
PHYSICAL REVIEW B 98, 245401 (2018)

Nonlocal orbital-free kinetic pressure tensors for the Fermi gas
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and Faculty of Physics, University of Bucharest, Atomistilor 405, RO-077125 Magurele, Romania

(Received 27 August 2018; published 3 December 2018)

A nonlocal density functional for the kinetic pressure tensor of a Fermi gas is derived. The functional is
designed to reconcile the quantum hydrodynamic model with the microscopic approaches, both for homogeneous
equilibrium and linear dynamic configurations. The derivation paves the way to improving and implementing
further time-nonlocal functionals. The present approximation is systematically tested in and beyond the linear
regime for the Fermi gas, as well as for some small sodium clusters, proving that it is quantitatively superior to
some other density functionals.
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I. INTRODUCTION

Systems containing (partially) degenerate fermionic
species (warm-dense matter [1], nanoparticles [2], metallic
clusters [3], semiconductors, thin metal films [4], dense
astrophysical objects [5], etc.) have attracted great interest in
the past decades, especially due to recent experimental and
technological progress. In particular, nanosystems exhibiting
quantum plasmonic behavior became one of the paradigms
for future nanoelectronic devices [6,7] due to their ability
to enhance and localize electromagnetic radiation below the
diffraction limit [8].

In general, such systems contain an ionic and one or
more fermionic (electrons in metals, electrons and holes in
semiconductors) species. Due to their large inertia and lo-
calized spatial distribution, ions can be safely considered as
being purely classical objects in most scenarios. The fermions,
especially at low temperatures and high densities, display
strong quantum features following closely the Fermi-Dirac
statistic. Naturally, quantum theoretical methods are required
to describe the physics behind quantum Fermi systems, both
at equilibrium and during their dynamics.

In practice, kinetic (quantum Wigner [9,10]) and micro-
scopic (Hartree-Fock-like [11], time-dependent density func-
tional theory [12]) theories offer high precision to the nu-
merical complexity ratio. Unfortunately, the numerical com-
plexity of microscopic approaches scales with the number
of particles, while the kinetic approaches involve (6+1)-
dimensional partial differential equations. For example, inves-
tigating within density functional theory (DFT) large metal
clusters (∼101−2 nm and N ∼ 103−4 particles) in full three-
dimensional (3D) geometry remains a prohibitive numerical
task even with the new generation of CPU processors.

In the given context, a simpler model has gained recog-
nition in the past decades, namely the quantum hydrody-
namic model (QHD) [4,13]. Although in the literature it
appears under different names—(time-dependent-) Thomas-
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Fermi [14–16], quantum hydrodynamic theory [17], or quan-
tum fluid theory [18]—it consists mainly of two conservation
laws: a continuity equation for the total density of parti-
cles n(r, t ) and a momentum equation for the total density
of current j(r, t ) [alternatively, the average velocity field
u(r, t ) = j(r, t )/n(r, t )]. The model has been applied with a
fair amount of success to a variety of systems: nuclei [19,20],
atomic and molecular systems [21], metallic clusters [14,16],
quantum plasmas [22,23], etc.

Similar to classical hydrodynamics, the QHD lacks a
closure relation between the kinetic pressure tensor �̂(r, t )
and the other lower moments of the distribution function:
density and current. Within the DFT, in particular through
the Runge-Gross theorems [12], it can be shown that this
tensor is a unique (exact and unknown) density functional
�̂(r, t ) ≡ �̂[n(r, t )].

The branch of DFT concerned with this universal func-
tional (or with better approximations of it) is known as orbital-
free-DFT (OF-DFT) [24] and it dates back to the founda-
tions of quantum physics. Alternatively, OF-DFT deals with
functionals for the kinetic energy, which is equal to the trace
of the kinetic pressure tensor. Despite being a long-standing
problem, most applications of the QHD still use a functional
developed almost a century ago, namely the Thomas-Fermi
(-Bohm) approximation (also known as Thomas-Fermi–von
Weizsacker [25]):

�̂[n] = PTF[n]1̂ − λ
h̄2

4m2
n∇ ⊗ ∇ ln n, (1)

with PTF[n0] = 2EF [n0]n0/5m the Thomas-Fermi pressure,
1̂ the identity tensor, while the second term is a reformu-
lation of the Bohm potential [26], which we shall refer to
as macroscopic Bohm pressure. Historically, the λ constant
spanned the [0,1] interval. It has been emphasized [15,27]
and generally accepted that λ = 1 for bosonic and λ = 1/9
for fermionic systems (in three dimensions at T = 0 K). A
detailed discussion on this matter will be presented throughout
this work.

The TF-Bohm approximation belongs to a more general
scheme called gradient expansion [28]. Being derived from

2469-9950/2018/98(24)/245401(13) 245401-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.245401&domain=pdf&date_stamp=2018-12-03
https://doi.org/10.1103/PhysRevB.98.245401


D. I. PALADE PHYSICAL REVIEW B 98, 245401 (2018)

the microscopic equilibrium of the homogeneous electron
gas (HEG), all these schemes are valid only for the nearly
free stationary Fermi gas. Trying to recreate simple dynamic
phenomena such as the propagation of an electrostatic wave
through a HEG results in the impossibility of TF-Bohm to
reproduce (within the QHD) even the dispersion relation in
the long-wavelength limit [29]. The previous example hides
a very serious pathology: the kinetic/microscopic dynamic
behavior of fermionic systems is not captured by the func-
tional (1). From this point of view, the limitations of QHD
are surprisingly rarely brought into attention [17,29–31]. The
general recipe is to use the approximation (1) with λ = 1/9
for equilibrium configurations, while in the linear regime the
functional is modified to(

δ�̂

δn

)
= 9

5

(
δPTF[n]

δn

)
+ λ

(
δ�̂B[n]

δn

)
,

with λ = 1. This scheme is designed to work only in the
limit of high frequency and short wavelengths, its mathemat-
ical inconsistency being undeniable evidence that TF-Bohm
(and its extensions [28]) are invalid during dynamics. Given
these limitations, there should be serious doubts regarding the
results of TF-Bohm applications in fully nonlinear regimes
dominated by wave-mixing on a wide spectrum of frequencies
and wave numbers [22,32,33].

