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Suppressed Stark shift of helical edge states in topological-insulator quantum dots
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We study the stability of the electronic states in circular two-dimensional topological-insulator quantum dots
against electric perturbations, as quantified by the susceptibility χ of the Stark shift �E = χF 2/2 of each energy
level due to a small electric field F . We find the typical susceptibility χedge ∼ 1 meV/(mV/nm)2 for edge states
is 4 orders of magnitude smaller than χbulk ∼ 104 meV/(mV/nm)2 for normal bulk states. We show that the
origin of this strong stability of the edge states is the equidistance nature of the edge states, which follows from
the linear dispersion of the one-dimensional edge channel. Therefore, we expect this strong stability to be a
general feature for edge states in relatively large topological-insulator quantum dots. This finding identifies a
new physical mechanism for protecting the edge states against electrical perturbations, which may be relevant to
the applications of these edge states in quantum technologies.
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I. INTRODUCTION

An insulating energy gap in the bulk along with gap-
less edge states on the boundary is a hallmark of the
(two-dimensional) topological insulator (TI) [1–12]. At each
boundary, the two counterpropagating helical (i.e., with spin-
velocity locking) edge states form Kramers pairs. These he-
lical edge states are robust against elastic backscattering by
nonmagnetic impurities [13–19] and hence give rise to quan-
tized edge conductance—a widely used experimental finger-
print of TIs [5,20–29], which has motivated many proposals
for electronic devices [30–37]. In particular, the discrete heli-
cal edge states of TI quantum dots (QDs) [38,39] are attracting
growing interest [40–49] for potential applications in quan-
tum memory [38], quantum computation [39,50], entangled
terahertz photons emission [51], and other key functions in
nanoelectronics [52]. However, external perturbations/noises
may modify the optical selection rules [53–56] and broaden
the energy levels [57,58] of the TI QD. The level broad-
ening effect is especially harmful for the applications of TI
QDs in quantum memory [38], quantum computation [39],
and entangled terahertz photon emission [51], which rely
heavily on the long lifetime of the edge states. Therefore, it
is important to investigate the stability of these edge states
against electrical perturbations [59], which is common in the
solid-state environment.

In this work, we calculate the second-order electrical sus-
ceptibility χ for the eigenstate of circular TI QDs, defined via
its Stark shift �E = χF 2/2 induced by an electric field F ,
as a figure of merit for its stability against external electric
perturbations: the smaller the susceptibility |χ |, the more
stable the eigenstate. Surprisingly, we find that the typical
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susceptibility χedge ∼ 1 meV/(mV/nm)2 of edge states local-
izing at the edge of the TI QD is 4 orders of magnitude smaller
than the typical susceptibility χbulk ∼ 104 meV/(nV/nm)2 of
normal bulk states localizing at the interior of the TI QD.
Our analysis shows that this strong stability of the edge
states originates from two essential ingredients: (i) The edge
states are spatially separated from the bulk states, so that the
contributions to the Stark shift of an edge state due to its
coupling to the bulk states are strongly suppressed. (ii) The
edge states are nearly equidistant in energy [38,41], so that
the contributions to the Stark shift of an edge state due to
its coupling to other edge states are strongly canceled. Our
work identifies the equidistance nature of the helical edge
states as a new physical mechanism for protecting the helical
edge states against electrical perturbations in relatively large
TI QDs. This may be relevant to the applications of these
edge states in quantum information processing [38,39] and
entangled terahertz photon emission [51].

The rest of this paper is organized as follows: In Sec. II,
we provide explicit analytical expressions to demonstrate the
robust, equidistant nature of these edge states. In Sec. III,
we demonstrate that this equidistant nature in turn strongly
suppresses the Stark shift of the edge states. In Sec. IV, we
summarize our findings.

II. EQUIDISTANT EDGE STATES IN TI QUANTUM DOTS

The energy spectrum of a circular two-dimensional TI QD
has been discussed in many works [38,40–42,47,49,59]. Pre-
vious studies [38,40,41] show that when the QD is sufficiently
large, the edge-state energy levels tends to be equidistant, but a
quantitative and explicit analytical expression is still lacking.
Since the equidistance is the key to the stability of the edge
states, we first address this issue in this section.
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We adopt the Bernevig-Hughes-Zhang (BHZ) model
[4,8,60,61], relevant to HgTe/CdTe and type-II InAs/
GaSb/AlSb quantum wells, to describe the two-dimensional
TIs in the xy plane. In the Bloch basis |e,↑〉, |hh,↑〉 and
|e,↓〉 ≡ θ̂ |e,↑〉, |hh,↓〉 ≡ θ̂ |hh,↑〉 (with θ̂ the time-reversal
operator), the electronic states of a circular TI QD are deter-
mined by the 4 × 4 k · p Hamiltonian diag{H, H∗} subjected
to the hardwall boundary condition at the QD edge. The 2 × 2
spin-up block is

