=(1,1)

ei 2 π n ax/λψ
†
n,m+1ψn,m

]
+ H.c.

− (μ − 2 tx )
(N,M )∑

(n,m)=(1,1)

ψ†
n,mψn,m, (11)

where μ is the chemical potential and tx and ty are the
hopping amplitudes inside each of the NW and in-between
two neighboring NWs, respectively. The annihilation operator
ψn,m acts on an electron located at site n of the mth NW.

Next, we impose periodic boundary conditions along the
y direction and introduce tunneling ty also between the
first and Mth NWs (see Fig. 6). Thus, the momentum ky

defined along the y direction is a good quantum number
and takes quantized values ranging from −π/ay to π/ay

in steps of 2 π/(M ay ). Applying the Fourier transformation
ψn,m = (1/

√
M )

∑
ky

e−i m ky ay ψn,ky
, one can represent the

Hamiltonian H [see Eq. (11)] in momentum space as H =∑
ky

Hky
, where

Hky
= −tx

N−1∑
n=1

(ψ†
n+1,ky

ψn,ky
+ H.c.)

−
N∑

n=1

[
2 ty cos(kyay+2πnax/λ)+μ−2tx

]
ψ

†
n,ky

ψn,ky
. (12)
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FIG. 6. Sketch of a periodic array of tunnel-coupled NWs (blue)
with the topology of a cylinder oriented along the x direction.
The magnetic field B points normal to the cylinder surface and is
responsible for bringing the setup into the QHE regime. An external
flux � is applied along the cylinder axis and, being changed in time,
induces an electromotive force Ey in azimuthal direction y. For the
calculation of the FBC and the Hall conductance, we focus on the
patch (yellow) of area A localized at the left boundary of the system.

This Hamiltonian Hky
exactly matches the Hamiltonian for

the one-dimensional CDW modulated NW [see Eq. (1)] upon
the substitutions ky ay → α and ty → V . We note that now
the entire 2D system decomposes into a set of M-independent
1D systems. The phase offset α plays the role of the momen-
tum ky . The amplitude of the CDW, V , is replaced by the
tunneling amplitude ty . The period of the CDW modulation
of the chemical potential, being set by the strength of the
applied magnetic field, is given by λ = h/eB ay . With these
substitutions we can interpret the spectrum shown in Fig. 2
as the dispersion (E as function of ky) of a two-dimensional
electron gas in the QHE regime with pertinent gaps [45,50].
For the isotropic case tx = ty , we recover the standard Landau
levels for the integer QHE. Finally, the ν bound states of the
CDW modulated NW case are mapped to ν dispersive chiral
QHE edge states (see also Fig. 2).

IV. FBC IN QHE SYSTEM WITH FLUX

In the foregoing section, we established the connection
between the 1D CDW-modulated NW and an array of tunnel-
coupled NWs in the QHE regime. Now, we are in the position
to introduce the FBC for the 2D system. In the 1D case,
the FBC depends on the phase offset α, which maps to the
momentum ky in the 2D setup. While α can be controlled
experimentally and tuned to different but fixed values, in any
finite 2D system all bulk states with different momentum ky

compose the ground state, and, thus, they all contribute to the
FBCs. Hence, we should revisit the concept of FBCs in 2D.

First, we introduce the particle density γn,m at the site n of
the mth NW defined as

γn,m = 〈ψ†
n,mψn,m〉. (13)

Here, the expectation value is calculated in the ground state of
the system. In the 1D case, even far away from the NW ends,
the charge density is nonuniform over the CDW period λ.
In the 2D case, however, the charge density is uniform in the
bulk due to the global translational invariance (see Fig. 7).
Thus, in 1D we were forced to compensate for this nonuni-
formity in the definition of the FBCs by introducing the
second cutoff n2 in the profile function f R,L

n [see Eq. (6)].
In contrast to that, in the 2D setup we can work with n2 = 1

in the profile function f R,L
n and just make sure that n1ax

exceeds the localization length of the QHE edge states. These
considerations allow us to introduce the FBCs, Qs

