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Distribution of waiting times between electron cotunneling events
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In the resonant tunneling regime, sequential processes dominate single-electron transport through quantum
dots or molecules that are weakly coupled to macroscopic electrodes. In the Coulomb blockade regime, however,
cotunneling processes dominate. Cotunneling is an inherently quantum phenomenon and thus gives rise to
interesting observations, such as an increase in the current shot noise. Since cotunneling processes are inherently
fast compared to the sequential processes, it is of interest to examine the short time behavior of systems where
cotunneling plays a role, and whether these systems display nonrenewal statistics. We consider three questions
in this paper. Given that an electron has tunneled from the source to the drain via a cotunneling or sequential
process, what is the waiting time until another electron cotunnels from the source to the drain? What are the
statistical properties of these waiting time intervals? How does cotunneling affect the statistical properties of a
system with strong inelastic electron-electron interactions? In answering these questions, we extend the existing
formalism for waiting time distributions in single-electron transport to include cotunneling processes via an
n-resolved Markovian master equation. We demonstrate that for a single resonant level, the analytic waiting
time distribution including cotunneling processes yields information on individual tunneling amplitudes. For
both a SRL and an Anderson impurity deep in the Coulomb blockade, there is a nonzero probability for two
electrons to cotunnel to the drain with zero waiting time in between. Furthermore, we show that at high voltages,
cotunneling processes slightly modify the nonrenewal behavior of an Anderson impurity with a strong inelastic
electron-electron interaction.
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I. INTRODUCTION

With the ever-present search for smaller transistors and the
advent of modern technologies such as quantum computing,
the world in recent years has turned its gaze inward to probe
electron transport through nanoscale devices, where a funda-
mental understanding of quantum dynamics is required. This
has yielded intriguing experimental and theoretical results:
for example, single-molecule transistors, quantum heat en-
gines, and spintronics [1–3]. Of particular interest in quantum
nanoscale systems is the potential for encountering micro-
scopic current fluctuations and phenomena that are classi-
cally forbidden, such as the existence of electron transport
through virtual quantum states that temporarily violate energy
conservation laws; both of which form the focus of this
paper.

Electron transport through quantum systems can display
a phenomena known as cotunneling. Inelastic cotunneling
was first proposed theoretically by Averin and Odintsov [4]
and confirmed experimentally shortly after the theoretical
prediction by Geerligs et al. [5] with the introduction of
the modern combined inelastic and elastic theory detailed
simultaneously by Averin and Nazarov [6]. In contrast to
sequential tunneling, which describes single-electron tunnel-
ing events and can essentially be described classically, co-
tunneling is a coherent quantum process that involves the
tunneling of an electron from the source to the drain (or vice
versa) through an intermediate “virtual” state, which may
or may not be classically forbidden [7–9]. Elastic cotunnel-
ing leaves the system with the same energy, while inelastic

cotunneling leaves the intermediate quantum system in an
excited state. The common explanation is that cotunneling is
an example of the uncertainty principle �t�E ∼ h̄; energy
conservation can be violated only if the electron spends a suf-
ficiently short time in the intermediate virtual state, although
in recent years this notion has been challenged by Romito and
Gefen [10].

Cotunneling processes dominate transport in the Coulomb
blockade regime, as the electronic energy levels are pushed
outside the voltage bias window and sequential tunneling
is exponentially suppressed. Hence, cotunneling manifests
experimentally as a small current in the Coulomb blockade
regime, and as a small correction to the sequential current
in the resonant tunneling regime [5,11]. Theoretical research
into cotunneling has investigated its effect on transport in sys-
tems with inelastic scatterings, such as electron-electron and
electron-phonon interactions [12–14]. Additional cotunneling
research has focused on heat conductance [15,16], transport
in double quantum dots [17,18], and inelastic cotunneling
spectroscopy [19,20]. Recently, multiple authors have studied
the noise and full counting statistics (FCS) of cotunneling
phenomena in an attempt to explore its effect on current
fluctuations [21–31]. Such investigations have demonstrated
that inelastic cotunneling transport induces super-Poissonian
shot noise for a variety of systems, which is in agreement with
experimental measurements [32–34].

Alongside the zero-frequency noise and FCS, the waiting
time distribution (WTD) has been shown to be a useful tool for
describing current fluctuations in quantum nanoscale systems,
as it contains information complementary to that found in
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other statistics [35–44]. In contrast to current cumulants,
which require theoretical calculations over long-time inter-
vals, WTDs can reveal interesting short-time physics that may
otherwise be inaccessible. Of particular interest is observing a
violation of renewal statistics, where the assumption is that
w(τ1, τ2) = w(τ1)w(τ2). Nonrenewal statistics is character-
ized by short-time correlations between subsequent waiting
times, and is thus invisible in the current cumulants. Perhaps
the recent interest has been spurred onward in part by the
development of real-time single electron detection techniques,
which have enabled experimental measurement of micro-
scopic current fluctuations for many different quantum sys-
tems [45–48]. However, there remain experimental difficulties
in measuring electron tunnelings via virtual processes due
to the collapse of the intermediate state [49,50]. A possible
method for experimentally accessing waiting times including
quantum processes is the reconstruction of the WTD from
low-order charge correlation functions [51]. Although there
are multiple definitions of the WTD in statistics [52], in the
context of quantum transport it is the conditional probability
density that, given an extra electron was counted in the drain
electrode at time t , another extra electron was counted in the
drain at time t + τ , where no intermediate tunneling events to
the drain are allowed.

Historically, WTDs have been extensively used in quan-
tum optics as a statistical tool [36,37] and they were in-
troduced to mesoscopic quantum transport by Brandes, who
calculated WTDs by defining jump operators from a quan-
tum master equation [35]. The master equation method
for calculating WTDs has since been applied to a diverse
range of scenarios, such as systems with electron-electron
interactions, electron-phonon interactions, coherent internal
transport, non-Markovian quantum transport, and spintronics
[35,38–41,53–58]. Alongside the master equation approach,
there exist various techniques for calculating WTDs in meso-
copic transport. For example, Albert et al. [44] developed a
scattering matrix approach suitable for fully coherent trans-
port, and described single channel and multichannel transport
[44,59], transport through superconducting junctions [54,60],
and transport of electron pulses [43,61]. Despite this success,
the scattering matrix approach is unable to calculate WTDs
outside of the steady state; thus, nonequilibrium Green’s
functions are used to describe coherent transport in the tran-
sient regime [62–64]. However, so far WTDs have not been
used to study the statistical properties of electron cotunneling
events for systems with strong electron-electron interactions.
Although the scattering matrix approach and nonequilibrium
Green’s functions are applicable to coherent transport, and
thus seem tailor-made for describing cotunneling, they strug-
gle to include strong inelastic scatterings in the quantum sys-
tem; thus, in this paper we use the master equation technique.