H ≡
[
M − B+k̂2 Ak̂+

Ak̂− −M + B−k̂2

]
, (1)

where k̂ ≡ (k̂x, k̂y ) ≡ (−i∂/∂x,−i∂/∂y) is the in-plane mo-
mentum operator, k̂2 ≡ k̂2

x + k̂2
y , k̂+ ≡ k̂x ± ik̂y , and B± =

B ± D. The spin-down block H∗ is the time-reversal (or
equivalently, complex conjugate since θ̂ k̂θ̂−1 = k̂∗ = −k̂) of
the spin-up block, so the total Hamiltonian is invariant under
time reversal. The BHZ model describes a trivial (topological)
insulator when MB < 0 (MB > 0). For HgTe/CdTe quantum
wells, A, B, D, and M can be tuned by the well thickness
[8,22]. Usually, B is taken to be negative, so M > 0 (M < 0)
denotes the trivial (topological) insulator phase. Here, to keep
the generality of our discussions, we do not make this assump-
tion. Due to the time-reversal invariance of the total Hamilto-
nian, the spin-up and spin-down eigenstates of the TI QD form
Kramers pairs, i.e., given a spin-up eigenstate [F1(r), F2(r)]T

with eigenenergy E, its time reversal [F ∗
1 (r), F ∗

2 (r)]T gives
a spin-down eigenstate with the same eigenenergy E. There-
fore, in the rest of this paper, we consider only the spin-up
block.

Two methods have been widely used to calculate the
electronic structure of semiconductor nanostructures in the
literature: the basis expansion method and the mode-matching
method [62,63]. In previous works on TI QDs, both the basis
expansion method [38,41,46,48,59] and the mode-matching
method [39,40,44,47,49] have been used to yield convergent
results for the energy spectrum and wave function. Here we
give the key results of the mode-matching method [40,47,49],
leaving the detailed derivations in Appendix A. The first step
is to find all the linearly independent bulk eigenstates, i.e.,
solutions to the Schrödinger equation

H|ψ〉 = E|ψ〉, (2)

for the TI bulk material. The second step is to express the QD
eigenstate as a linear combination of these bulk eigenstates
and then impose the hardwall boundary condition at the QD
edge. This determines the allowed QD eigenenergies E as
solutions to the transcendental equation [40,47,49]

(M − E)/(k+B+) − k+
(M − E)/(k−B+) − k−

= Jm(k+R)/Jm−1(k+R)

Jm(k−R)/Jm−1(k−R)
, (3)

where R is the QD radius, Jm(x) is the Bessel
function of the mth order, k±(E) = [−F (E) ±√

F 2(E) − (M2 − E2)/(B+B−)]1/2, and F (E) ≡
[A2 − 2(MB + DE)]/(2B+B−). The (un-normalized) QD

eigenstate is

|ψm〉 =
[

eimϕ
(

Jm(k+ρ)
Jm(k+R) − Jm(k−ρ)

Jm(k−R)

)
Cei(m−1)ϕ

(
Jm−1(k+ρ)
Jm−1(k+R) − Jm−1(k−ρ)

Jm−1(k−R)

)
]
, (4)

where C is a constant.
Previous studies on the circular TI QD [40,47,49] based

on the mode-matching method solve Eq. (3) numerically to
obtain the edge-state spectrum. Reference [38] uses a trial
wave function (which does not satisfy the hardwall boundary
condition) to derive an explicit analytical expression that
shows that the edge states are equidistant in energy with
a level spacing ∝1/R. Reference [40] derived an explicit
analytical expression in the large-dot limit that confirms the
equidistance and the 1/R scaling but leaves a proportionality
factor undetermined. Here we consider |k±|R 	 1 and solve
Eq. (3) inside the bulk gap up to the second order to obtain
(see Appendix B for detailed derivations)