One of the first solutions [34,35] to the inaccuracy of
the TF-Bohm functional was designed for the equilibrium
configurations of metallic and semiconductor systems. The
main proposal was that a density functional should have a
nonlocal character in space in order to reproduce the static
linear-response function. Recently [17,36], the idea has been
extended, stressing that a density functional for the free energy
of an electron gas should reproduce within QHD the dynamic
linear-response function [Lindhard, random phase approxima-
tion (RPA) polarization function].

There is another class of state-of-the-art functionals capa-
ble of solving at some level the above-mentioned problem.
Comparison with these functionals is not made in the present
work since they are either designed solely for the linear
regime [37,38] or they are current-density functionals that
need a phenomenological parameter [39–41]. Moreover, most
of them [40,41] do not account properly for the wave-number
dependence of the functionals.

The functionals derived in [17,36] are designed to recon-
cile linearized QHD with the kinetics of an electron gas in
asymptotic spectral regions, low (ω � h̄k2/m) or high (ω �
h̄k2/m) frequency, and they include nonzero temperature
effects. At T = 0 K they read �̂0

α,λ[n] = α�̂TF[n] + λ�̂B[n],
where

(α, β ) =

⎧⎪⎨
⎪⎩

(1, 1
9 ) for ω � h̄k2/2m, k � kF ,

( 3
5 , 1) for ω � h̄k2/2m, k � kF ,

( 9
5 , 1) for ω � h̄k2/2m.

Their most important feature is the analytical simplicity,
which passes as facility in numerical implementation. More
importantly, the lack of a unified expression over all spectral
regions makes these functionals useless for physical scenarios
in which high- and low-frequency modes coexist during dy-
namics on a wide range of wavelengths [32,33]. This is almost
always the case for systems relevant to nanoplasmonics in

nonlinear regimes when high-frequency electrostatic waves
are present simultaneously with low-frequency ion dynamics
and, sometimes, short-wavelength density oscillations. Fi-
nally, there are situations when either the velocity field has
rotational components [∇ × u(r, t ) �= 0], or the assumption
that ∇ · �̂[n] = n∇(δT [n]/δn), where T [n] is the kinetic
energy functional, is not true, therefore invalidating a standard
[14,16,17,29] field theoretical description. For these reasons,
the goal of the present work is to construct a time-nonlocal
kinetic pressure density functional (KPDF) that can reproduce
concurrently the equilibrium as well as the dynamical linear
configurations of a Fermi gas.

The paper is organized as follows: in Sec. II the problem is
posed in the contexts of TD-DFT and quantum Wigner equa-
tion. The form of the KPDF is motivated from microscopic
analysis, and, imposing the associated constraints for equilib-
rium and linear response, it is explicitly derived. Through a
reasonable approximation, the time-nonlocality of the func-
tional is reformulated as a wavelike equation. In Sec. III
the validity of the proposed approximation is investigated
from a spectral perspective. Extensive comparisons between
the KPDF and the microscopic results are performed for
the dynamics of a Fermi gas. Finally, realistic small sodium
clusters are simulated to establish the qualitative advantages
of the KPDF over existing approximations.

II. THEORY

A. Framework

Let us consider an N -body fermionic system. For sim-
plicity, relativistic, temperature, spin, or magnetic effects are
neglected. Although not involved in the derivation of the
functional, a two-body interaction (e.g., Coulomb) is allowed
in addition to an external potential vext. The microscopic
description offered by TD-DFT [12] assigns to each particle
a pseudo-orbital ψk (r, t ),∀ k = 1, N , which obeys the Kohn-
Sham (KS) equations:

ih̄∂t |ψk〉 = Ĥ |ψk〉,

Ĥ = p̂2

2m
+ v̂eff, (2)

where Ĥ is the single-particle Hamiltonian operator, m is
the fermionic mass, while veff is the effective potential,
which, aside from the external potential, includes a mean-
field interaction and an exchange-correlation term [42] veff =
vext + vmf + vxc. The ground state is subject to an eigenvalue
problem: εk|ψ0

k 〉 = Ĥ0|ψ0
k 〉.

An alternative description can be rendered either start-
ing from the N -body quantum Liouville equation all the
way through a BBGKY hierarchy [43], or by defining the
single-particle density operator from the KS orbitals ρ̂ =∑

k pk|ψk〉〈ψk|. Both ways deliver the so called quantum
Wigner equation [9,10] for ρ̂:

ih̄∂t ρ̂ = [Ĥ , ρ̂]. (3)

Within the position representation, one can define the hydro-
dynamic quantities as follows: total density of particles,

n(r, t ) =
∑

k

pk|ψk (r, t )|2 = lim
r′→r

ρ(r, r′, t ),
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total current density,

j(r, t ) =
∑

k

pkjk (r, t ) = h̄

2mi
lim
r′→r

(∇r − ∇r′ )ρ(r, r′, t ),

and the kinetic pressure tensor �̂(r, t ),

�̂tot(r, t ) = − h̄2

4m2

∑
k

pknk∇ ⊗ ∇ ln nk +
∑

k

pk

jk ⊗ jk
nk

= − h̄2

4m2
lim
r′→r

(∇r − ∇r′ ) ⊗ (∇r − ∇r′ )ρ(r, r′, t ),

(4)

with nk = |ψk|2 the single-particle density and jk =
h̄/2mi(ψ∗

k ∇ψk − ψk∇ψ∗
k ) the single-particle current. Either

starting from the microscopic KS Eqs. (2) together with a
Madelung representation of orbitals ψk = n

1/2
k exp(iSk/h̄), or

simply by using the Wigner Eq. (3), one can derive [4,18] the
quantum hydrodynamic model:

∂tn + ∇j = 0 (5)

∂t j + ∇
(

j ⊗ j
n

)
+ n

m
∇veff + ∇ · �̂ = 0. (6)

In the momentum equation, �̂ ≡ �̂tot − j ⊗ j/n denotes
the reduced kinetic pressure tensor, which is exactly the topic
of the present paper. The Runge-Gross theorems prescribe
[12] that the system (5) and (6) is valid and �̂ ≡ �̂[n]. For
future purposes, let us decompose �̂tot in the microscopic
Thomas-Fermi pressure P̂TF and the microscopic Bohm pres-
sure P̂B :

P̂TF =
∑

k

nkuk ⊗ uk, (7)

P̂B = − h̄2

4m2

∑
k

nk∇ ⊗ ∇ ln nk, (8)

where uk = jk/nk is the single-particle velocity field. These
definitions are consistent with the historical [44] prescription
of the Bohm potential.