ν,2d , for the
2D setup as follows:

Qs
ν,2d =

(N,M )∑
(n,m)=(1,1)

f s
n (e 〈ψ†

n,mψn,m〉 − ρν ). (14)

Here, s = R,L labels the FBC at the right and left boundaries
of the system, respectively. The index ν indicates the position
of the chemical potential inside the νth bulk gap with the bulk
charge per site given by ρν . For simplicity, we work with the
same profile function f s

n for all NWs [see Eq. (6)]. We have
checked that this choice does not affect our results.

Next, we impose periodic boundary conditions along the
y direction, giving rise to a cylinder topology (see Fig. 6). In
addition, we add an external flux �. The flux is created by
an additional external magnetic field B ′ aligned along the x

axis. The corresponding vector potential A′ is chosen to be
along the y axis, A′ = (B ′R/2) ŷ, where R = May/2π is the
radius of the cylinder. The total flux penetrating the cylinder
is defined as � = ∫

A′ · dl = πR2B ′.
The corresponding Hamiltonian in the tight-binding model

is defined as

Hθ =
[

− tx

(N−1,M )∑
(n,m)=(1,1)

ψ
†
n+1,mψn,m

− ty ei θ/M

(N,M )∑
(n,m)=(1,1)

ei 2 π n ax/λψ
†
n,m+1ψn,m

]
+ H.c.

− (μ − 2 tx )
(N,M )∑

(n,m)=(1,1)

ψ†
n,mψn,m, (15)

where θ/M = (e/h̄)
∫

A′ · dl = e B ′ R ay/(2h̄) = 2 π �/

(ϕ0 M ) is the Peierls phase that the electrons acquire by
tunneling between two neighboring NWs. Here, ϕ0 = h/e is
the flux quantum. For simplicity of notations, we identify the
(M + 1)th NW with the first NW.

By applying the Fourier transformation and introducing the
momentum ky , we again find that the 2D Hamiltonian can
be represented as a sum of independent 1D Hamiltonians in
momentum space Hθ = ∑

ky
H θ

ky
, where

Hθ
ky

= Hky
(kyay → kyay + θ/M ). (16)

By changing the flux � through the cylinder, one can effec-
tively shift the momentum ky .

If the system is periodic along the y direction (as assumed),
the particle density γ θ

n,m is independent of the NW index
m, γ θ

n,m ≡ γ θ
n (see Fig. 7). Here, we have introduced the

dependence of the particle density on the flux phase θ . Of
course, this dependence is only significant at the boundaries
of the system, as the bulk value of the particle density ρν/e

is a constant determined by the position of the chemical
potential inside the νth bulk gap, as shown for ν = 1 [see
Figs. 7(a)–7(c)]. We obtain similar results for ν = 2 and 3 (see
Appendix C).

Numerically, one can easily show that the FBCs, Qs
ν,2d (θ ),

depend linearly on the flux phase θ (see Fig. 7). The slopes at
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FIG. 7. Local particle density γ θ
n for the QHE setup with chemical potential being tuned inside the first bulk gap (μ/tx = −0.1) as a

function of the position along the NW for two values of the flux phase: (a) θ1 = 0 and (b) θ2 = 0.9. In (c), we plot the difference in the local
particle densities δγn(θ1, θ2) = γ θ1

n − γ θ2
n calculated at these two values of θ . The bulk value of γ θ

n is universal and depends only on the number
of filled bands. As a result, γ θ

n is sensitive to the flux only at the boundaries, which results in the dependence of the FBCs on θ . The FBCs,
Q