Em = −D

B
M + |A|√B+B−

B
km + A2

2MR
km, (5)

where km ≡ (m − 1/2)/R. In the large-dot limit R → ∞,
the edge states with different m have degenerate energies
−DM/B. The second term in Eq. (5), i.e., the first-order
correction due to the finite size of the QD, lifts the degeneracy
and leads to equidistant energy levels with a level spacing
∝ 1/R. Interestingly, the third term in Eq. (5), i.e., the second-
order finite-size correction, still preserves the equidistance of
the edge states, although it changes the 1/R scaling of the
level spacing. As shown in Fig. 1, inclusion of the second-
order finite-size correction makes our analytical expression
agree well with the exact numerical results. Similar energy
spectrums have been obtained numerically for QDs on the
surface of 3D TIs [39,64] and for 2D TI QDs [49]. Here the
good agreement between our analytical expression Eq. (5) and
the exact numerical results demonstrates that the equidistance
of the edge states is robust against the finite-size effect of
the QD.

Next, we discuss two issues: (i) the chiral symmetry of the
QD energy spectrum and (ii) the minimal QD radius Rc that
supports helical edge states inside the bulk gap [−|M|, |M|].
For (i), we define the transformation �̂ = θ̂ Ĉ with operator Ĉ

interchanging |e〉 and |hh〉. When D = 0, the Hamiltonian H
has chiral symmetry [64–66]:

�̂H�̂−1 = −H.

For the TI QD, the hardwall leaves the chiral
symmetry intact, i.e., given a QD eigenstate |ψm〉 =
[eimϕF1(ρ), ei(m−1)ϕF2(ρ)]T with eigenvalue Em, the state
|ψ1−m〉 ≡ �̂|ψm〉 = [ei(1−m)ϕF ∗

2 (ρ), ei(−m)ϕF ∗
1 (ρ)]T is also

a QD eigenstate with energy E1−m = −Em. This chiral
symmetry at D = 0 is obeyed by our analytical expression
Eq. (5).

For (ii), according to Eq. (5), decreasing the QD radius
shifts the edge-state energy Em towards −M (M) when m � 0
(m � 1), so the critical radius (denoted by Rm) for Em to
move outside the bulk gap can be estimated from Em = M

(Em = −M). For a more rigorous treatment, we determine
Rm by solving Eq. (3) at E = ±M for R. In general, this
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FIG. 1. Energy spectra of the TI QD with different radii: filled
squares (gray for bulk states and black for edge states) for numerical
results, blue triangles for analytical expression in Ref. [38], and
empty (filled) circles for Eq. (5) up to the first (second) order of 1/R.
Other parameters are A = −342 meV nm, B = −169 meV nm2,
D = 5.14 meV nm2, and M = −30 meV.

leads to a transcendental equation for R (see Appendix C
for details). When A2 	 4BM , we have an explicit analytical
solution

Rm ≈

⎧⎪⎨
⎪⎩

m
|A|
|M|

√
B−
B+

(m � 1),

(|m| + 1) |A|
|M|

√
B+
B−

(m � 0),
(6)

which obeys the chiral symmetry R1−m = Rm and agrees well
with the numerical results in Fig. 2. The critical radius is

Rc ≡ min
m

Rm ≈ | A

M
|
√

B+
B−

.

This suggests that a large nontrivial gap |M| protects the
existence of the edge states against decreasing QD size.

III. SUPPRESSED STARK SHIFT OF EDGE
STATES IN TI QDS

For clarity, we use Em,α and |ψm,α〉 to label the eigenval-
ues and eigenstates of the circular TI QD, where α labels
the different eigenstates with the same m (cf. Fig. 1). We
characterize the stability of the (m,α)th energy level against
electrical perturbations by its Stark shift �Em,α caused by an

FIG. 2. Critical QD radius Rm for the existence of edge states
|ψm〉 inside the bulk gap: (a) m � 0 and (b) m � 1. Symbols for
exact numerical results and lines for analytical expression Eq. (6).
Other parameters are the same as Fig. 1.

in-plane electric field F , whose direction is defined as the x

axis. The presence of this electric field breaks the circular
symmetry of the TI QD and hence makes the numerical
calculation of �Em,α computationally expensive. Fortunately,
the Stark shift caused by a weak electric field can be calculated
reliably from the perturbation theory. Due to the circular
symmetry of the QD in the absence of the electric field, the
first-order contribution eF 〈ψm,α|x|ψm,α〉 to �Em,α vanishes.
Thus we use the second-order perturbation theory to obtain
�Em,α = χm,αF 2/2, where

χm,α =2e2
∑

β

( |〈ψm−1,β |x|ψm,α〉|2
Em,α − Em−1,β

+|〈ψm+1,β |x|ψm,α〉|2
Em,α−Em+1,β

)
.