B. Two Fermi systems

Let us consider two similar systems S1 and S2, both
depicting the N -body d-dimensional homogeneous Fermi gas
(veff = 0, in the thermodynamic limit N → ∞) : S1 with
periodic and S2 with null Dirichlet boundary conditions on
a box of length L. S1 describes free particles (continuum
fermions) while S2 describes fully confined fermions. The
microscopic stationary orbitals read

ψS1

k (r, t = 0) = L−d/2e−ik·r,

ψS2

k (r, t = 0) = (L/2)−d/2 ∏d
j=1 sin(kjxj ),

with k = 2π/Ln. By means of the Madelung representation,
in S1: nk (r, t ) = L−d/2 and Sk (r, t ) = k · r, while in S2:
nk (r, t ) = (L/2)−d sin(kjxj )2 and Sk (r, t ) = 0. This can be
interpreted as follows: in S1 the densities nk have bosonic
behavior (the same values ∀k) while the phases Sk have

TABLE I. Macroscopic quantities and microscopic pressures for
the systems S1,2 at homogeneous equilibrium and during linear
dynamics.

S1 S2

n(r, t = 0) n0 n0

j(r, t = 0) 0 0
�̂(r, t = 0) PTF[n0]1̂ PTF[n0]1̂
P̂TF(r, t = 0) PTF[n0]1̂ 0
P̂B (r, t = 0) 0 PTF[n0]1̂
δ�̂(r, t ) δ�̂(r, t ) δ�̂(r, t )
δP̂B (r, t ) − h̄2

4m2 ∇ ⊗ ∇δn − h̄2

4m2 ∇ ⊗ ∇δn + other
δP̂TF(r, t ) �= 0 0

fermionic behavior (uniform distribution). The converse is
true in S2.

All macroscopic quantities, both at equilibrium as well
as in the linear regime [under the influence of a small ef-
fective potential δveff(r, t )], can be computed analytically.
Table I shows, as completely as possible, these results [PTF =
2EF [n0]n0/5m, the Fermi energy EF = h̄2k2

F /2m, and the
Fermi wave vector kF = (3π2n0)1/3].

From a macroscopic perspective, both systems appear to
be identical. Nonetheless, upon investigating the microscopic
pressures at equilibrium, one can conclude that the macro-
scopic Thomas-Fermi pressure �̂TF[n] = PTF[n]1̂ is univer-
sal, whereas its nature is related to the fermionic nature of
the system: in S1 the fermionic character is exhibited by
phases (velocities), therefore the microscopic TF reproduces
the whole macroscopic TF. In S2 the converse is true, with
the macroscopic TF being reproduced by the microscopic
Bohm. The presence of a macroscopic Bohm pressure �̂B =
−h̄2/4m2n∇ ⊗ ∇ ln n at equilibrium can be assumed since
the density is uniform and gives null contribution.

Within linear dynamics, the universality of the macro-
scopic Bohm term �̂B with a prefactor λ = 1 that is spectrally
independent is suggested by the presence of −h̄2/4m2∇ ⊗
∇δn for both systems. Moreover, the deviations of �̂ from
a TF-Bohm functional cannot be assigned only to the micro-
scopic Bohm term.

In general cases, expanding in Eqs. (7) and (8) the veloci-
ties and the densities around their average uk = u′

k + u, nk =
n/N + n′

k yields

P̂TF = j ⊗ j
n

+ P̂ ′
TF,

P̂B = �̂B[n] + P̂ ′
B,

P̂ ′
TF + P̂ ′

B = �̂TF[n] + �̂NL[n].

This decomposition underlines the fact that the advec-
tion pressure j ⊗ j/n and �̂B are zero-order average terms
that should be universal. The macroscopic TF pressure is
a consequence of the fermionic character encoded in both
microscopic TF and Bohm terms. The residue up to the total
real pressure tensor is denoted as �NL = �̂ − �̂TF − �̂B and
will be investigated later. It must be emphasized that its origin
is also the fermionic character of the system and the coupling
between PTF and PB .
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TABLE II. Asymptotic expansions for the Lindhard function and
the LRF reproduced with �̂0

α,λ functionals.

A χα,λ/A χL/A

ω = 0, k � kF − 3mn0
h̄2k2

F

1
α

− 3λk2

4α2k2
F

1 − λk2

12k2
F

ω = 0, k � kF − 4mn0
h̄2k2

1
λ

− 4αk2
F

3k2λ2 1 + 4k2
F

5k2

ω → ∞ k2n0
mω2 1 + αk2k2

F
h̄2

3m2ω2 + λk4 h̄2

4m2ω2 1 + 3k2k2
F

h̄2

5m2ω2 + k4 h̄2

4m2ω2

C. Pressure tensors and linear response

Linearizing around homogeneous equilibrium n(r, t ) =
n0 + δn(r, t ), j(r, t ) = 0 + δj(r, t ), and �̂(r, t ) = �̂0 +
δ�̂(r, t ) in the QHD (5) and (6) and taking the space-time
Fourier transform, F, an exact equation for the functional
derivative of the pressure can be found:

F

(
δ�̂kk (r, t )

δn(r ′, t ′)

)
= δ�kk

δn
(ω, k) = ω2

k2
− n0

mχ (ω, k)
, (9)

where χ (r, r ′, ω) = δn/δveff is the linear-response (polariza-
tion) function (LRF), and the superscript kk indicates the
ek × ek component of the tensor. For the fermionic gas, χ can
be analytically computed as a Lindhard function [45]:

χL(ω, k) = ± dn0

2EF

kF

k
�d

(
ω + iη

kvF

∓ k

2kF

)
,

�d (z) =
∫ 1

0
dx xd−1

∫
d�d/�d [z − x cos(θ )]−1,

�3(z) = z

2
+ 1 − z2

4
log

z + 1

z − 1
.