We study the WTD in an Anderson impurity for successive
tunnelings to the drain, including cotunneling, and compare
it to the WTD for successive tunnelings to the drain for only
sequential tunneling processes. We first develop a systematic
method for extending the current master equation approach
for WTDs developed by Brandes [35] to include cotunneling
processes, and then demonstrate its use for transport through
an Anderson impurity, as well as the limiting case of strong
Coulomb repulsion and no level splitting when the system

behaves as a single resonant level (SRL). In doing so, we
examine the relationship between inelastic scatterings and the
inherently coherent quantum cotunneling process, as well as
the effect cotunneling has on nonrenewal statistics.

The master equation approach to quantum transport is a
powerful method for analyzing quantum electron transport
through mesoscopic systems [65–69]. Although the full mas-
ter equation is useful for describing quantum effects such
as interference [70], decoherence between double quantum
dots [71], electron transport through quantum dot attached to
superconducting leads [72,73], and driven quantum transport
[74], in many cases the transport is incoherent and thus is
effectively described by rate equations [75–77]; this is the
approach taken in this paper. To connect this formalism to
waiting times, we will in fact have to work with the n-resolved
master equation [66,76,78].

The transition rates in the master equation are calculated
using the T-matrix approach: a perturbation expansion around
the tunneling coupling HT . Sequential tunneling corresponds
to the lowest order of this expansion, and cotunneling pro-
cesses correspond to next-to-leading order in HT : first and
second order in the tunneling coupling strength γ , respec-
tively. Cotunneling rates developed from a purely second-
order perturbative expansion about HT are well-known to
formally diverge due to higher-order tunneling effects not
being taken into account. To overcome this we follow the
approach first developed by Averin [79], and extended to the
T-matrix context by Turek and Matveev [14] and Koch et al.,
[12,13] of introducing a finite width to the energy of the
intermediate virtual state. Specifically, we closely follow the
methodology of Koch et al. and obtain similar analytic results,
although we note that we focus on the WTDs associated with
an electron-electron interaction whereas Koch et al. focus on
an electron-vibration interaction in the limit U → ∞. Once
the rates are defined, and similar to Thomas and Flindt’s
approach, we start with an n-resolved master equation, then
derive the WTD from the idle time probability and show
that for forward tunneling only it reduces to the method
introduced by Brandes, albeit with a nonintuitive Liouvillian
splitting [38].

We demonstrate that, likewise to the WTD for sequential
tunneling through a SRL, the WTD including cotunneling
offers information on the individual electrode coupling pa-
rameters [35]. Furthermore, for an Anderson impurity, cotun-
neling processes slightly increase the nonrenewal behavior;
this is evident in the comparison of the correlation between
subsequent waiting times, which is largely controlled by the
strength of the Coulomb repulsion. However, the use of the
method presents difficulties in two key areas: when the level is
inside the voltage bias window and when backward tunneling
processes are included.

The paper is organized as follows. Section II outlines the
construction of the master equation and the derivation of
the WTD including cotunneling. Section III details analytic
results for cotunneling through an Anderson impurity and a
SRL. Section IV outlines the main results and discusses future
work. The Appendix details calculations and derivations used
throughout the paper.

Throughout this paper we use natural units: h̄ = ke =
e = 1.
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II. METHODS

A. Quantum rates for cotunneling processes

In this paper, we examine the transport of electrons, mod-
eled as fermions with spin. Let us consider a nanoscale
quantum system weakly coupled to two macroscopic metal
electrodes: the source and drain. The source and drain are
held at different chemical potentials to cause a voltage bias
across the system and induce a nonequilibrium state. For such
a setup, the Hamiltonian is

H = HS + HD + HM + HT . (1)

The source and drain are modeled as a sea of noninteracting
electrons with the Hamiltonians

HS =
∑
s,σ

εs,σ a†
s,σ as,σ and HD =

∑
d,σ

εd,σ a
†
d,σ ad,σ . (2)

The operators a
†
s/d,σ (as/d,σ ) represent creation (annihilation)

of an electron in the single-particle state s/d with spin σ and
free energy εs/d .

We examine transport through an Anderson impurity,
which is described by the Hamiltonian

HM =
∑

σ

εσ a†
σ aσ + Ua

†
↑a↑a

†
↓a↓, (3)

where the operator a†
σ (aσ ) creates (annihilates) an electron

with spin σ on the single-particle level with energy εσ , and
U is the Coulomb repulsion. When U → ∞ and there are no
spin split energy levels, the system can be modeled by a SRL:

HM = εa†a. (4)

The interaction between the nanoscale quantum system and
the macroscopic electrodes is described by the Hamiltonian

HT = tS
∑
s,σ

(a†
s,σ aσ + a†

σ as,σ ) + tD
∑
d,σ

(a†
d,σ aσ + a†

σ ad,σ ),

(5)

where tS and tD are tunneling amplitudes between the
molecule and source and drain electrode, respectively.

The quantum system has four states; it can either be empty
(〈0|), occupied by a single spin up electron (〈↑ |), occupied by
a single spin down electron (〈↓ |), or occupied by a spin-up
and spin-down electron (〈2|). These states have the associated
probabilities P0 = 〈0| ρ |0〉, P↑ = 〈↑| ρ |↑〉, P↓ = 〈↓| ρ |↓〉,
and P2 = 〈2| ρ |2〉, where ρ is the reduced density matrix of
the Anderson impurity.

The dynamics of the system is defined by a quantum
master equation, which is constructed from quantum rates
associated with electron tunneling processes. The rate of
transforming from reduced system state m to reduced system
state n is denoted �nm. To calculate the �nm, we use the
T-matrix approach, which is suitable as it provides a direct
method for calculating transition rates between eigenstates
of quantum many-body systems. Cotunneling has previously
been explored via a comprehensive real-time diagrammatic
method [26,30,80,81]; however, the T-matrix approach is a
suitable approximation for this more rigorous method when
the dynamics does not exhibit non-Markovian phenomena
[24] This occurs for large temperatures kBT 	 γ alongside
a large gap between the Fermi energies of the baths and the

energy levels participating in the transport δ = |eV − ε| 	 γ ,
a condition that is met in the Coulomb blockade regime.
Our calculations are all performed with γ = 0.5kBT , which
falls within this regime. Furthermore, the construction of
the WTD requires that backscattering from the drain is not
included, and so in the tunneling regime we necessarily have
γ 
 kBT 
 δ. Finally, using the rate equation requires the
secular approximation; coherences in the off-diagonals of the
full density matrix are ignored.