(7)

Here Em,α and |ψm,α〉 in Eq. (7) refer to the eigenenergies
and eigenstates of the circular QD in the absence of the
electric field. We call χm,α the susceptibility of the (m,α)th
energy level: the smaller |χm,α|, the more stable the energy
level against the electric perturbations. We use two different
methods to calculate {Em,α} and {|ψm,α〉} and hence χm,α:
(i) The mode-matching method (as outlined in the previous
section), where {Em,α} are obtained by solving the transcen-
dental equation [Eq. (3)] numerically, while {|ψm,α〉} are given
by Eq. (4). In solving Eq. (3), we have used a sufficiently
high numerical precision to ensure accuracy of the resulting
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FIG. 3. Susceptibility of some QD eigenstates (as enclosed by the blue circles in Fig. 1) from the mode-matching method (black lines) and
the basis-function expansion method with nc = 2000 (orange lines). (a) The lowest bulk state in the conduction band (m = 1) and the highest
bulk state in the valence band (m = 0). (b) m = −1 edge state; (c) m = 1 edge state, and (d) m = 0 edge state.

susceptibility χm,α from Eq. (7). (ii) A basis expansion method
which introduces an orthonormal, complete basis set and then
diagonalizes the Hamiltonian matrix under this basis set (see
Appendix D for details). If we use nc basis functions, then
the 2 × 2 spin-up Hamiltonian H of the TI QD becomes a
2nc × 2nc matrix.

In Fig. 3, we plot the susceptibility of some typical QD
eigenstates [indicated by the circles in Fig. 1(a)]. We observe
two important features. First, the edge states are much more
stable than the bulk states, e.g., |χ | for the lowest conduction
band (highest valence band) is larger than that of the edge
states by 4 orders of magnitude. In particular, the m = 1 edge
state has a vanishing susceptibility at R ≈ 70 nm. Second,
the mode-matching method and the basis function expansion
method with nc = 2000 give identical results for the bulk
states [Fig. 3(a)], but they tend to differ strongly for the edge
states [Figs. 3(b)–3(d)] when the QD radius increases. Since
the results from the mode-matching method are numerically
precise, the good agreement in Fig. 3(a) suggests that the
basis function expansion method converges well at nc = 2000
for the bulk states, while the large discrepancy in Figs. 3(b)
and 3(d) indicates that the basis function expansion method
is far from convergence at nc = 2000 for the edge states. In
principle, convergence can always be achieved by using a suf-
ficiently large nc. In practice, however, further increasing nc

is challenging since the computational cost of diagonalizing a

2nc × 2nc matrix increases as O(n3
c ). Due to this slow conver-

gence, our previous study [59] fails to give quantitative results
for the stability of edge states in relatively large TI QDs.

To understand the origin for these features, we take the sus-
ceptibility of the m = 1 edge state as an example and analyze
the individual contributions. For convenience, we let α = 0
for the edge states, α = 1, 2, . . . for the bulk states in the
conduction band with increasing energy, and α = −1,−2, . . .

for the bulk states in the valence band with decreasing energy.
According to Eq. (7), only the m = 0 and m = 2 eigenstates
contribute to the susceptibility χ1,0 of the m = 1 edge state:

χ1,0 = 2e2
∑

β=±1,±2,···

( |〈ψ0,β |x|ψ1,0〉|2
E1,0 − E0,β

+ |〈ψ2,β |x|ψ1,0〉|2
E1,0 − E2,β

)

+ 2e2

( |〈ψ0,0|x|ψ1,0〉|2
E1,0 − E0,0

+ |〈ψ2,0|x|ψ1,0〉|2
E1,0 − E2,0

)
.