Equation (9) asserts for any functional �̂[n] a LRF χ�.
In Table II we compare the asymptotic χL and the LRF
associated with �0

α,λ. By direct comparison, the coefficients
found in [17] can be seen to be valid.

Ultimately it must be emphasized that in the literature
[17,36], first-order gradient corrections of the OF functionals
are called Bohm due to their resemblance with the original
Bohm potential. In the present work, it is shown that, beyond
terminology, such corrections (consequently, the values of λ)
do not originate from microscopic Bohm but rather from the
coupling between microscopic Bohm and microscopic TF.

D. A nonlocal functional

The standard philosophy of orbital-free-DFT is based on
the local density approximation (LDA): a functional that
reproduces exactly the pressure (through a set of constrains)
for a specific system (usually homogeneous) is found, and its
closed form is generalized to any density n(r, t ) (the LDA
limit). The present functional will be derived imposing the
above-mentioned equilibrium and linear dynamics constraints
(already used in the literature [17]):

�̂[n0] = PTF[n0]1̂, n0 = const, (10)

δ�kk

δn
(ω, k) = ω2

k2
− n0

mχL(ω, k)
. (11)

Note that the constraint (11) does not include properly [17]
the exchange-correlation effects, but it relies on the presence
of a LDA exchange-correlation potential in the effective po-
tential used in the QHD equations (6). In Sec. II B it has
been suggested based on microscopic considerations that any
KPDF can be decomposed in a zero-order macroscopic Bohm
and a first order, fermionic, macroscopic TF pressure along
with another unknown term. This decomposition is proven
in detail from a kinetic perspective in Appendix A 1. Taking
into account the analytic form of the Lindhard function in the
Fourier domain for the condition (11), it becomes obvious that
δ�̂(r, t )/δn(r ′, t ′) must be nonlocal in space and time. The
locality of the TF-Bohm terms implies time-nonlocality of
the residual term �̂NL[n]. By dimensional analysis (Appendix
A 1),

�̂[n] = − h̄2

4m2
n∇ ⊗ ∇ ln n + PTF[n]1̂ + �̂NL[n],

�̂NL = h̄2

2m2

∫
dx ′δ(x − x ′)(∇r ⊗ ∇r′+∇r′ ⊗ ∇r )ρ̃(x, x ′),

ρ̃(x, x ′)=
∫

dy dy ′n1/2(y)O(x, y, x ′, y ′; n(x), n(x ′))n1/2(y),

where x = (r, t ), y = (r′, t ′), and the double density-
dependent kernel O(x, y, x ′, y ′; n1, n2) has been introduced.
Further detailed calculus is presented in Appendix A 1. Due
to translational invariance of the ground-state density n0 =
const, the kernel is assumed invariant, O(x, y, x ′, y; n0, n0) ≡
O(x − y, x ′ − y ′; n0, n0), and the constraints (10) and (11)
are worked out within a Fourier representation O(ξ, ζ ; n1, n2)
with ξ ≡ (ω, k). The outcome, together with a supplementary
ansatz and the LDA limit,

O(x, y, x ′, y ′; n(x), n(x ′)) ≡ lim
n1→n(x)
n2→n(x ′ )

O(x, y, x ′, y ′; n1, n2),

lead us toward the central result of this work:

�̂NL[n] =
∫

dx ′L(x, x ′)[n1/2(x)D(x ′) + n1/2(x ′)D(x)],

L(x, x ′) = δ(x − x ′)(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r )(∇r∇r′ )−1,

D(x) = 1

2

∫
dy

∫
dξ e−iξ (x−y)φ(ξ ; n(x))n1/2(y),

φ(ξ ; n0) = ω2

k2
− n0

mχ (ω, k)
−

(
δ�B

δn
+ δ�TF

δn

)
n0

. (12)

The functional (12) presents two levels of complexity.
First, the operator L(x, x ′) involves solving an intricate 6D
partial differential equation. This can be overcome either by
considering various symmetries of the system or using the
free-energy density as a trace of the pressure tensor: τNL[n] =
Tr�NL[n]:

�̂NL ≈ τNL[n]∇ ln n ⊗ ∇ ln n,

∇ · �̂NL ≈ ∇τNL[n].

Both choices are consistent with the conditions (10) and
(11). The second difficulty is related to the time-nonlocality,
which requires convoluting the kernel φ with the density at
all times. The convolution is partially removed by the causal
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FIG. 1. (a), (c) Real and (b), (d) imaginary parts of the Lindhard function (red) and the approximative LRF χ app (blue, dashed) at q = 1
(a), (b) and w = 1 (c), (d).

character of the LRF χL, which makes D causal:

D(r, t )= 1

2

∫
dr′

∫ t

−∞
dt ′φ(|r−r′|, |t−t ′|; n(r, t ))n(r′, t ′)1/2.

(13)

Even though this form can be implemented in principle, it
represents a tremendously difficult numerically workload. A
workaround this problem is presented.

E. An approximate functional

The formula (13) suggests that φ(|r − r′|, |t − t ′|; n(r, t ))
can be seen as a propagator, i.e., a Green function, which in
turn could be given by an integral equation for D. On the
other hand, local (differential) equations have Green functions
that in the Fourier representation can be expressed as rational
functions. Motivated by this idea and inspired by Drude-like
approximations of the dielectric constant together with the
asymptotic behavior of the kernel φ, the following approxi-
mative form is proposed:

φapp(ω, k) ≈ φ∞
0

ω2 − iγ (k)ω + t2(k)

ω2 − iγ (k)ω + t1(k)
(14)

designed to reproduce the kernel φ(ω, k) exactly at the
asymptotic limits ω = 0, ω → ∞ and the midline inside
the particle-hole continuum, i.e., ω = h̄2k2/2m + h̄k/m. The
presence of the imaginary term has a threefold importance: it
helps reproduce the exact kernel, it models the dissipative phe-
nomena (Landau damping), and it makes the kernel analytical
in the complex plane. The last property implies causality and,

consequently, the validity of the F-sum rule:

− 2

π

∫ ∞

−∞
ω Im[χ app](ω, q ) = n0q

2

m
.

