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Phase transitions induced by a lateral superlattice potential in a two-dimensional electron gas
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We study the phase transitions induced by a lateral superlattice potential (a metallic grid) placed on top of a
two-dimensional electron gas (2DEG) formed in a semiconductor quantum well. In a quantizing magnetic field
and at filling factor ν = 1, the ground state of the 2DEG depends on the strength Vg of the superlattice potential
as well as on the number of flux quanta piercing the unit cell of the external potential. It was recently shown
that in the case of a square lateral superlattice, the potential modulates both the electronic and spin density and
in some range of Vg , the ground state is a two-sublattice spin meron crystal where adjacent merons have the
global phase of their spin texture shifted by π, i.e., they are “antiferromagnetically” ordered. In this paper, we
evaluate the importance of Landau-level mixing on the phase diagram obtained previously for the square lattice
and derive the phase diagram of the 2DEG modulated by a triangular superlattice. When Landau-level mixing
is considered, we find in this case that, in some range of Vg, the ground state is a three-sublattice spin meron
crystal where adjacent merons of the same vorticity have the global phase of their spin texture rotated by 120◦

with respect to one another. This meron crystal is preceded in the phase diagram by another meron lattice phase
with a very different spin texture that does not appear, at first glance, to resolve the spin frustration inherent to
an antiferromagnetic ordering on a triangular lattice.
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I. INTRODUCTION

The study of commensurability effects on the magnetore-
sistance and magnetization of the two-dimensional electron
solid in a perpendicular magnetic field [1,2] has been re-
cently revived by the observation of a Hofstadter butterfly
spectrum in graphene on top of boron nitride [3–7] and also
by the possibility of creating new artificial structures such
as artificial graphene [8]. One technique used to study these
effects in GaAs/AlGaAs quantum wells is the patterning of
a lateral two-dimensional superlattice (or grid) on top of the
semiconductor heterostructure that hosts the two-dimensional
electron gas (2DEG) [9]. The superlattice grid creates a
periodic potential Vg (r) at the position of the electron gas
that modulates the electronic density. When the 2DEG is
also subjected to a perpendicular magnetic field, it is then
characterized by two length scales: the lattice constant of the
superlattice potential and the magnetic length � = √

h̄/eB,

where B is the applied magnetic field.
The ground state of the interacting 2DEG in a

GaAs/AlGaAs quantum well is fully spin polarized at filling
factor ν = 1, i.e., the 2DEG is a quantum Hall ferromagnet
[10]. Its electronic density ne = 1/2π�2 is uniform and its
Hall conductivity [11] has the quantized value σxy = e2/h.
In a previous paper [12], which we shall refer to as Paper 1,
one of us studied the phase transitions induced by a square
grid in the interacting 2DEG at ν = 1 in the Hartree-Fock
approximation. The phase diagram was studied for different
rational values of � ≡ ϕ0/Ba2

0 = 2π (�/a0)2 = q/p ∈ [0, 1],
where ϕ0 = h/e is the flux quantum, a0 the lattice constant
of the external grid, and q, p are integers with no common
factors. The parameter �−1 represents the number of flux
quanta piercing a unit cell of the external potential. In Paper
1, it was found that the ground state remains uniform and

fully spin polarized for finite Vg up to a critical value V (c)
g

where a transition to a two-dimensional charge density wave
(CDW) or crystal takes place. Interestingly, this CDW is
accompanied by a topological spin texture that resembles that
of a meron lattice with a two-sublattice structure. As shown
in Fig. 4 of Paper 1, the magnetic unit cell in this particular
CDW is twice the electronic unit cell and contains four spin
vortices (or merons) with the component Sz of the spin being
positive at each vortex center. Each meron is surrounded by
four neighboring merons of opposite vorticity and so the
topological charge alternates between −1/2 and 1/2 from site
to site, leading to positive and negative density modulations of
the uniform ground state. If we consider not just the vorticity
but the global phase of the spin vortex at each site, then the
four merons in a unit cell are divided into two pairs of merons
with the same vorticity but with global phases 0 and π (hence
the name two-sublattice). Treating this global phase as a spin,
we may say that merons with the same vorticity have an
“antiferromagnetic” coupling. A similar structure was found
for the crystal of skyrmions [13] that occurs near filling factor
ν = 1 in the potential-free but interacting 2DEG [14].