The energies of these contributing states and those of the
m = 1 edge state are shown in Fig. 4(a). The contributing
states make pairs (as labeled by 0,1,2, and 1′, 2′, . . . ). Each
pair consists of one state above E1,0 and one state below E1,0.
Except for pair 0, all the other pairs consist of bulk states.
Since |ψ1,0〉 is spatially separated from the bulk states, the
overlap integrals 〈ψ2,β |x|ψ1,0〉 and 〈ψ0,β |x|ψ1,0〉 are small,
especially for large QDs. As a result, the contribution from
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FIG. 4. (a) Energy levels of the m = 0 and m = 2 eigenstates
for the R = 50 nm TI QD. These states make pairs, labeled by
0, 1, 2, . . . and 1′, 2′, 3′, . . . . (b) Contributions from each pair to
the susceptibility of the m = 1 edge state (dashed circle). The inset
shows the cancellation factor G for pair 0.

the bulk states to χ1,0 is suppressed in relatively large QDs
[see Fig. 4(b)] and the dominant contribution comes from pair
0, i.e., the two neighboring edge states:

χ1,0 ≈ 2e2

( |〈ψ0,0|x|ψ1,0〉|2
E1,0 − E0,0

− |〈ψ2,0|x|ψ1,0〉|2
E2,0 − E1,0

)
.

Since the edge states are equidistant, i.e., E1,0 − E0,0 ≈
E2,0 − E1,0, the first term and the second term tend to cancel
each other. To investigate this cancellation in more detail, we
define the cancellation factor G as the sum of both terms
divided by the first term. As shown in Fig. 4(b), G decreases
rapidly to ∼10−4 with increasing QD radius. This nearly
complete cancellation originates from the equidistance of the
edge states and is responsible for strong stability of the edge
states compared with the bulk states. As a consequence of
this cancellation, an accurate calculation of the edge-state
susceptibility requires a much higher numerical precision
for {Em,α} and {|ψm,α〉} compared with the calculation of
the bulk-state susceptibility. In the mode-matching method,
increasing the number nc of basis functions leads to slow
improvement of the numerical precision but rapid increase of
the computational cost as O(n3

c ). This makes it challenging to
calculate the edge-state susceptibility reliably with the basis
expansion method.

Next we discuss the dependence of the susceptibilities
on the QD radius and the nontrivial gap |M|. As shown in
Fig. 3(a), the susceptibility of the bulk states increases rapidly
with the QD radius due to the increase of the overlap integral
[i.e., numerators in Eq. (7)] and decrease of the level spacing
[i.e., denominators in Eq. (7)]. By contrast, the susceptibility
of the edge states shows complicated dependences on the QD
radius. This is because increasing the QD radius leads to two
competing effects. First, it decreases the level spacing and
hence tends to increase the susceptibility. Second, it makes the
edge states more equidistant and leads to better cancellation
[see the inset of Fig. 4(b)].

As shown in Fig. 5(a), increasing the nontrivial gap |M|
tends to enhance the stability of the edge states. The physical

FIG. 5. Susceptibility of different edge states as functions of M

for (a) D = 5.14 meV nm2 and (b) D = 0. The unit of the QD radius
R is nanometers. Other parameters are the same as Fig. 1. The inset
shows the cancellation factor for pair 0 in the susceptibility of the
m = 1 edge state at R = 50 nm.

origin is that increasing |M| increases |k+| inside the bulk gap
to make |k±R| 	 1 and hence Eq. (5) is better satisfied, so
that the edge states become more equidistant. This in turn
increases the degree of cancellation of pair contributions [see
the inset of Fig. 5(a)]. In other words, increasing |M| improves
the equidistance of the edge states without changing their
energy separation, so it further stabilizes the edge states.

An interesting issue is the chiral symmetry of the suscepti-
bilities at D = 0. In this case, the energy and wave function of
(m,α) and (1 − m,−α) are connected by E1−m,−α = −Em,α

and |ψ1−m,−α〉 = �̂|ψm,α〉, so

〈ψ−m,−β |x|ψ1−m,−α〉 = 〈ψm+1,β |x|ψm,α〉∗,
〈ψ2−m,−β |x|ψ1−m,−α〉 = 〈ψm−1,β |x|ψm,α〉∗.

Substituting into Eq. (7) gives

χ1−m,−α = −χm,α,

as confirmed in Fig. 5(b). Physically, the chiral symmetry of
the susceptibility originates from the preservation of the chiral
symmetry under the in-plane electric field.