For the sake of self-completeness and to introduce relevant
notations used throughout the paper, below we explicitly de-
rive the sequential and cotunneling rates used in the quantum
master equation. Here, we briefly summarize the method
outlined by Bruus and Flensberg [8,82]. First, the Hamiltonian
is reformulated as

H (t ) = HS + HD + HM + HT eηt , (6)

where the time-independent part H0 = HS + HD + HM has
a trivial but fast time-evolution e−iH0t , and the complex but
slow time-evolution is due to the interaction HT eηt , which
is treated as a perturbation. The time factor eηt ensures that
the perturbation is turned on adiabatically at t = −∞ by
assuming that η is an infinitesimal positive real number.

The starting point for the T-matrix approach is the prob-
ability Pf (t ) that the system is in state |f 〉 at time t given
that time t = 0 it was in state |i〉, which is just the square of
their overlap; and from here, the transition rate between the
two states is the time derivative of Pf (t ):

�f i = d

dt

∣∣〈f |i(t )〉∣∣2
. (7)

Using the interaction picture, Eq.(7) is transformed to

�f i = 2π |〈f | T |i〉|2δ(Ei − Ef ), (8)

where the T-matrix is

T = HT + HT

1

Ei − H0 + iη
HT

+ HT

1

Ei − H0 + iη
HT

1

Ei − H0 + iη
HT + .... (9)

The sequential tunneling regime corresponds to second
order in HT in the transition rates: the first linear term in the
T -matrix. So the sequential rates are

�f i = 2π |〈f | HT |i〉|2δ(Ei − Ef ), (10)

which is just the standard Fermi’s Golden Rule.
In the many-body configuration in the full Fock space,

the initial and final states are tensor products of the discrete
system states (molecular or quantum dot) and continuous elec-
trode states: |m〉 ⊗ |iS/D〉 and |n〉 ⊗ |fS/D〉, with eigenen-
ergies Em + εis/d and En + εfs/d

respectively. Consequently,
there are multiple final and initial states that correspond to
a system state of |m/n〉; they must be summed over, and
the initial states weighted with a thermal distribution function
W

S/D

im
:

�S/D
nm = 2π

∑
fS/D,iS/D

|〈fS/D| 〈n| HS/D

T |m〉 |iS/D〉|2WS/D

im

× δ(Em − En + εiS/D
− εfS/D

). (11)
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At this point, we can now calculate the sequential rates for
electron tunneling between the electrodes and the system:

�
S/D

σ0 = γ S/DnF (εσ − μS/D ), (12)

�
S/D

0σ = γ S/D (1 − nF (εσ − μS/D )), (13)

�
S/D

σ2 = γ S/D (1 − nF (εσ + U − μS/D )), and (14)

�
S/D

2σ = γ S/D (εσ + U − μS/D ), (15)

where γ S/D = 2π |tS/D|2ρ(εS/D ) and ρ(εS/D ) is the density of
states for the source and drain electrodes, which is assumed to
be constant. In the limiting case of a SRL, the rates reduce to

�
S/D

10 = γ S/DnF (ε − μS/D ) and (16)

�
S/D

01 = γ S/D (1 − nF (ε − μS/D )). (17)

Throughout the paper we use a symmetric coupling, such
that γ S = γ D = γ

2 . The nF (ε − μS/D ) are the Fermi-Dirac
distributions for the source and drain electrodes:

nF (ε − μS/D ) = 1

1 + e(ε−μS/D )β , (18)

where β = 1
kBT

. When the electronic level is within the bias
window and in the limit of infinite source-drain bias, which is
achieved by making the voltage μS − μD large, the configura-
tion undergoes forward tunneling only: that is, from the source
to the molecule or from the molecule to the drain. However,
in the Coulomb blockade regime the electronic levels are
outside the bias window, regardless of the large voltage. To
reconcile the two scenarios, we note that their combined
processes are tunneling from the source to the molecule, from
the molecule to the source, and from the molecule to the
drain. In effect, the total sequential rates for an Anderson
impurity reduce to �σ0 = �S

σ0, �0σ = �S
0σ + �D

0σ , �2σ = �S
2σ ,

and �σ2 = �S
σ2 + �D

σ2. Similarly, the total sequential rates for
a SRL are �10 = �S

10 and �01 = �S
01 + �D , where we have

adopted the shorthand �D = �D
01.

The next-to-leading term in the T-matrix expansion is sec-
ond order in the tunneling coupling γ , which is fourth order in
HT in the rate expression, and describes cotunneling effects.
For an Anderson impurity in the infinite bias limit, there are
multiple cotunneling pathways, which can be categorized as
either inelastic or elastic.

Elastic cotunneling processes leave the system in the same
energetic state; for example, an electron tunnels into an empty
system from the source and another electron tunnels out to
the drain in the same process, leaving the molecule empty and
with an extra electron in the drain. We denote the transition
rate of this process �SD

00 , where SD implies that an electron is
moved from the source to the drain. Note that this process
can occur for ↑ or ↓ electrons, so there are actually two
pathways contained within the rate �SD

00 . Similarly, we define
�SD

22 as the rate of elastically tunneling through an originally
doubly occupied system from the source to the drain. In
this scenario, the first process must be an electron tunneling
from the molecule to the drain, which is then replaced by an

electron from the source. Again, the process can occur for
either ↑ or ↓ electrons, so the rate contains contributions from
both pathways. Finally, we define �SD

σσ as the rate of elastically
cotunneling from the source to the drain through an originally
σ occupied system. This process can occur via an original
tunneling of a σ̄ electron from the source to the molecule
followed by a subsequent tunneling of a σ̄ electron from the
molecule to the drain, or by the σ electron tunneling to the
drain first; so it too has two contributions to the rate. Since
the system is experiencing infinite bias voltage, cotunneling
processes that move an electron from the drain to the source
do not contribute to the transport.