Skipping the details of the calculus presented in Appendix
A 2, the approximation (14) allows us to write a wavelike
equation for D with nonconstant coefficients and source:

[∂t,t − γ̂ ∂t − t̂1]D = 4h̄2k2
F

15m2
[∂t,t − γ̂ ∂t − t̂2]n1/2, (15)

where the operators γ̂ [n], t̂1[n], and t̂2[n] and their action on
spatial functions are defined in Appendix A 2. The term D is
now an approximation for the one prescribed by Eq. (13), but
the one that should be used in practice as it is much easier to
compute numerically thanks to its local-in-time nature.

Through the identity τ [n] = Tr�̂[n] one can develop a
field-theoretical QHD [15–17] where the approximation ∇ ·
�̂[n] = n∇(δT [n]/δn) holds and the kinetic density func-
tional

T [n] = 2
∫

dx dx ′δ(t − t ′)n(x)1/2φ(x − x ′; n(x))n(x ′)1/2.

At this point, let us collect the full prescription of the
functional (referred to from now on as KPDF), which will
always be used in practice instead of the one given in Eq. (13)
as it is orders of magnitude easier to implement numerically:

�̂[n] = h̄2nk2
F

5m2
1̂ − h̄2

4m2
n∇ ⊗ ∇ ln n + �̂NL[n],

�̂NL[n] =
∫

dx ′L(x, x ′)[n1/2(x)D(x ′) + n1/2(x ′)D(x)],
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FIG. 2. (a), (b) Real and (c), (d) imaginary parts of the Lindhard function (a), (c) and the approximative LRF χ app (b), (d).

L(x, x ′) = δ(x − x ′)(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r )(∇r∇r′ )−1,

(∂t,t − γ̂ ∂t − t̂1)D = 4h̄2k2
F

15m2
(∂t,t − γ̂ ∂t − t̂2)n1/2,

∇ · �̂NL[n] ≈ 4∇(n1/2D).

III. RESULTS

A. Accuracy of the approximative kernel

Before testing the validity and the improvements brought
about by the KPDF for realistic systems, it is important to
understand what is lost along the approximation (15). The
best picture is provided by the comparison between the exact
χL(w, q ) and the χ app(w, q ) associated by Eqs. (9) and (14)
with D. From now on, the following scaling will be adopted:
w ≡ mω/h̄k2

F , q ≡ k/kF , χ ≡ χv2
F .

Since, by design, the LRF’s should agree well asymp-
totically (w � q2 and w � q2), in Fig. 1 we plot the real
and imaginary parts of χL(w, q ) and χ app(w, q ) at w = 1
and q = 1, where large discrepancies are expected. The exact
profile of χL is fairly well interpolated by χ app in between
the asymptotics. As a pitfall, a smooth tail appears in the
imaginary part of χ app(w, q ) outside the particle-hole contin-

uum, indicating a pathological presence of the damping. This
behavior is a consequence of the smooth analytic form (14),
which cannot reproduce the logarithmic discontinuities of χL

(its derivatives).
A comprehensive comparison is shown in Fig. 2 for the

same quantities as in Fig. 1 but on the whole spectrum (w, q )
as a density-plot.

As expected, the approximative KPDF works very well
asymptotically, outside the particle-hole continuum defined
by w = max(q2 ± 2q, 0). While inside this region errors up
to 50% are expected, the trends of the Lindhard function are
reproduced. This is expected to lead to good qualitative behav-
ior in realistic simulations. Other approximations of the kernel
φ compatible with time-locality and capable of reproducing
even better the Lindhard function might be designed, but the
present work is concerned with the simplest of them as it is
the easiest to implement numerically.

B. Extensive Monte Carlo tests

The results shown in Figs. 1 and 2 indicate the levels of ac-
curacy for the approximative KPDF in the linear regime from
a spectral perspective. However, in realistic scenarios, the
external potential is induced as an initial value quantity simul-
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FIG. 3. (a) Generic random potential (red, full line) and the as-
sociated ground-state density profile of the Fermi gas (blue, dashed);
(b) spatial profile of the z, z component of microscopic pressure (red,
full line) and the �̂0

1,1 approximation (blue, dashed); (c) the spatial
profile for the z, z component of the nonlocal microscopic (red, full
line), the KPDF (blue, dashed), and �̂0

1,1/9 (black, dashed) pressure.

taneously affecting multiple spectral regions. Even more, one
cannot estimate how the second-order mode coupling, which
is enabled beyond the purely linear regime, will be reflected
in the KPDF. Finally, will the errors from the particle-hole
continuum region have only a quantitative impact or also a
qualitative one, perhaps leading to unphysical behaviors? To
answer all these questions in an exhaustive manner, a simple
toy system is used.

0 2 4 6 8
0

200

400

600

800

1000

1200

1400

error���

KPDF

1,1 9
0

3 5,1
0

FIG. 4. Distribution of error in the Monte Carlo ensemble of
stationary profiles provided by KPDF (red), �̂0

1,1/9 (blue), and �̂0
3/5,1

(green).

The system is a 3D Fermi gas under spatial periodic
boundary conditions. For the stationary regime, the gas is
assumed in its ground state under the influence of a static
effective potential v0(z), while for dynamics the system is
considered to be found in a homogeneous ground state at
t < 0 and subjected to an effective potential v(z, t ) at t � 0.
The unidirectional dependency on Oz axes is chosen for sim-
plicity, without spoiling the main conclusions of the analysis.
The potential v(z, t ) supports a Fourier decomposition:

v(z, t ) =
∫

dω dk A(ω, k)e−i(ωt−kz).