Finally, we discuss possible generalization of the strong
stability of the edge states to noncircular TI QDs. Physically,
suppression of the Stark shift of an edge state |ψm,0〉 due
to an in-plane electric field (whose direction is defined as
the x axis) in a noncircular TI QD requires two conditions:
(i) The vanishing first-order contribution eF 〈ψm,0|x|ψm,0〉
to the Stark shift. This requires the TI QD to possess a
symmetry that makes 〈ψm,0|x|ψm,0〉 = 0, e.g., spatial inver-
sion symmetry or mirror symmetry about the yz plane—the
plane perpendicular to the electric field. In other words, the
spatial inversion symmetry could stabilize the edge states
against electric fields along any direction, while mirror sym-
metry could stabilize the edge states against electric fields
perpendicular to the mirror plane. (ii) Linear dispersion of
the one-dimensional edge channel spectrum E(kx ), as proved
recently by Entin et al. [67] for the BHZ model. For large
TI QDs such that the edge states on opposite QD edges have
negligible overlap, the discrete edge-state spectrum {Em} is
obtained from E(kx ) by quantizing the continuous momentum
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kx into discrete momentum km ≈ 2mπ/L (m ∈ Z) (due to
the periodic boundary condition along the QD edge of total
length L [41]), i.e., Em = E(km). Since km are equidistant,
the edge-state spectrum {Em} will also be equidistant if the
dispersion E(kx ) is linear. In this case, the spatial separation
of the edge states from the bulk states suppresses the second-
order contributions from the bulk states to the Stark shift
of the edge state. The equidistant nature of the edge states
further suppresses the second-order contributions from other
edge states. Therefore, under conditions (i) and (ii), we expect
the strong stability of the edge states against electric field
perturbations to be a general feature for relatively large TI
QDs.

IV. CONCLUSION

We have studied the stability of the helical edge states in
circular two-dimensional topological-insulator (TI) quantum
dots (QDs). With the Stark shift of each QD eigenstate as a
figure of merit for this stability (the smaller the Stark shift,
the more stable the state), we have shown that the Stark shifts
of the edge states are typically 4 orders of magnitude smaller
than those of the normal bulk states (that localize at the inte-
rior of the QD). We have also identified the spatial separation
of the edge states from the bulk states and the equidistance
of the edge states as key ingredients for this strong stability.
Since both ingredients also exist even in noncircular QDs,
we expect the same physical mechanism to stabilize the edge
states of noncircular TI QDs. This finding may be relevant
to the applications of these edge states in various quantum
technologies.
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APPENDIX A: MODE-MATCHING APPROACH
TO TI QUANTUM DOT

We work in the polar coordinate (ρ, ϕ). For cylinder
functions Zm(x) of integer order m ∈ Z, such as the Bessel
function Jm(x) and Neumann function Nm(x), we have

k̂2[eimϕZm(kρ)] = k2[eimϕZm(kρ)], (A1a)

k̂±[eimϕZm(kρ)] = ±ik[ei(m±1)ϕZm±1(kρ)], (A1b)

so the bulk eigenstate that remains finite at ρ = 0 can
be written as |�m〉 = [αeimϕJm(kρ), βei(m−1)ϕJm−1(kρ)]T ,
where α, β, k are unknown numbers. Substituting |�m〉 into
Eq. (2) gives[

M − B+k2 iAk

−iAk −M + B−k2

][
α

β

]
= E

[
α

β

]
. (A2)

Given an energy E, in order for Eq. (A2) to have nontrivial
solutions for (k, α, β ), the determinant must vanish:

det

[
M − E − B+k2 iAk

−iAk −M − E + B−k2

]
= 0.

This leads to k4 + 2Fk2 + m+m− = 0, where m± ≡
(M ∓ E)/B±, and F ≡ A2/(2B+B−) − (m+ + m−)/2.
This equation has four solutions for (k, α, β ), as
denoted by (k±, α±, β±) and (−k±, α±,−β±), where

k± =
√

−F ±
√

F 2 − m+m− and

α±
β±

= i(A/B+)k±
k2± − m+

= k2
± − m−

i(A/B−)k±
. (A3)

The bulk eigenstates associated with (k±, α±, β±) are

|�(±)
m 〉 =

[
α±eimϕJm(k±ρ)

β±ei(m−1)ϕJm−1(k±ρ)

]
.

Following Ref. [15], we consider B+B− > 0 and A2 >

4BM > 0. Since Jm(−z) = (−1)mJm(z), the bulk eigenstates
associated with (−k±, α±,−β±) are (−1)m|�(±)

m 〉. There-
fore, there are only two independent bulk eigenstates |�(±)

m 〉.
The QD eigenstate is their linear combination: |ψm〉 =
c+|�(+)

m 〉 + c−|�(−)
m 〉. Imposing the hardwall boundary con-

dition ψm|ρ=R = 0 at the QD edge gives[
α+Jm(k+R) α−Jm(k−R)

β+Jm−1(k+R) β−Jm−1(k−R)

][
c+
c−

]
= 0. (A4)

To have nontrivial solutions, the determinant must vanish:

β+
α+

Jm−1(k+R)

Jm(k+R)
= β−

α−

Jm−1(k−R)

Jm(k−R)
≡ C.