Inelastic cotunneling processes leave the system occupied
by the same number of electrons, but in a different energy
state. For an Anderson impurity, the only inelastic cotunneling
processes are those that transform the system from being
occupied by a single σ electron to being occupied by a single
σ̄ electron. The rate of moving an electron from the source
to the drain and changing the system occupation from σ from
σ̄ is then �SD

σ̄σ . This rate has two processes as well; either a σ

electron tunnels from the molecule to the drain and is replaced
from the source by a σ̄ electron, or a σ̄ electron tunnels from
the source to the molecule and then a σ electron tunnels
from the molecule to the drain. We also define inelastic
cotunneling processes involving the same electrode: �SS

σ̄σ and
�DD

σ̄σ . Although these processes do not move electrons across
the system, they affect the occupation probabilities of the
impurity and thus are included in the transport description.

The wide variety of cotunneling rates involved in transport
through an Anderson impurity are all derived by going to
fourth order in HT , so that Eq. (8) becomes

�
αβ

n′n = 2π lim
η→0+

∑
α,β=S,D

∑
i,f

∣∣∣〈f | 〈n′| Hβ

T

1

Ei,n − H0 + iη

×Hα
T |n〉 |i〉

∣∣∣2
Wα

i,nW
β

i,n × δ(εi − εf ), (19)

where n = n′ for elastic cotunneling processes and n = n′ for
inelastic cotunneling processes, and the notation recognizes
the fact that cotunneling always leaves the system occupied
by the same number of electrons as it was before the process.

It is assumed that the thermal probabilities for the source
and drain are independent and so can be factored: WS

in
WD

in
.

Additionally, we assume weak coupling, so that the elec-
trode thermal probabilites are independent of the state of the
quantum system at time t = t0. The imaginary component
iη in Eq. (19) ensures that, due to tunneling processes not
included in a second-order expansion, the intermediate energy
of the intermediate virtual state has a finite width, and with
its inclusion divergent integrals in the rate are avoided. The
inclusion of iη, and the assumption that it is O(γ ), forms the
first part of a regularization procedure necessary to calculate
cotunneling rates. The second component of regularization is
removing any parts of the rate that are O(γ ), as they corre-
spond to a sequential tunneling. These appear because any
cotunneling process can also be achieved via two sequential
tunneling processes. The regularization procedure we follow
is that detailed by Koch et al. [12,13], which is equivalent to
the method outlined by Turek and Matveev [14], where the
finite energy width was first noted by Averin [79]. Evaluating
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Eq. (19), applying the regularization procedure and taking the appropriate limits, one obtains the general form of the elastic
cotunneling rates for an Anderson impurity as

�SD
nn = γ Sγ DnB (μD − μS )

[
β

4π2
�
{
ψ (1)

(
1

2
+ iβ

2π
(μD − E1)

)
− ψ (1)

(
1

2
+ iβ

2π
(μS − E1)

)

+ ψ (1)

(
1

2
+ iβ

2π
(μD − E2)

)
− ψ (1)

(
1

2
+ iβ

2π
(μS − E2)

)}
± 1

π (E1 − E2)
�

{
ψ

(
1

2
− iβ

2π
(μS − E2)

)

− ψ

(
1

2
− iβ

2π
(μS − E1)

)
− ψ

(
1

2
− iβ

2π
(μD − E2)

)
+ ψ

(
1

2
− iβ

2π
(μD − E1)

)}]
, (20)

where E1 and E2 refer to the energies of the tunneling pathways involved in the process and the ± is negative only for �SD
σσ .

Furthermore, the transition rates defined in Eq. (20) use the digamma ψ (x) and trigamma ψ (1)(x) functions, as well as the
Bose-Einstein distribution function nB (μD − μS ):

nB (μD − μS ) = 1

e(μD−μS )β − 1
. (21)

The inelastic cotunneling rates are similarly defined:

�
αβ
σ̄σ = γ αγ βnB (μβ − μα − εσ + εσ̄ )

[
β

4π2
�
{
ψ (1)

(
1

2
+ iβ

2π
(μβ − (εσ + U ))

)
− ψ (1)

(
1

2
+ iβ

2π
(μα − (εσ̄ + U ))

)

+ ψ (1)

(
1

2
+ iβ

2π
(μβ − εσ )

)
− ψ (1)

(
1

2
+ iβ

2π
(μα − εσ̄ )

)}
− 1

πU
�

{
ψ

(
1

2
− iβ

2π
(μα − εσ̄ )

)

− ψ

(
1

2
− iβ

2π
(μα − (εσ̄ + U ))

)
− ψ

(
1

2
− iβ

2π
(μβ − εσ )

)
+ ψ

(
1

2
− iβ

2π
(μβ − (εσ + U ))

)}]
. (22)

For a SRL, the number of cotunneling processes is much
more limited; either an electron tunnels into the empty level
from the source and another electron tunnels out to the drain
in the same quantum process, or an electron tunnels out from
the level into the drain and is replaced by an electron from
the source in the same quantum process. The two processes
have transition rates �

(2)
00 and �

(2)
11 , respectively, and one

can show that �
(2)
00 = �

(2)
11 = �(2). Since the same molecu-

lar energy level is filled and emptied, both processes are
elastic:

�(2) = β
�S�D

4π2
nB (μD − μS )�

{
ψ (1)

(
1

2
+ iβ

2π
(ε − μS )

)

− ψ (1)

(
1

2
+ iβ

2π
(ε − μD )

)}
. (23)

The details of the derivations for Eqs. (20), (22), and (23)
are in the Appendix.

From here it is tempting to construct the standard rate equa-
tion for occupation probabilities of the impurity. However,
since elastic cotunneling rates do not change the state of the
quantum system, they do not contribute to the rate equation
for the system state probabilities. Instead, one must consider
the n-resolved system state probabilities.