Due to translational invariance in the r⊥ = (x, y) plane, the
KS pseudo-orbitals for each particle can be represented as

�k(r⊥, z, t ) = e−ik⊥r⊥e−i
h̄k2⊥
2m

tψkz
(z, t ),

with k = k⊥ + êzkz obeying the KS equations:

ih̄∂tψkz
(z, t ) =

[
− h̄2

2m
∂zz + v(z, t )

]
ψkz

(z, t ) (16)

at homogeneous stationarity: ψkz
(t = 0) = exp−ikzz, where

kF � kz � kF . The macroscopic quantities can be obtained
after averaging over the orthogonal degeneracy k⊥:

n(z, t ) = 3

4k3
F

∫ kF

−kF

(
k2
F − k2

z

)|ψkz
|2dkz,

jz(z, t ) = 3h̄

4mk3
F

∫ kF

−kF

(
k2
F − k2

z

)
Im

(
ψ∗

kz
∂zψkz

)
dkz,

�⊥,⊥(z, t ) = 3h̄2

8m2k3
F

∫ kF

−kF

(
k2
F − k2

z

)2|ψkz
|2dkz,

�z,z(z, t ) = 3h̄2

4m2k3
F

∫ kF

−kF

(
k2
F − k2

z

)|∂zψkz
|2dkz.

Other quantities are j⊥ = 0, �⊥,z = �z,⊥ = 0.
Equation (16) is solved numerically using a pseudospectral

method [46] on a uniform 1D grid. Variables and quantities
are scaled as follows: density by ground state n0, current
by vF n0, pressure by 2n0EF /m, the potential with EF , the
space variable z with k−1

F , and time by (EF /h̄)−1. The spatial
domain L = πN is discretized in 210 equidistant points, while

245401-7
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FIG. 5. Temporal (left) and spatial (right) profiles of the pressure at a specific point in space and time, respectively. The profiles are
computed via the microscopic method (red, full line), KPDF (blue, dashed), and �̂0

9/5,1 (black).

N = 200 was chosen to resolve the thermodynamic limit
N → ∞ of a Fermi gas. The temporal evolution is done
via an operator-splitting technique with constant time steps
δt ≈ 10−3 to ensure reasonable (�10−2%) conservation of
total norm, energy, and momentum. Testing the approximative

KPDF is equivalent to comparing �
app
z,z against the exact,

microscopic �z,z, the former being computed from the exact
density profile obtained from microscopic simulations.

At this point, the purpose is to test the KPDF in
complicated scenarios, possibly beyond the linear regime,
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and compare it with the more recent functionals �̂0
α,λ [17].

This will be achieved considering a Monte Carlo ensemble of
effective potentials, each one with a wide spectrum. The am-
plitudes A(ω, k) for each potential v(z, t ) are randomly gen-
erated with a probability P (A,w, q ) ∼ exp[−5|A|2]�(3 −
|w|)/(q2 + 1). With this probability function, the system is
forced to go beyond the linear regime, on slow and fast
timescales, at short and long wavelengths.

Stationary states are resolved solving Eq. (16) using the
imaginary-time method. In Fig. 3(a) we plot a generic po-
tential (red, full line) from the ensemble and the associated
total density (blue, dashed). It is found that for ground states,
even the TF-Bohm (λ = 1) provides fairly good agreement
with the microscopic pressure, which can be seen in Fig. 3(b).
For that, in Fig. 3(c) we compare the nonlocal parts of the
pressure profiles (beyond TF-Bohm, �NL = � − �TF − �B)
computed microscopically (red), with the KPDF (blue) and
with �0

1,1/9 (black). Such results are generic for the whole
ensemble, therefore we proceed to capture its statistics by
computing the error in each case (see Fig. 4). The error for
an approximate functional is defined as

error =
∫ T

0 dt
∫ L

0 dz
∣∣�z,z(z, t ) − �

app
z,z (z, t )

∣∣∫ T

0 dt
∫ L

0 |�z,z(z, t )|
.

Obviously, the time integral will be relevant only for the
dynamic case. In the histogram (4) we show the results for
the approximative KPDF (red) in comparison with the ones
provided by �̂0

3/5,1 (green, valid at high wave numbers) and

by �̂0
1,1/9 (blue, valid at low wave numbers). Although no

explanation was found for the γ -like distributions, it is a
clear representation of how, qualitatively, the KPDF is on
average almost an order of magnitude more precise than �̂0

α,λ

approximations, yielding also a lower dispersion of the errors.
The dynamic regime is the real test for the approximative

nature of the KPDF. For that, another ensemble is generated,
only now with frequency-dependent modes. In Fig. 5 we plot
the pressure profiles: microscopic (red), the present KPDF
(blue, dashed), and �0

α,1 (black) for certain spectral modes
and at certain time (right) and space (left) points. As expected
from the previous analysis, in the asymptotic regions the
results are well reproduced. Moreover, in the intermediate
area (w = 1, q = 0.5), despite somewhat larger quantitative
errors, the qualitative trends are closely followed. In the
bottom figure, the results of a random potential are presented
with the same qualitative/quantitative trends.

As in the stationary case, we chose to gather the ensemble
results in a histogram (6) of the errors. In contrast with
the ground state, the dynamic regime reveals errors that are
one order of magnitude larger (see Fig. 6). For the recent
[17] �̂0

9/5,1, �̂0
1,1/9 functionals, this can be understood as a

consequence of not being able to deal with certain spectral
components of the potential. For the KPDF, errors arise
mainly from the particle-hole continuum modes as well as
from going beyond the linear regime. In particular, the KPDF
works better than �̂0

αλ because the former includes (through
the γ̂ operator) the Landau damping, which is essential in
dynamical regimes. In a broader sense, the KPDF captures
better the microscopic behavior of particle-hole excitations.

FIG. 6. Distribution of errors in the dynamic Monte Carlo
ensemble by KPDF (red), �̂0

1,1/9 (green), and �̂0
9/5,1 (blue).

C. Testing on metal clusters

In the previous sections, it has been shown that KPDF
deals well with a Fermi gas in most spectral cases and slightly
above linear dynamics. Still, the agreement is a consequence
of working within the thermodynamic limit (a large number
of particles). There are many systems of interest, especially
to nanoplasmonics, which are finite, lack spatial periodicity,
and contain a small number of electrons. All these features
might hinder the applicability of the KPDF (in particular, the
problem of N -representability [47] connected with the low
number of fermions).