R,L
ν,2d , change linearly as a function of the flux. The linear slope cν = νe/2π is perfectly quantized and the FBCs show all the four salient

features described in Sec. II, now as a function of flux phase θ . The chemical potential μ is tuned inside the (d) first (μ/tx = −0.1, ν = 1),
(e) second (μ/tx = 0.5, ν = 2), (f) third (μ/tx = 1, ν = 3) bulk gap. The parameters are fixed as ty/tx = 0.6, λ/ax = 10, N = 105, M = 20,
n1 = 20, and n2 = 1.

the right and left boundaries are opposite,

QR
ν,2d = −cνθ + CR; QL

ν,2d = cν θ + CL, (17)

and depend solely on the fact that the chemical potential is
positioned inside the νth bulk gap cν = e ν/2π . To ensure the
2π periodicity of the FBC, again there must be ν jumps of size
±e as the flux phase θ changes by 2π . This feature is again
ensured by the nonuniversal piecewise constant functions
CR,L. In addition, we have checked that the ratio between
two hopping amplitudes ty/tx does not play any role. All
salient features of FBCs are robust against variations in the
hopping amplitude ty/tx between the NWs (see Appendix D).
In what follows, we work with ty/tx = 0.6 that is somewhere
in-between the fully isotropic and strongly anisotropic limits.

The linear dependence of the FBCs on θ can also be
understood analytically by using the mapping to the CDW-
modulated NW. By applying the Fourier transformation to
the definition of the FBCs, Qs

ν (θ ), we arrive at Qs
ν,2d (θ ) =∑

ky
Qs

ky
(θ ), where Qs

ky
is the FBC defined for an effectively

1D Hamiltonian Hθ
ky

. Making use of Eq. (10) for the FBCs in
1D systems, in which we replace α by kyay + θ/M , we arrive
at Eq. (17). We note that, as the sum runs over all M values of
quantized momentum ky , i.e., over the entire Brillouin zone,
such that

∑
ky

kyay = 0, while
∑

ky
θ/M = θ . This confirms

the linear dependence of the FBCs on the flux phase θ with
the universal slope cν = e ν/2π .

V. FBC AND DISORDER IN QHE REGIME

In previous sections, for our analytical arguments, the
periodicity of the system was crucial in order to establish
the linear dependence of the FBCs, Qs

ν,2d , on the flux phase
θ . However, in realistic samples, disorder can be substantial
and break this periodicity so that ky is no longer a good
quantum number. Thus, it is crucial to check the stability and
universality of the linear slopes in the FBCs as a function
of flux also in the presence of disorder, where the disorder
is allowed to be very general, in particular, to be present
in the entire 2D system including the edges. This can be
easily done numerically in the tight-binding model, where we
add an onsite disorder term μdis

n,m characterized by a normal
distribution, where the mean value, without loss of generality,
is fixed to zero, while the standard deviation σd controls the
distribution of the values of μdis

n,m:

Hdis =
(N,M )∑

(n,m)=(1,1)

μdis
n,m ψ†

n,mψn,m. (18)

The full tight-binding Hamiltonian takes the form Htot =
Hθ + Hdis, where Hθ is given by Eq. (15). We again first
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FIG. 8. The same as in Fig. 7, however, in the presence of strong disorder modeled by onsite fluctuations of the chemical potential with
standard deviation σd/tx = 0.1. The spatial distribution of the particle density γ θ

n,m [(a) θ1 = 0 and (b) θ2 = 0.9] is nonuniform even in the bulk
due to disorder. However, as in the clean case, the particle density depends on θ only at the boundaries of the system. Indeed, as seen from (c),
the difference δγn,m(θ1, θ2) = γ θ1

n,m − γ θ2
n,m is zero in the bulk but finite at the boundaries. (d)–(f) The left FBC (QL

ν,2d ) shows exactly the same
dependence on the magnetic phase θ as in the clean case [compare with Figs. 7(d)–7(f)]. This demonstrates the robustness of the linear slope
of FBCs to disorder.