B. n-resolved master equation

The master equation can be resolved upon the number of
electrons transferred to the drain; so P0(n, t ) is the probability
that the system is empty at time t and that n electrons were

transferred to the drain in the interval [0, t], and similarly
for Pσ (n, t ) and P2(n, t ). For the infinite bias regime n =
0, 1, 2, 3, ...,+∞. Thus, the total probability that n electrons
were transferred by time t is

P (n, t ) = (I, P(n, t )) (24)

= P0(n, t ) + P↑(n, t ) + P↓(n, t ) + P2(n, t ), (25)

where I is the identity vector,

I = [
1 1 1 1

]
, (26)

and P(n, t ) is the probability vector,

P(n, t ) =

⎡
⎢⎢⎢⎣

P0(n, t )

P↑(n, t )

P↓(n, t )

P2(n, t )

⎤
⎥⎥⎥⎦. (27)

The n-resolved Markovian master equation follows the
general form,

Ṗ(n, t ) =
∑
n′

L(n − n′)P(n, t ). (28)

For the tunneling interaction defined in Eq. (5), each n is
connected only to its neighboring values n′ = n, n ± 1 and
for an Anderson impurity in the infinite bias regime, includ-
ing cotunneling processes, the n-resolved master equation is
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intuitively

Ṗ(n, t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
�S

↑0 + �S
↓0 + �SD

00

)
�S

0↑ �S
0↓ 0

�S
↑0 −(

�0↑ + �S
2↑ + �SD

↑↑ + �
(2)
↓↑

)
�SS

↑↓ + �DD
↑↓ �S

↑2

�S
↓0 �SS

↓↑ + �DD
↓↑ −(

�0↓ + �S
2↓ + �SD

↓↓ + �
(2)
↑↓

)
�S

↓2

0 �S
2↑ �S

2↓ −(
�↑2 + �↓2 + �SD

22

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P(n, t )

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�SD
00 �D

0↑ �D
0↓ 0

0 �SD
↑↑ �SD

↑↓ �D
↑2

0 �SD
↓↑ �SD

↓↓ �D
↓2

0 0 0 �SD
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P(n − 1, t ). (29)

Here, we have excluded those rates that involve back-tunneling processes from the drain, as they have a negligible contribution
in the infinite bias regime. Additionally, we use the notation

�
(2)
σ̄ σ = �SS

σ̄σ + �DD
σ̄σ + �SD

σ̄σ . (30)

Evidently, the n-resolved master equation is an infinite set of coupled equations since n = 0, 1, 2, ...,+∞. To solve, we
use the elegant idea, proposed first by Nazarov and extended to master equations by Bagrets and Nazarov, of introducing a
continuous counting field χ , with 0 � χ � 2π [83,84]:

P(χ, t ) =
∑

n

einχP(n, t ), and (31)

P(n, t ) = 1

2π

∫ 2π

0
e−inχ P(χ, t )dχ. (32)

Multiplying Eq. (29) by einχ and transforming
∑

n einχP(n − 1, t ) → ∑
m ei(m+1)χ P(m, t ), one obtains the n-resolved master in

χ -space in the form Ṗ(χ, t ) = L(χ )P(χ, t ):

d

dt

⎡
⎢⎢⎢⎣

P0(χ, t )

P↑(χ, t )

P↓(χ, t )

P2(χ, t )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
�S

↑0 + �S
↓0

)
+�SD

00 (eiχ − 1)
�S

0↑ + �D
0↑eiχ �S

0↓ + �D
0↓eiχ 0

�S
↑0

−(
�0↑ + �S

2↑ + �
(2)
↓↑

)
+�SD

↑↑ (eiχ − 1)
�SS

↑↓ + �DD
↑↓ + �SD

↑↓ eiχ �S
↑2 + �D

↑2e
iχ

�S
↓0 �SS

↓↑ + �DD
↓↑ + �SD

↓↑ eiχ
−(

�0↓ + �S
2↓ + �

(2)
↑↓

)
+�SD

↓↓ (eiχ − 1)
�S

↓2 + �D
↓2e

iχ

0 �S
2↑ �S

2↓
−(

�↑2 + �↓2
)

+�SD
22 (eiχ − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

P0(χ, t )

P↑(χ, t )

P↓(χ, t )

P2(χ, t )

⎤
⎥⎥⎥⎦. (33)

Equation (33) has the formal solution:

P(χ, t ) = eL(χ )tP(χ, 0), (34)

where the inital condition is P(χ, 0) = P(n = 0, 0), since it
is assumed that electron counts are monitored after t = 0. We
also assume that the system was prepared in the steady state
at t = 0, so that P(n = 0, 0) = P̄ with P̄ being a null vector
of the standard Liouvillian:

L(0)P̄ = 0. (35)

Then, the probability that n electrons have been transferred to
the drain by time t is

P (n, t ) = 1

2π

∫ 2π

0
e−inχ (I, eL(χ )t P̄)dχ. (36)

At this point, one could define a moment-generating function
M (χ, t ) = (I, eL(χ )t P̄) and derive the moments of transferred
charge 〈nk〉 = (−i)k ∂k

∂χk M (χ, t )|χ=0 to obtain the FCS. How-
ever, we are interested in the WTD.
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C. WTD definition

Based on the ideas from quantum optics single photon
counting theories [36,37], Brandes first introduced the con-
cept of a WTD to electron transport with a formalism that
used “jump” operators defined from the master equation of
the system [35]. To include cotunneling rates, however, we
will start with the conditional WTD defined in terms of the
idle time probability [38,52]:

w(τ ) = 1

p

∂2

∂τ 2
�(τ ). (37)

The idle time probability �(τ ) is the probability that there
were no electron tunnelings to the drain in the measurement
time τ . Here, p is the initial probability of observing an
electron tunneling to the drain, and can be defined in terms of
�(τ ) as well: p = − ∂

∂τ
�(τ )|τ=0. The key relation is that the

idle time probability is the probability for no electrons to be
transferred to the drain between time t = 0 and time t = τ , so
that when forward tunneling only is included �(τ ) = P (0, τ )
[38]. The moment-generating function can be written as

M (χ, τ ) = P (0, τ ) +
∞∑

n=1

einχP (n, τ ); (38)

hence, in the infinite bias regime the idle time distribution is

�(τ ) = lim
χ→i∞

(I, eL(χ )τ P̄). (39)

Combining with the definition of the WTD from Eq. (37), we
get

w(τ ) = − lim
χ→i∞

(I, L(χ )eL(χ )τ L(χ )P̄)

(I, L(χ )P̄)
, (40)

and in Laplace space,

w̃(z) = − lim
χ→i∞

(I, L(χ )(z − L(χ ))−1L(χ )P̄)

(I, L(χ )P̄)
. (41)

Similar to the sequential tunneling case, L(χ ) is formally
split into a quantum jump part J(χ ) = Jeiχ , containing the
χ -dependence, and the χ -independent L0:

L(χ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
�S

↑0 + �S
↓0 + �SD

00

)
�S

0↑ �S
0↓ 0

�S
↑0 −(

�0↑ + �S
2↑ + �SD

↑↑ + �
(2)
↓↑

)
�SS

↑↓ + �DD
↑↓ �S

↑2

�S
↓0 �SS

↓↑ + �DD
↓↑ −(�0↓ + �S

2↓ + �SD
↓↓ + �

(2)
↑↓ ) �S

↓2

0 �S
2↑ �S

2↓ −(
�↑2 + �↓2 + �SD

22

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�SD
00 �D

0↑ �D
0↓ 0

0 �SD
↑↑ �SD

↑↓ �D
↑2

0 �SD
↓↑ �SD

↓↓ �D
↓2

0 0 0 �SD
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

eiχ

= L0 + Jeiχ . (42)

The splitting is similarly defined for a SRL:

L(χ ) =
[
−(�S

10 + �(2) ) �S
01

�S
10 −(�D + �S

01 + �(2) )

]
+

[
�(2) �D

0 �(2)

]
eiχ . (43)

Using the splittings in Eqs. (42) and (43) the WTD be-
comes

w(τ ) = − lim
χ→i∞

(I, (L0 + Jeiχ )e(L0+Jeiχ )τ (L0 + Jeiχ )P̄)

(I, (L0 + Jeiχ )P̄)
,

(44)
which is

w(τ ) = − (I, L0e
L0τ L0P̄)

(I, L0P̄)
. (45)

Noting that L0 = L(0) − J, L(0)P̄ = 0 and (I, L(0)A) = 0
for arbitrary A, we obtain the standard expressions for the

WTD in the time domain:

w(τ ) = (I, JeL0τ JP̄)

(I, JP̄)
, (46)

which in Laplace space becomes

w̃(z) = (I, J(z − L0)−1JP̄)

(I, JP̄)
. (47)

Here, we see that in the case of forward tunneling the
WTD reduces to the one calculated using Brandes’ method
[35]. Despite this, the n-resolved master equation is still
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necessary as it tells us how to construct L0 from the quantum
jump operator J. We notice that the method breaks down if
backward tunneling processes are included, as their factor
e−iχ will diverge in the limit χ → i∞. This is a serious
limitation of the approach, and it is not yet clear how to
resolve it.

Although the single WTD is itself an interesting quan-
tity, to compute higher-order expectation values and analyze
microscopic fluctuations, we must also generalize it to two
or more consecutive waiting times. For example, the WTD
for two waiting times, w2(τ2, τ1), is defined as the joint
probability distribution that the first electron waits time τ1 and
the next electron waits time τ2 before tunneling to the drain
[58,85]:

w2(τ2, τ1) = (I, JeL0τ2 JeL0τ1 JP̄)

(I, JP̄)
. (48)

Moments of the single WTD are easily calculable by
introducing a moment-generating function over τ :

K (x) =
∫ ∞

0
dτeixτw(τ ) = (I, JG(x1)JP̄)

(I, JP̄)
, (49)

where x is a real number and

G(x) = (L0 + ix)−1. (50)

We obtain all possible moments by direct differentiation with
respect to x, such that

〈τn〉 =
∫ ∞

0
dτ τnw(τ )

= n!(−1)n+1 (I, JG(0)n+1JP̄)

(I, JP̄)
. (51)

The second-order expectation value is calculated similarly:

〈τ2τ1〉 =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 τ1τ2w2(τ2, τ1)

= (I, JG(0)2JG(0)2JP̄)

(I, JP̄)
. (52)

III. RESULTS

In this section, we analytically and numerically investigate
statistics of waiting time intervals between successive elec-
tron cotunneling events, for both the SRL and an Anderson
impurity.

The WTD for a SRL in Laplace space is obtained via
Eq. (47) using the splitting from Eq. (43):

w̃(z) = a + bz

(z + z+)(z + z−)
, (53)

and the corresponding WTD in the time domain is

w(τ ) = a − bz−
z+ − z−

e−z−τ − a − bz+
z+ − z−

e−z+τ , (54)

where the coefficients of the linear function in the numera-
torare

a = {(
�D�S

10

)2 + �(2)
[
�D + �S

10 + �S
01

][
(�(2) )2 + 2�D�S

10

]
+ (�(2) )2

[
(�D )2 + (

�S
10 + �S

01

)2 + �D
(
2�S

01 + 3�S
10

)]}
×/{

�D�S
10 + �(2)

(
�D + �S

10 + �S
01

)}
and (55)

b = �(2)
(
2�D�S

10 + �(2)
(
�D + �S

10 + �S
01

))
�D�S

10 + �(2)
(
�D + �S

10 + �S
01

) . (56)

The poles of the Laplace space WTD, which are also the
exponents in the time-space WTD, are

z± = 1
2

(
2�(2) + �D + �S

10 + �S
01

±
√

(�D )2 + 2�D
(
�S

01 − �S
10

) + (
�S

01 + �S
10

)2)
. (57)

Interestingly, the position of the poles yield information on
the individual source-drain couplings, similar to the results
Brandes found for sequential tunneling through a SRL.

The moments of the WTD can be derived analytically for
a single resonant-level model, using Eq. (49). The average
waiting time is

〈τ 〉 = �D + �S
01 + �S

10

�D�S
10 + �(2)

(
�D + �S

10

) = 1

〈I 〉(2)
, (58)

where 〈I 〉(2) is the forward current including cotunneling
processes.

The short time behavior of the WTD is evident from
Eq. (54):

w(0) = �(2)
(
2�D�S

10 + �(2)
(
�D + �S

10 + �S
01

))
�D�S

10 + �(2)
(
�D + �S

10 + �S
01

) . (59)

For sequential tunneling only, a SRL is a single reset
system; that is, after an electron tunneling to the drain the
system is always left empty. Consequently, in such a regime
the probability density at τ = 0 is zero as two electrons cannot
be detected in the drain right after one another. In contrast,
Eq. (59) shows that when cotunneling processes are included
w(0) = 0, which implies that it is now a multiple reset system.
Physically, this is plausible as the cotunneling processes that
move electrons from the source to the drain occur regardless
of the SRL occupancy.