This condition, together with Eq. (A3), leads to the transcen-
dental equation Eq. (3) that determines the allowed energy.
Equation (A4) also determines c+/c− and hence the eigenstate
in Eq. (4).

APPENDIX B: ANALYTICAL EXPRESSION FOR
EDGE-STATE ENERGY IN LARGE QUANTUM DOTS

For the energy inside the bulk gap, we have k± = iκ±, so
Eq. (3) becomes

g(E) = Jm(E),

where

g(E) ≡ κ−(m+ + κ2
+)

κ+(m+ + κ2−)
= κ+(m− + κ2

−)

κ−(m− + κ2+)

and

Jm(E) = Im(κ+R)/Im−1(κ+R)

Im(κ−R)/Im−1(κ−R)
,

with Im(x) the modified Bessel function of the mth order. We
can express m± in terms of Jm and κ±:

m+ = −κ+κ−
Jmκ− − κ+
Jmκ+ − κ−

,

m− = −κ+κ−
Jmκ+ − κ−
Jmκ− − κ+

.
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The second equation can also be obtained from the first equa-
tion by using κ2

+κ2
− = m+m−. Subtracting the two equations

gives

E = −MD

B
+ B+B−

2B
κ+κ−

(
Jmκ− − κ+
Jmκ+ − κ−

− Jmκ+ − κ−
Jmκ− − κ+

)
.

(B1)

For κ−R 	 1, we can use [Im(x)/Im−1(x)]x	1 ≈ 1 − (m −
1/2)/x + (m2/2 − m + 3/8)/x2 to obtain Jm = 1 + a1/R +
a2/R

2 up to O(1/R2), where

a1 = −κ− − κ+
2κ+κ−

(2m − 1),

a2 = (2m − 1)(κ− − κ+)
(2m − 3)κ− − (2m + 1)κ+

8(κ+κ−)2
.

Then we can expand Eq. (B1) up to 1/R2 as

E≈−MD

B
+ B+B−

2B
(2m − 1)(κ−+κ+)

(
1

R
+ κ− + κ+

2κ−κ+R2

)
,

(B2)

where

κ+κ− = √
m+m− =

√
M2 − E2

B+B−
, (B3)

κ+ + κ− =
√

2F + 2
√

m+m− =

√√√√2F + 2

√
M2 − E2

B+B−
.

(B4)

Next we solve Eq. (B2) perturbatively up to O(1/R2). For
the zeroth order, Eq. (B2) immediately gives the edge-state
energy E(0) = −MD/B and hence (κ+κ−)(0) = M/B, (κ+ +
κ−)(0) = |A|/√B+B−. For the first order, we can replace
κ+ + κ− in Eq. (B2) with (κ+ + κ−)(0) and neglect second-
and higher-order terms in Eq. (B2) to obtain

E(1) = −MD

B
+ |A|√B+B−

B

m − 1/2

R
.

Next we replace E with E(1) in Eq. (B4) to obtain (κ+ +
κ−)(1), which turns out to be identical to (κ+ + κ−)(0). For
the second order, we replace κ− + κ+ in Eq. (B2) with (κ+ +
κ−)(1) and neglect third- and higher-order terms in Eq. (B2) to
obtain

E(2) = −D

B
M + |A|√B+B−

B

m − 1/2

R
+ A2

2MR

m − 1/2

R
.

Therefore, up to the second order of 1/R, the edge-state
spectrum is still equidistant. This interesting feature originates
from (κ+ + κ−)(1) = (κ+ + κ−)(0), i.e., the vanishing first-
order derivative of κ+ + κ−, as a function of E at E = E(0).

APPENDIX C: CONDITIONS FOR EXISTENCE OF EDGE
STATES IN THE BULK GAP

For the energy inside the bulk gap, we have k± = iκ±.
According to Eq. (5), when m � 1 (m � 0), decreasing R

shifts Em towards M (−M), so the critical radius Rm is

determined by Em = M (Em = −M) as

Rm =
⎧⎨
⎩

(m − 1
2 ) |A|

|M|
√

B−
B+

(m � 1),

(|m| + 1
2 ) |A|

|M|
√

B+
B−

(m � 0).
(C1)

However, Eq. (5) is valid only when |k+|R 	 1, while the
critical QD radius corresponds to |k+| → 0, so Eq. (C1) only
serves as a rough estimate.