calculate numerically the particle densities γ θ
n,m for different

values of magnetic flux (see Fig. 8). In contrast to the clean
case, γ θ

n,m are not constant anymore even in the bulk of the
system, i.e., away from the sample boundaries. However, the
mean value of γ θ

n,m stays close to the clean bulk limit value
ρν/e. Again, the largest deviations from ρν/e are observed
at the boundaries of the system. Surprisingly, if one focuses
on the changes in the particle densities γ θ

n,m as the flux phase
θ is adjusted for the same configuration of disorder, one
notices that γ θ

n,m in the bulk of the system is independent
of the magnetic flux value. By calculating the difference of
particle densities for two different values of flux phases θ1

and θ2, δγn,m(θ1, θ2) = γ θ1
n,m − γ θ2

n,m, we find that δγn,m(θ1, θ2)
takes nonzero values only at the boundaries [see Fig. 8(c)].
In comparison with the clean case, the particle density γ θ

n,m is
nonuniform along the boundary as the translation invariance
is broken by disorder. However, this local redistribution of
the particle density along the boundary does not effect the
FBCs. Importantly, also in the presence of strong disorder,
Q

L,R
ν,2d reproduces a linear dependence on the flux phase θ [see

Figs. 8(d)–8(f)] and Eq. (21) is valid. We note that, in what
follows, we are interested in the part of the FBC, Q

R,L
ν,2d , that

depends on the flux phase θ . Thus, even if in the presence
of strong disorder the average particle density in the bulk can
deviate from the clean case value ρν used in the definition of
the FBC [see Eq. (14)], it does not play any role in further
discussions, in which we will be interested only in differ-
ences in the FBCs, δQ

R,L
ν,2d (θ1, θ2) = Q

R,L
ν,2d (θ1) − Q

R,L
ν,2d (θ2).

Obviously, the constant ρν used in Eq. (14) does not play any
role as it cancels exactly in the expression for δQ

R,L
ν,2d (θ1, θ2).

However, this allows us to explain a slight offset between the
values of the FBCs obtained in the clean (see Fig. 7) and
disordered (see Fig. 8) cases.

In addition, similarly to the bound states in the 1D case
described above, we note that it is the chiral edge states in
the QHE regime that are responsible for the finite jump in
the FBCs, Q

R,L
ν,2d . This jump is always in integer steps of the

elementary charge e and can be understood as follows. The
summation in the definition of Q

R,L
ν,2d [see Eq. (14)] runs over

a length that is larger than the typical localization length (in x

direction) of the edge states. Therefore, each filled edge state
below the chemical potential contributes fully to the boundary
charge, i.e., e

∑(N,M )
(n,m)=(1,1) f

s
n 〈ψ†

n,mψn,m〉filled = e. Thus, if a
filled edge state crosses the chemical potential as a function
of θ , there is an integer jump in units of e in Q

R,L
ν,2d . Away

from such crossing points, Q
R,L
ν,2d is a smooth linear function

of θ (see Fig. 8). Conversely, this also means that the edge
states do not contribute to the linear slope of the FBCs and the
slope comes solely from boundary contributions of extended
bulk states which change as function of flux. We emphasize
that while strong disorder can result in states that are fully
localized in the system, numerically, we observe a substantial
amount of bulk states that are extended over the whole system,
including both boundaries. Finally, fully localized states in the
spectrum are independent of the flux and do not contribute to
the slope of the FBCs either.
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Generally, the FBCs for the 2D system in the QHE regime
exhibit all the four salient features which we have discussed
in earlier sections. These features are also independent of
the details of the profile functions f L,R

n . All these findings
highlight the robustness of the obtained results. The value
of the linear slope cν is universal (independent of system
parameters) and perfectly quantized in units of e/2π , cν =
νe/2π . All these suggest that this slope can be used as a
topological invariant for the system. Importantly, in contrast
to many other topological invariants such as winding numbers
or Chern numbers which rely on the periodicity of the sys-
tem and, thus, can be calculated only in the clean case, the
topological invariant cν is well defined even in the presence
of strong disorder in the whole system. In the next section we
will establish the connections between cν and the quantized
Hall conductance.