The short-time behavior is further characterized by the
Pearson correlation coefficient:

p = 〈τ1τ2〉 − 〈τ 〉2

〈τ 2〉 − 〈τ 〉2
, (60)

where τ1 and τ2 are subsequent waiting times. For sequen-
tial tunneling through a SRL p = 0, such that w(τ1, τ2) =
w(τ1)w(τ2) and waiting times between subsequent tunnelings
to the drain are completely uncorrelated. Consequently, in
such a regime the renewal assumption is satisfied. When
cotunneling processes are included, however, the Pearson
correlation coefficient is nonzero:

p = − A2

B · C
, (61)
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FIG. 1. Sequential and cotunneling WTDs for two voltages; in (a) the level is in the Coulomb blockade regime and in (b) the level is in
the tunneling regime. The y axis represents wseq(τ ) and wco(τ ) for the sequential and cotunneling WTDs, respectively. The energies of the
spin split electronic levels are ε↑ = 0.5 meV and ε↓ = 1.5 meV, the Coulomb repulsion is U = 4 meV, kBT = 75 μeV, and γ = 0.5 kBT.
Parameters for each plot are (a) μS = −μD = 0.25 meV, 〈τ 〉seq = 2.04ns, and 〈τ 〉co = 1.06 ns; (b) μS = −μD = 5meV, 〈τ 〉seq = 46.81 ps,
and 〈τ 〉co = 46.43 ps.

where the components are

A = �(2)�D�S
10, (62)

B = (�(2) )2 + �D�S
10 + �(2)(�D + �S

01 + �S
10

)
, and (63)

C = (
�(2)(�D + �S

01 + �S
10

))2 + �(2)(�D + �S
01 + �S

10

)3

+�D�S
01

(
(�D )2 + 2�D�S

01 + (
�S

01 + �S
10

)2)
. (64)

Equation (61) shows that, contrary to sequential tunneling,
electron waiting times for cotunneling through a SRL are
negatively correlated, since A2, B, and C are all positive.
However, the correlation is negligibly small, as expected from
the small perturbative changes that cotunneling brings.

Turning now to the Anderson impurity, when neither of
the spin split levels are in the voltage window, we expect the
sequential current to be negligible. Consequently, in such a
case, we also expect the average sequential waiting time 〈τ 〉seq

to be large; that is, on average it takes a long time for electrons
to be transferred from the source to the drain. In contrast,
for an Anderson impurity experiencing Coulomb blockade,
cotunneling provides a quantum pathway for electrons to
tunnel through the system that is not visible in the sequential
physics. This is evident in Fig. 1(a), where 〈τ 〉co is double
〈τ 〉seq; whereas in the tunneling regime, shown in Fig. 1(b),
sequential processes dominate and 〈τ 〉co is comparable to
〈τ 〉seq.

At high voltages, an Anderson impurity behaves as a mul-
tiple reset system, since an electron tunneling to the drain can
leave the system singly occupied or empty, which is shown
in Fig. 1(b) as w(0) = 0 for both sequential tunneling and
cotunneling. In comparison, at low voltages double occupancy
is energetically denied and it behaves as a single reset sys-
tem, which is shown in Fig. 1(a) as w(0) = 0 for sequential

tunneling. Again, however, when cotunneling processes are
included, the WTD displays multiple reset behavior at short
times, as cotunneling processes can leave the system either
singly occupied or empty.

Sequential tunneling through an Anderson impurity dis-
plays nonrenewal statistics in the high voltage regime, which
is seen in Fig. 2(b). Here, due to the strong inelastic electron-
electron interaction when a spin-up and spin-down electron
are occupying the impurity, the correlation between subse-
quent waiting times is negative; a short waiting time is more
likely to be followed by a long waiting time and vice versa.
We note that the Coulomb repulsion is an order of magnitude
greater than the electronic single-particle energies, so that if
the system is doubly occupied it is likely for both electrons
to subsequently tunnel out, which is a short waiting time,
and then for the system to fill and empty again, which is
a long waiting time. Thus, the nonrenewal behavior does
not arise from non-Markovian behavior, as we work under
the Markovian assumption, but rather from the multiple tun-
neling processes contained in the drain jump operator [58].
Importantly, even though sequential processes dominate in
this regime cotunneling still has an effect on the nonrenewal
statisticis, slightly increasing the strength of the negative
correlation between subsequent waiting times.

Multiple authors have shown that when the renewal as-
sumption is satisfied there is a direct link between the cumu-
lants of the WTD and the current cumulants [43,86]. Here,
we focus on the Fano factor, which is the ratio of the zero-
frequency noise to the average current:

F = S(0)

2e〈I 〉 (65)

= 〈n2〉 − 〈n〉2

〈n〉 . (66)
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FIG. 2. Pearson correlation coefficient 〈τ1τ2〉−〈τ 〉2

〈τ2〉−〈τ 〉2 over a range of voltages in (a) the Coulomb blockade regime and (b) the tunneling regime.
The energies of the spin split electronic levels are ε↑ = 0.5 meV and ε↓ = 1.5 meV, the Coulomb repulsion is U = 4 meV, kBT = 75 μeV,
and γ = 0.5kBT.

The Fano factor in terms of waiting times is given by the
randomness parameter [43,58,86]:

R = 〈τ 2〉 − 〈τ 〉2

〈τ 〉2
. (67)

If the renewal assumption holds, then F = R. Indeed, in
Fig. 3(b) one can see that the two parameters diverge at
the same voltage that the sequential correlation coefficient
becomes nonzero, and that the difference between the F and
R increases as the correlation increases. Furthermore, when
cotunneling processes are included, F and R diverge at a later
voltage, following the behavior of the cotunneling correlation.

Since multiple cotunneling rates appear in the drain jump
operator, one might expect that nonrenewal behavior could

be observed even in the Coulomb blockade regime when the
strong Coulomb repulsion does not play a part in the transport.
Figure 2(a) shows that for small voltages the correlation is
nonzero but as with a SRL the magnitude of the correlations
are negligibly small. This is apparent in Fig. 3(a); the pres-
ence of cotunneling changes the Fano factor and randomness
parameter from their sequential values, but they still are not
visibly different. Note that the divergence of the Fano factor
at zero voltage is due to the complete suppression of the
Poissonian shot noise in comparison to the thermal noise.