To understand what is expected in such scenarios, let us
consider as a final test the case of small spherical sodium
clusters Na20 and Na40. These are a conglomerate of sodium
atoms, approximatively spherical, in which the valence elec-
trons are known to exhibit special behavior. In particular, they
are known to support electrostatic normal modes relevant for
the optical spectra known as localized volume and surface
plasmons [48]. The ground state and the normal mode dy-
namics of these systems are resolved both microscopically
(solving the LDA Kohn-Sham equations for the valence elec-
trons within the jellium model) and macroscopically (solving
the QHD with the KPDF). Details about the jellium model
and numerical implementation of KS equations can be found
in [48]. In particular, the exchange-correlation potential is
introduced through a LDA parametrization [49].

In Fig. 7 we plot the radial profiles of density obtained
with KS, KPDF, �̂0

1,1, and �̂0
1,1/9. As can be seen, the shell

effect in the core of the cluster cannot be reproduced by
any of the functionals, this being a direct reflection of the
representability problem. This remains a major challenge with
respect to future improvements that can be brought to any
functional. Apart from this core behavior, one can see that
both the KPDF and �0

1,1 are able to reproduce the exponential
density tail (inset of Fig. 7). This feature (the electronic spill-
out in general) is of great importance [29,30] in many surface
phenomena, such as the static polarizability or the surface
plasmon resonance. Again, the KPDF is overall more accurate
than any of the other two functionals. Regarding the shell
oscillations in density, we expect that they get smaller with
the size of the cluster, such that, for large clusters, the system
is more Fermi-gas-like, and the errors should be much smaller.
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FIG. 7. Ground-state electronic density profiles for Na20 (left) and Na40 (right) computed with DFT-LDA (red, full line), KPDF (blue,
dashed), �̂0

1,1/9 (black, dotted), and �̂0
1,1 (green, dotted). Inset: exponential fall of the electronic tail outside the cluster.

Finally, the optical spectrum of the clusters is studied in a
standard manner: the electrons are excited with a collective
initial uniform velocity in the Oz direction. The dynamics
under the effect of self-consistent fields is simulated, and
the dipole moment d(t ) = ∫

n(r, t )z dr is computed. The
optical spectrum is defined as S(ω) = Imd(ω). The results are
shown in Fig. 8. While all functionals provide good qualitative
agreement with KS-LDA, the KPDF is able to predict the
peak of the surface plasmon 10% more accurately than �̂0

9/5,1.
More importantly, the width of the peak, i.e., the Landau
damping, is far better reproduced, given the damping term γ̂

present in Eq. (15).

IV. CONCLUSIONS AND DISCUSSIONS

In the present work, a kinetic pressure density functional
for a Fermi gas has been derived. The functional is designed
to reproduce exactly the homogeneous equilibrium and the
linear response in accordance with the kinetic/microscopic
theories. It completely neglects temperature effects assuming
T = 0 K and includes exchange-correlation effects only in an
ad-hoc manner through the LDA effective potential (without
the use of a proper xc field-factor [17]). While exact in
principle, the functional poses a very difficult task due to its

space and, more importantly, time nonlocality. To solve this
issue, an approximation of the functional has been proposed,
reformulating the integral form into a wavelike equation, with
the advantage of being local in time.

After spectral analysis, it is shown that the approximation
is capable of resolving all asymptotic limits of the frequency-
wavelength domain and interpolating fairly well the interme-
diate regions, i.e., the particle-hole continuum. In practice, for
the Fermi gas, it is able to provide results that are one order of
magnitude closer to the exact microscopic pressure, justifying
the numerical effort compared to other existing functionals.
Also, at least qualitatively, it is capable of going beyond linear
regimes.

The main limitation of the approximation appears as an
outcome of the constraints that tacitly assume the thermo-
dynamic limit. Therefore, one of the important features of
small, finite systems, namely the discreteness (the shell ef-
fect), cannot be reproduced. This problem is connected with
a more subtle one, called the N -representability problem
[47]. Nonetheless, the results provided by the KPDF are still
superior to some other density functionals, also giving access
to a better representation of dissipative processes, i.e., Landau
damping.

(a) (b)

FIG. 8. Normalized optical cross-section spectrum for Na20 (left) and Na40 (right) cluster computed with KS (DFT-LDA) (red, full line),
KPDF (blue, dashed), and �̂0

9/5,1 (black, dotted).
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The purpose of this work goes beyond designing a new
functional within the orbital-free DFT. It entails creating
a new path to a class of possible functionals. Apart from
including other effects as spin, temperature, etc., one could
systematically improve the present results in a number of
ways. The next logical step would be to constrain the KPDF
to reproduce the second-order linear-response function of a
HFG. In this way, the decoupling ansatz used in the derivation
would be removed, and also a better congruence with the
nonlinear regime should be expected. Secondly, one might
find simpler or better ways to remove the problem of time
nonlocality and such to minimize the errors associated with
the particle-hole continuum.
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APPENDIX

1. Pressure decomposition

One can start from the kinetic prescription of the total
pressure,

�̂(r, t ) = − h̄2

4m2
lim
r′→r

(∇r − ∇r′ ) ⊗ (∇r − ∇r′ )ρ(r, r′, t ),

and proceed in three steps. First, the collective veloc-
ity field is isolated by the transformation ρ(r, r′, t ) ≡
eiS0(r,t )ρ(r, r′, t )e−iS0(r′,t ) with ∇S0 = mu(r, t ), which gives

�̂ = j ⊗ j
n

− h̄2

4m2
lim
r′→r

(∇r − ∇r′ ) ⊗ (∇r − ∇r′ )ρ(r, r′, t ).

Then, together with the identity

lim
r′→r

(∇r − ∇r′ ) ⊗ (∇r − ∇r′ )ρ(r, r′, t )

= 2∇ ⊗ ∇ρ − lim
r′→r

(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r )ρ(r, r′, t ),

the transformation ρ(r, r′, t ) ≡ n1/2(r, t )ρ̃(r, r′, t )n1/2(r′, t )
is used to obtain

�̂ = j ⊗ j
n

+ �̂B[n] + h̄2

2m2
n lim

r′→r
(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r )

× ρ̃(r, r′, t ).