VI. FBC AND HALL CONDUCTANCE

In this section, we show that the FBC allows one to address
explicitly the Hall conductance of the QHE system. For this
we need to connect the FBC to the Hall current. We start by in-
troducing the total charge of a small patch of area A located at
the system boundary (see Fig. 6) as QA,2d = QL

ν,2d + Qb
A,2d ,

where Qb
A,2d is the bulk contribution defined as Qb

A,2d =
ρνA/axay . We note that Qb

A,2d is independent of θ .
The continuity equation ∂ρ2d/∂t + ∇ · j = 0 connects the

charge density ρ2d (x, y) = e〈ψ (x, y)†ψ (x, y)〉 [continuum
version of γn,m given in Eq. (13)], with the current density
j(x, y) in standard notation. Next, we integrate the equation
over the patch A and use the Gauss theorem

∫
A ∇ · j dA =∫

∂A j · dS, connecting the volume integral over the area A
to the surface integral over the closed patch ∂A. Here, the
surface differential dS is a vector pointing normal to the
boundary of the patch ∂A. Thus, the continuity equation can
be rewritten as

dQA,2d

dt
+

∫
∂A

j · dS = 0, (19)

where QA,2d = ∫
A ρ2d dA. For the patch located at the

boundary of the system, only current along the x axis crossing
the boundary between the patch and the bulk of the system Ix

contributes to the integral. This allows us to define the total
current Ix = ∫

∂A j · dS. From the continuity equation (19), we
get Ix = −Q̇A,2d .

Next, we change the FBCs in time by changing the flux
� through the cylinder. The bulk contribution Qb

A,2d stays
constant and the change in the total charge is only due to the
change in the FBC, QL

ν,2d . Using Eq. (17), we obtain Q̇A,2d =
Q̇L

ν,2d = cν θ̇ = 2π cν �̇ /ϕ0. According to the Faraday law,
the change of flux in time generates the electromotive force
Ey acting along the y axis, �̇ = −Ey . Combining the two ex-
pressions for the change of the FBC, we arrive at the following
relation between the current Ix and the electromotive force Ey :

Ix = −dQL
ν,2d

dt
= 2π cν

Ey

ϕ0
. (20)

As a result, the Hall conductance σxy is given by

σxy = Ix

Ey

= 2π cν

ϕ0
. (21)

FIG. 9. The slope cν (in units of e/2π ) (a) as function of the
position of the chemical potential μ and (b) as a function of λ =
h/eBay . We focus on the isotropic regime with ty/tx = 1 and fix
either (a) the magnetic field λ/ax = 10 or (b) the position of the
chemical potential μ/tx = 0. The remaining parameter values are
chosen as in Fig. 7. The quantization of the slope cν results in
quantized plateaus in the Hall conductance σxy .

Using the values of the linear slope cν = e ν
2π

found above both
analytically and numerically, we find that the conductance
takes the form σxy = ν e2

h
, which are the quantized values of

the integer QHE.
Remarkably, the linear slope of the FBCs takes quantized

value that leads to the quantized Hall conductance. We also
compute numerically the dependence of cν (and thus of the
Hall conductance σxy) on the position of the chemical po-
tential as well as on λ (which is inversely proportional to
magnetic field B) (see Fig. 9). The slope cν is an integer
multiple of e/2π inside a given gap. As one increases μ or
λ, more bands get filled and cν changes by e/2π as one of
the bulk bands crosses the chemical potential (see Fig. 2).
The plateaus in cν correspond to plateaus in the Hall con-
ductance σxy and they are stable against disorder as shown in
the previous section. Therefore, our approach gives an alterna-
tive way to microscopically understand the Hall conductance
and its robust quantization. As seen in previous sections, the
slope of the FBCs has contributions from all occupied bands.
Thus, also the Hall conductance gets contributions from all
occupied bands, except from the edge states. Also, the linear
slopes of the FBCs imply that the Hall current is stationary.
In our approach, we continuously (and adiabatically) vary the
flux between two arbitrary values and can clearly see that the
Hall current is stationary. However, in Laughlin’s argument
one considers the variation of the flux only by an integer
value of ϕ0 and thereby must also assume that the current
is stationary for all flux values between nϕ0 and (n + 1)ϕ0,
for integer n. Thus, our approach shows that the linear slopes
reflect the fact that the Hall current is stationary.