So far, we have shown plots that are either deep in the
Coulomb blockade regime or well in the tunneling regime.
This is because for certain voltage ranges between these
two extremes the approach produces unphysically negative
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FIG. 3. (Color online.) Exact Fano factor F and its prediction from waiting times under the renewal assumption R over a range of voltages
in (a) the Coulomb blockade regime and (b) the tunneling regime. The energies of the spin split electronic levels are ε↑ = 0.5 meV and
ε↓ = 1.5 meV, the Coulomb repulsion is U = 4 meV, kBT = 75 μeV, and γ = 0.5 kBT.
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probability densities for small waiting times. For a SRL, these
unphysical WTDs clearly occur when ε < eV and second-
order contributions actually reduce the total current, which
amounts to negative regularized cotunneling rates. From the
point of view of the theory, the total transition rate �00 =
γ

2 nF (ε − μS )(1 − nF (ε − μD )) + �(2) is still positive, but
�(2) can be negative [12,13]. In such a regime and for small τ

(∼ 103 fs), the WTD for a SRL is negative, which is shown in
Eq. (59) when �(2) < 0.

For an Anderson impurity, the situation is more complex;
it appears that when at voltages where cotunneling processes
dramatically decrease the sequential current, the WTD is
negative for small τ . It is not yet clear how to resolve this
interesting pathology; evidently there should be a well-defined
WTD for all voltage ranges. This positivity violation could be
an artifact of only going to second-order perturbation theory;
on the other hand, it may not be physically correct to include
negative rates at all in the definition of the jump operators.

IV. CONCLUSION

In this paper, we have extended the Markovian master
equation technique for calculating WTDs in quantum electron
transport to include cotunneling effects, and demonstrated
the method for transport through a SRL and an Anderson
impurity. Additionally, we have demonstrated that, similar
to the WTD for sequential tunneling through a SRL, the
cotunneling WTD in Laplace space provides information on
the individual source-drain couplings. Of particular interest
is how cotunneling processes affect the nonrenwal statistics

already present in the Anderson impurity, where electrons
experience strong inelastic electron-electron interactions. We
have shown that for large voltages, cotunneling increases the
magnitude of the nonnegligible negative correlation between
waiting times of subsequent electron tunnelings to the drain,
which is caused by a strong electron-electron interaction,
and thus increases the nonrenewal behavior shown by the
difference in the Fano factor and the randomness parameter.
However, in the Coulomb blockade regime where cotunnel-
ing processes dominate, the correlation between subsequent
waiting times is negligible and the system displays renewal
behavior.
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APPENDIX: COTUNNELING RATES

In this Appendix, we derive the cotunneling rates shown in
Eqs. (20), (22), and (23), from the starting point of Eq. (19).
We note that the derivation generally follows the regulariza-
tion procedure detailed by Koch et al. [12,13]. As an example,
consider the case of elastic tunneling through an initially
empty dot. The cotunneling rate from the source to the drain
is

�SD
00 = 2π lim

η→0+

∑
σ

∑
i,f

∣∣〈f | 〈0| HD,σ
T

1

Ei,0 − H0 + iη
H

S,σ
T |0〉 |i〉∣∣2

WS
i,0W

D
i,0 × δ(εi,s − εf,d ), (A1)

where we have summed over σ to account for tunneling through either the ↑ or ↓ level. The initial state of the dot is |0〉 ⊗ |i〉
and the final state is aσ a†

σ |0〉 ⊗ a†
νD

aνS
|i〉. To span the possible configurations after the cotunneling, the rate is summed over

the electrode states νS and νD . Additionally, it is assumed that the metal electrodes’ density of states is constant. With these
assumptions, the rate reduces to

�SD
00 = γ Sγ D

2π
lim

η→0+

∫
dε

∣∣∣∣ 1

ε − ε↑ + iη
+ 1

ε − ε↓ + iη

∣∣∣∣nF (ε − μS )[1 − nF (ε − μD )]. (A2)

In general then, elastic cotunneling rates have the form

�SD
nn = γ Sγ D

2π
lim

η→0+

∫
dε

∣∣∣∣ 1

ε − E1 + iη
± 1

ε − E2 + iη

∣∣∣∣nF (ε − μS )[1 − nF (ε − μD )], (A3)

where E1 and E2 are derived from the cotunneling pathways involved in the rate, and the ± is only positive for elastic tunneling
through an initially empty or initially doubly occupied system. Similarly, inelastic cotunneling rates have the general form

�
αβ
σ̄σ = γ αγ β

2π
lim

η→0+

∫
dε

∣∣∣∣ 1

ε − εσ̄ − U + iη
− 1

ε − εσ̄ − iη

∣∣∣∣nF (ε − μS )[1 − nF (ε − μD + εσ − εσ̄ )]. (A4)

The expanded form of either Eq. (A3) or Eq. (A3) consists of two square terms and the real component of the cross term; for
example,

�SD
nn = γ Sγ D

2π
lim

η→0+

[ ∫
dε

1

(ε − E1)2 + η2
nF (ε − μS )[1 − nF (ε − μD )]+

∫
dε

1

(ε − E2)2 + η2
nF (ε − μS )[1−nF (ε − μD )]

± 2�
∫

dε
1

ε − E1 + iη
· 1

ε − E2 − iη
nF (ε − μS )[1 − nF (ε − μD )

]
. (A5)
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It has been noted in the literature that the intermediate
virtual state in the dot has a finite width, which is propor-
tional to the coupling strength η ∼ γ , and so a divergence
is avoided in the denominator of the integrand [12–14,79].
Additionally, the two square terms in the overall rate include
not only the rate of that particular event from cotunneling,
but also the contribution to that process from sequential
tunneling, as a cotunneling event can be mimicked by two
sequential tunneling events. Thus, it is necessary to remove
this sequential overcounting by expanding the integrands of
the first two integrals in Eq. (A5) in a power series about η,
and discarding the η−1 term as with the γ Sγ D prefactor it
is overall O(γ ). For a simple system such as a SRL, some
groups choose to remove the overcounting and then compute

the rate numerically with Cauchy’s principal value [14]. How-
ever, we follow the approach of Koch et al. and evaluate the
integral analytically by transforming it to a contour integral
over a semicircle in the upper half-plane of complex space
and using residue theory. The final expressions for the elastic
and inelastic rates are given in Eqs. (20) and (22), where the
trigamma functions ψ (1)(x) come from the squared terms in
the rate, the digamma functions ψ (x) come from the cross
term, and both originate from the complex poles of the Fermi-
Dirac distributions nF (ε − μS/D ), known as the Matsubara
frequencies.

The cotunneling rate for a SRL is a simpler process, as
there is only one pathway through the system, and so only the
squared term appears in the expanded integral.
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