The final transformation is to isolate the TF-like density
matrix ρTF = 3nj1(kF |r − r′|)/(kF |r − r′|) from ρ̃ to obtain

�̂ = j ⊗ j
n

+ �̂B[n] + �̂TF[n] + �̂NL[n],

�̂NL[n] = h̄2

2m2
n lim

r′→r
(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r ) ˜̃ρ(r, r′, t ).

The nonlocal pressure is rearranged as in integral form over
space-time with the nonlocal density-dependent kernel

�̂NL = h̄2

2m2

∫
dx ′δ(x − x ′)(∇r ⊗ ∇r′

+∇r′ ⊗ ∇r )ρ̃(x, x ′)

ρ̃(x, x ′) =
∫

dy dy ′n1/2(y)O(x, y, x ′, y ′; n(x),

× n(x ′))n1/2(y),

where x = (r, t ), y = (r′, t ′).
While a supplementary dependency on density could be

imposed as O[x, y, x ′, y ′; n(x), n(x ′), n(y), n(y ′)], in prac-
tice, this would only make the functional harder to imple-
ment without any improvements. The time-space invariance of
n0 implies O(x, y, x ′, y; n0, n0) ≡ O(x − y, x ′ − y ′; n0, n0),
therefore a Fourier representation [ξ = (ω, k)] of the kernel is
chosen in order to apply the linear-response condition:

O(x − y, x ′ − y ′; n1, n2)

=
∫

dξ dζ e−iξ (x−y)Õ(ξ, ζ ; n1, n2)e−iζ (x ′−y ′ ).

The constraints (10) and (11) can be reformulated for the
nonlocal pressure as

�NL[n0] = 0,

F

{(
δ�NL

δn

)
n0

}
= φ(ξ )= ω2

k2
− n0

mχ (ω, k)
−δ�B

δn
−δ�TF

δn
,

which in terms of kernel Õ can be rewritten after some
calculus as

lim
ζ1→0
ζ2→0

(ζ1 ⊗ ζ2 + ζ2 ⊗ ζ1)Õ(ζ1, ζ2; n0, n0) = 0,

h̄2

m2
lim
ζ1→ξ

ζ2→0

(ζ1 ⊗ ζ2 + ζ2 ⊗ ζ1)Õ(ζ1, ζ2; n0, n0) = φ(ξ ),

where ξ = k, the spatial components of the quadrivector ξ . A
supplementary ansatz is used to remove the null behavior at
the origin and decouple the integrals:

O(ξ, ζ ; n1, n2) ≡ {O(ξ ; n1) + O(ζ ; n2)}/(ξ · ζ ).

Using these in the formula for �NL, one gets

�̂NL[n] =
∫

dx ′L(x, x ′)[n1/2(x)D(x ′) + n1/2(x ′)D(x)],

L(x, x ′) = δ(x − x ′)(∇r ⊗ ∇r′ + ∇r′ ⊗ ∇r )(∇r∇r′ )−1,

D(x) = 1

2

∫
dy

∫
dξ e−iξ (x−y)φ(ξ ; n(x))n1/2(y).

2. Approximating the kernel

The Drude model for the dielectric function is well known:

ε = 1 − ωp

ω2 + iωγ
.

Since the dielectric function is related to the LRF, and im-
plicitly to the kernel φ by ε = 1 − v(k)χ (ω, k), the following
approximative form is proposed:

φapp(w, q ) ≈ φ∞
0

w2 − iγ (q )w + t2(q )

w2 − iγ (q )w + t1(q )
,

where the scaled spectral variables w = h̄2k2
F /(2mω), q =

k/kF have been used. This approximation is designed to
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express the w dependency as a rational function and to re-
produce simultaneously the asymptotic limits ω = 0, ω → ∞
as well as the midline within the particle-hole continuum
w = q2 + q. Rewriting the convolution expression for D as
D = φapp ⊗ n1/2, applying the Fourier transform, rearranging
the terms, and applying an inverse Fourier transform, one can
write down a wave equation for D:

[∂t,t − γ̂ ∂t − t̂1]D = 4
15k2

F [∂t,t − γ̂ ∂t − t̂2]n1/2, (A1)

where, through the LDA limit for 3D systems,
kF = (3π2n)1/3 and the spatial operators γ, t1, t2 are

applied in accordance with the above Fourier prescription
as

γ̂ f (r) =
∫

dr′
[∫

dk eik(r−r′ )γ

(
k

kF (r)

)]
f (r′).

The functions γ, t1, t2, φ
0
0 , φ

∞
1 are defined analytically

through the hierarchy:

�3(z) = 1

4

(
1 − z2

)
log

(
z + 1

z − 1

)
+ z

2
, χ̃ (w, q ) =

3
[
�3

(
w
2q

− q

2

) − �3
(

w
2q

+ q

2

)]
q

,

φ(w, q ) = w2

4q2
− q2

4
− 1

3
− 1

χ̃ (w, q )
, lim

w→∞ φ(w, z) = φ∞
0 + φ∞

1 (q )/w2, φ∞
1 (q ) = 4q4

5
+ 48q2

175
, φ∞

0 = 4

15
,

φ0
0 (q ) = φ(0, q ), t1(q ) = φ∞

1 (q )

φ0
0 (q ) − φ∞

0

, t2(q ) = t1(q )
φ0

0 (q )

φ∞
0

, φ0
0 (q ) ≡ φ(ω = 0, q ),

γ (q ) = −i

q2 + q

(
(q2 + q )2 + φ∞

1 (q )
φ0

0 (q ) − φ(q2 + q, q )[
φ0

0 (q ) − φ∞
0

]
[φ(q2 + q, q ) − φ∞

0 ]

)
.

We note that, in the limit of small spatial oscillations |∇ ln n| � kF ,

γ̂ f (r) ≈ 0.87 − 0.5i

kF

|∇|f (r) + 0.28 + 0.5i

k2
F

∇2f (r),

t̂2f (r) ≈ 6

7k4
F

∇4f (r),

t̂1f (r) ≈ 36

35k2
F

∇2f (r) − 15

7k4
F

∇4f (r).
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