We note that our approach is also valid for finite tem-
peratures as long as the temperature stays smaller than the
energy distance from the chemical potential to the nearest
bulk band (see Appendix E). As soon as the temperature
is high enough to thermally excite electrons from localized
edge states to extended bulk states (or vice versa), the FBCs
cannot be defined properly anymore. As a result, the linear
dependence of the FBCs on the flux breaks down. Hence, as
the temperature increases, the Hall plateaus begin to shrink
before disappearing eventually.

We also would like to emphasize the advantages of the
approach presented here over the Laughlin argument [4]. First,
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the change in the flux � does not need to be an integer
multiple of the flux quantum ϕ0 as assumed in Laughlin’s ar-
gument [4], but instead can take any value. Second, and more
important, our derivation is valid also in systems with strong
disorder, whereby the disorder can be present in the whole
sample including the boundaries. The linear dependence of
the FBCs on the magnetic flux holds also in this case, which
highlights the remarkable stability of the quantized values
against disorder. This stability suggests that the slope cν of
the FBCs plays the role of a topological invariant which is
well defined even in the presence of strong disorder. Finally,
we note that our derivation is valid for any position of the
chemical potential inside the bulk gap (see Fig. 9).

VII. CONCLUSIONS AND OUTLOOK

We have studied FBCs occurring in one-dimensional
nanowires with periodically modulated chemical potential as
well as in two-dimensional electron gases in the presence of
a perpendicular magnetic field in the integer QHE regime.
In the clean limit, these two systems can be mapped onto
each other. In both systems, the FBCs are linear functions
of the phase offset (1D case) or of the magnetic flux in the
cylinder topology of the Laughlin setup (2D case). This linear
slope cν depends only on the number of filled bulk bands but
not on the precise position of the chemical potential inside
these bands. The slope is universal and quantized in units of
e/2π and, moreover, is also extremely robust against disorder.
Interestingly, cν is determined solely by bulk bands, while
the bound states in 1D or the chiral edge states in 2D are
responsible for the jumps in the FBCs, which are quantized
in units of e. We have shown that all these features are robust
against disorder, and thus one can consider cν as a topological
invariant that is well defined even in the presence of strong
disorder.

In addition, we have shown that the direct consequence of
quantized values of the slope cν is the quantization of the Hall
conductance. Our derivation is performed for the Laughlin
cylinder setup and, thus, can be tested experimentally in the
Corbino disk geometry. As only the bulk states are responsible
for the finite slope cν , we conclude that the Hall current is
carried by extended bulk states. The FBCs and their change
as function of phase offset in NWs or of flux in Corbino disks
can be tested experimentally by making use of, for example,
single-electron transistors [70,71] as charge sensors. As an
outlook, it would be interesting to generalize our approach to
the Hall bar geometry.
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR NW
IN HIGHER-ORDER PERTURBATION THEORY IN V

In this appendix, we calculate explicitly the effective
Hamiltonian describing the coupling between right and left

movers at the Fermi surface in the case of higher-order reso-
nances kF = νπ/λ in the perturbative regime with V � tx , as
specified in the main part. Generally, the only nonzero matrix
elements of HCDW [Eq. (4)] in momentum space Mk1,k2 are the
ones that connect two states with the momentum difference
2π/λ:

Mk1,k2 = 〈k1|HCDW|k2〉
= −V eiαδk1,k2−2π/λ − V e−iαδk1,k2+2π/λ. (A1)

As a result, if kF = νπ/λ, the gap at the Fermi surface �(ν)
g

can be opened in the νth-order perturbation theory [63,64].
In this case, the effective Hamiltonian density in momentum
space and in the basis ψ̃ = (R,L) is defined as

H(ν) =
(

h̄ v
(ν)
F k �̄(ν)

g

(�̄(ν)
g )∗ −h̄ v

(ν)
F k

)
, (A2)

with the Fermi velocity given by v
(ν)
F = 2 tx ax sin(kF ax )/h̄.