For a rigorous treatment, we should determine Rm by
solving Eq. (3) at E = ±M for R. When E → ±M , we have
κ+ → 0, κ− = √

2F (±M ),

Jm(±M ) = 1

cm(±M )

{
κ+R

2m
(m � 1),

2(|m|+1)
κ+R

(m � 0),

and

g(±M ) =
[(

1 + B∓F (±M )

M

)
κ+√

2F (±M )

]±1

,

where cm(E) ≡ Im(κ−R)/Im−1(κ−R). At E = M , Eq. (3) has
a solution for R only when m � 1, i.e., Eq. (3) at E = M

determines the critical radius for edge states with m � 1:
√

2F (M )R

cm(M )
= 2m

(
1 + B−F (M )

M

)
. (C2)

At E = −M , Eq. (3) has solution for R only when m � 0,
i.e., Eq. (3) at E = −M determines the critical radius for edge
states with m � 0:

cm(−M )
√

2F (−M )R = 2(|m| + 1)

[
1 + B+

M
F (−M )

]
.

(C3)

Equations (C2) and (C3) are complicated nonlinear equations
for R since cm(±M ) depends on R in a complicated way.
When A2 	 4BM , we have cm(±M ) ≈ 1 and F (±M ) ≈
A2/(2B+B−) 	 M/B∓, and thus we obtain Eq. (6).

APPENDIX D: BASIS FUNCTION EXPANSION METHOD
FOR TI QUANTUM DOTS

The idea is to expand the QD eigenstates in an orthonormal
complete basis set that obeys the same hardwall boundary
condition (i.e., the wave function must vanish at ρ = R) as
the QD eigenstates. Since k̂2 appears in the Hamiltonian H, it
is natural to choose the eigenstates (with eigenvalue k2

mn)

�mn(ρ, ϕ) ≡ eimϕ

√
2π

Jm(kmnρ)

Nmn

of the Hermitian operator k̂2 as the orthonormal basis, where
m ∈ Z, kmn is the nth zero (n = 1, 2, . . . ) of the mth-order
Bessel function Jm(kR) as a function of k, and Nmn ≡
|RJ|m|+1(km,nR)|/√2 is a numerical factor to ensure the or-
thonormalization 〈�mn|�m′n′ 〉 = δmm′δnn′ . Any wave function
in the xy plane that obeys the hardwall boundary condition at
ρ = R can be expanded into a linear combination of {�mn}.

The spin-up eigenstate can be expanded as

|ψ〉 =
∑
mn

[
C (1)

mn�mn(ρ, ϕ)

C (2)
mn�mn(ρ, ϕ)

]
,
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and then Eq. (2) becomes an eigenvalue equation
∑

j ′,m′,n′ 〈�mn|Ĥjj ′ |�m′n′ 〉C (j ′ )
m′n′ = EC

(j )
mn , where Ĥjj ′ is the (j, j ′) matrix

element of H. Using Eq. (A1) gives〈
�(m)

n

∣∣Ĥ11

∣∣�(m′ )
n′

〉 = δm,m′δn,n′
(
M − B+k2

mn

)
,〈

�(m)
n

∣∣Ĥ22

∣∣�(m′ )
n′

〉 = δm,m′δn,n′
(−M + B−k2

mn

)
,

〈
�(m)

n

∣∣Ĥ12

∣∣�(m′ )
n′

〉 = δm,m′+1iAkm′n′

∫ R

0 Jm(kmnρ)Jm(km′n′ρ)ρdρ

NmnNm′n′
.

This suggests that m is a good quantum number, i.e., the spin-up eigenstate can be labeled by a single m:

|ψm〉 =
[

eimϕF1(ρ)

ei(m−1)ϕF2(ρ)

]
=

∑
n

[
C (1)

mn�mn(ρ, ϕ)

C
(2)
m−1,n�m−1,n(ρ, ϕ)

]
,

and the eigenvalue equation simplifies to
∑

j ′,n′ 〈�mj n|Ĥjj ′ |�mj ′n′ 〉C (j ′ )
mj ′n′ = EC

(j )
mj n, where m1 ≡ m and m2 ≡ m − 1. With the

sum over n truncated to n � nc, it becomes an eigenvalue problem for a 2nc × 2nc Hermitian matrix. We should choose a
sufficiently large cutoff nc to ensure the convergence.
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