The matrix element �̄(ν)
g connecting the right mover at the

momentum kF and the left mover at the momentum −kF is
found in the νth-order perturbation expansion in V as

�̄(ν)
g ≡ �(ν)

g ei ν α

= MkF ,kF −2 π/λ . . . M−kF −4 π/λ,−kF −2 π/λM−kF −2 π/λ,−kF∏ν−1
q=1

[
E0

−kF
− E0

−kF +2 π q/λ

]
= V νei ν(α+π )

(4 tx )ν−1
∏ν−1

q=1 sin2(kF axq/ν)
, (A3)

where E0
k = 2 tx[1 − cos(k ax )] is the energy dispersion of the

unperturbed Hamiltonian consisting only of the kinetic part.
The spectrum of the effective Hamiltonian is given by E± =
±[(h̄ v

(ν)
F k)2 + (�(ν)

g )2]. The gap of the size �(ν)
g ∼ V ν/Eν−1

0
is opened at the Fermi surface. Here, to simplify estimates, we
introduced the characteristic energy E0, which depends on the
position of the chemical potential and is of order of the Fermi
energy.

We note that Eq. (A2) obtained in the νth order of the
perturbation theory maps back to the one considered in the
main text (ν = 1) if one rescales α → να and V → �(ν)

g . As
a direct consequence, the number of bound states observed at
any given energy inside the bulk gap as one tunes α from −π

to π is also increased from one to ν (see Fig. 2).

APPENDIX B: INDEPENDENCE OF FBCs
ON CHOICE OF CUTOFFS n1 AND n2

In this appendix, we demonstrate numerically that the
FBCs are a well-defined quantity that do not depend on the
choice of cutoffs n1 and n2 as long as n1ax > ξ and n2ax > λ

(see Fig 10). The first condition n1ax > ξ ensures that the
summation is done over the whole extension of the bound
state (characterized by its localization length ξ ) such that the
difference in the FBC for this state being occupied or not
is given by e. The second condition n2ax > λ ensures that
the FBC is averaged over several unit cells as the charge
distribution inside the unit cell even in the bulk (away from
the end of the NW) is nonuniform if the chemical potential is
periodically modulated [41].
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FIG. 10. The FBCs, QL
ν,1d , as a function of the phase offset

α obtained numerically for the CDW-modulated NW for different
cutoffs: (a) n1 = 1 (red), 5 (blue), 10 (black), 20 (green), and n2 =
10; (b) n1 = 10 and n2 = 1 (red), 5 (blue), 10 (black), 20 (green).
The slope of the FBC is independent of the cutoffs as long as
n1ax > ξ and n2ax > λ. The number of filled bands is controlled by
the chemical potential, which is tuned inside the first bulk gap ν = 1
(see Fig. 2). Other parameters are chosen to be the same as in Fig. 2
of the main text.

APPENDIX C: PARTICLE DENSITIES FOR ν = 2, 3

In addition, we explore the profile of the local particle
density γ θ

n for different numbers of filled bands (see Fig. 11).
In the bulk, γ θ

n does not depend on θ . In contrast to that, at the
boundaries, γ θ

n is sensitive to the flux, giving rise to the linear
slope in the θ dependence of the FBCs.

APPENDIX D: FBCs IN 2D MODELS WITH DIFFERENT
DEGREE OF ANISOTROPY ty/ tx

In this appendix we address the stability of the results
against variations in the relative strengths of the hopping
amplitudes in the 2D model. In particular, we numerically
calculate the FBCs for different ratios ty/tx (see Fig. 12). This
allows us to tune from the isotropic regime with ty = tx to
the highly anisotropic model with ty � tx [50,68,69,72–82].
The obtained slopes in the FBCs are always quantized and
independent of the ratio ty/tx , and, moreover, they are stable
against disorder as long as the band gap is well defined. Our
results clearly show that the features of the FBCs as well as
the resulting quantized values of the Hall conductance are
independent of the anisotropy of the model.
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FIG. 11. Local particle density γ θ
n as a function of position along

the NW. The chemical potential lies (a) in the second (ν = 2) bulk
gap with μ/tx = 0.5 or (b) in the third (ν = 3) bulk gap with μ/tx =
1. The particle densities are constant in the bulk but nonuniform at
the boundaries. Other parameter values are the same as in Fig. 7(a)
of the main text.

-1 -0.5 0 0.5 1
θ/π

-1

-0.5

0

0.5

1

Q
L ν
,2

d
[e

] ty/tx = 0.2

ty/tx = 0.4

ty/tx = 0.8

ty/tx = 1

FIG. 12. The FBCs, QL
ν,2d , as a function of the flux phase θ for

different values of the hopping amplitude between NWs: ty/tx = 1
(cyan), 0.8 (black), 0.4 (blue), and 0.2 (red). The chemical potential
μ is tuned into the first bulk gap (ν = 1): μ/tx = −0.7, −0.5, 0,
and 0.2, respectively. We observe the linear dependence of QL

ν,2d on
θ . The slope cν is quantized and independent of whether the system
is isotropic or not. The remaining parameter values are the same as
in Fig. 7 of the main text.

APPENDIX E: FBCs AT FINITE TEMPERATURES

In this appendix, we study numerically the FBCs at fi-
nite temperature T (see Fig. 13). For this we modify the
definition of the FBCs introduced in Eq. (14), where only
states with negative energies contributed to the FBCs. At
finite temperatures, the weight of each state with energy εp

is given by the Fermi-Dirac distribution function ñ(εp ) =
1/[1 + exp(εp/kBT )], where the index p labels the M × N

states of the tight-binding Hamiltonian Hθ given in Eq. (15),
and kB is the Boltzmann constant. The corresponding wave
functions are given by φ̃p(n,m). The important parameters
describing the effect of temperature are the energy distance �

between the chemical potential and the nearest bulk band. If
kBT /� � 1, the slope cν is perfectly linear. As temperature
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]

kBT/Δ =1 /100
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FIG. 13. The FBCs, QL
ν,2d , as a function of the flux phase θ

at different temperatures: kBT /� = 1/100 (red), 1/50 (blue), 1/20
(black), and 1/10 (green). All parameters are the same as in Fig. 7(d).
Here, � is the energy distance between the chemical potential and
the nearest bulk band. For the chemical potential tuned inside the
first (ν = 1) bulk gap (yellow solid line in Fig. 2), the energy
distance to the second band is �/t = 0.16. We still observe the
linear dependence of QL

ν,2d on θ , however, the jump in the FBC gets
smoother as the temperature increases, which makes it more difficult
to define the slope cν . If kBT gets close to �, the linear dependence
of the FBC on the flux disappears.
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is increased, the jump in Qs
ν,2d gets smoother and the depen-

dence of FBCs on the flux phase θ is linear only sufficiently
far away from the jump (see Fig. 13). As kBT is increased
further and gets close to �, the electron gets thermally excited
from (into) a localized edge state into (from) extended bulk
states separated by the gap �. As a result, the definition of

the FBCs assumed to be a property of the boundaries breaks
down. This has an effect on cν as well as the quantized
Hall conductance (see Fig. 9). The thermal broadening of the
plateaus does not allow one to observe the quantization any
longer if kBT ≈ �. Thus, the plateaus will first shrink and
eventually disappear as one increases the temperature.
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