In Paper 1, it was assumed that the potential Vg (r) does not
lead to Landau-level mixing, i.e., to occupation of the higher
Landau levels n > 0. The calculation was done entirely within
the two spin levels of the n = 0 Landau level. However, it is
not a priori obvious that this approximation is valid because
a realistic value of a0 leads to a relatively small value of the
magnetic field (see the next section where this is discussed),
thus possibly increasing the Landau-level mixing. It is thus
important to study the effect of Landau-level mixing on the
phase diagram found previously. We do this by adding level
n = 1 to the Hilbert space. We then compute the occupation
of Landau-level n = 1 as a function of � and Vg. Our results
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show that mixing is generally small except at large values of
�, but can lead to a qualitative change in the phase diagram.
For example, it modifies the phase below V (c)

g for the square
grid so that that the electronic density is no longer uniform.

In this paper, we also consider a triangular superlattice po-
tential. Since adjacent merons have their global phase rotated
by π (an “antiferromagnetic ordering” to use a spin analogy),
such a grid should lead to frustration in the meron lattice. For
a triangular lattice, it is well known that this frustration is
resolved by creating a three-sublattice antiferromagnet where
spins on adjacent sites are rotated by 120 degrees. We find
that this is also true for the meron lattice: adjacent merons
have their global phase rotated by 120 degrees thus creating a
three-sublattice spin meron crystal. We note that this type of
structure does not occur if the Hilbert space is restricted to the
n = 0 Landau level only. Just as its bipartite counterpart on
the square lattice [12], we expect this triangular meron lattice
to sustain a gapless spin (Goldstone) mode [15] while the
phonon mode would be gapped by the external potential. Sur-
prisingly, we find that the three-sublattice phase is preceded
by another meron lattice phase with a different ordering of the
global phase of the meron that does not seem, at first glance,
to resolve the frustration inherent to an antiferromagnetic
ordering on a triangular lattice.

Mixing of the n = 0 and n = 1 states can also be seen as
introducing a density of electric dipoles in the ground state.
However, we find that all phases in the phase diagram of the
square or triangular lattice have a texture of electric dipoles
that is basically that imposed by the external potential so
the different phases are not distinguishable from this feature
alone.

Our paper is organized as follows. In Sec. II, we intro-
duce the superlattice potential and the model parameters. In
Sec. III, we briefly review the Hartree-Fock approximation
that we use to derive the phase diagram of the interacting
2DEG. In Secs. IV and V, we present the phase diagram of
the square and triangular lattices, respectively. We discuss the
induced electric dipole texture in Sec. VI and conclude in
Sec. VII.

II. SUPERLATTICE POTENTIAL AND MODEL
PARAMETERS

We consider a square or triangular lateral superlattice (grid)
with a lattice constant a0 and a unit cell area s = εa2

0 . The
grid is placed on top of a GaAs/AlGaAs quantum well semi-
conductor heterostructure. For the square(triangular) grid, ε =
1(

√
3/2). A transverse magnetic field, B = B ẑ is applied to

the 2DEG and we define the parameter

� = q

p
= ϕ0

Bs
, (1)

where q, p are integers with no common factors and ϕ0 = h/e

is the flux quantum. The parameter �−1 is the number of flux
quanta piercing one unit cell of the external superlattice.

We consider the following simple form for the grid poten-
tial at the position of the 2DEG:

Vg (r) = 1

S

∑
G0

Vge
iG0·r, (2)

where r is a vector in the plane of the 2DEG and |G0| =
2π/a0 (square lattice) or |G0| = 4π/

√
3a0 (triangular lattice)

are the four (square lattice) or six (triangular lattice) recip-
rocal lattice vectors (RLVs) on the first shell of RLVs of
the superlattice potential. Note that our calculation could be
carried on with a different form for Vg (r) if we need a more
realistic expression for the grid potential or if the electrostatic
confinement is achieved by a more complex potential than a
simple grid.

We study the phase diagram of the 2DEG at filling factor
ν = 1 for discrete values of � ∈ [0, 1] and for a fixed value
of a0, which we take as a0 = 50 nm, an experimentally
accessible value [9]. With a0 and � fixed, the magnetic field
is given in tesla by

B [T] = h

es�
= 4135. 7

�ε(a0 [nm])2 . (3)

The condition ν = 1 for the filling factor forces the density to
be given by

ne[1011 cm−2] = B [T]

4. 14
. (4)

For a GaAs/AlGaAs quantum well, the dielectric constant
is κ = 12.9, the gyromagnetic factor |g∗| = 0.45 and the
effective mass m∗ = 0.067me, where me is the bare electronic
mass. The cyclotron, Coulomb and Zeeman energies are then
given by

Ecyc = h̄ω∗
c = h̄eB

m∗ = 1. 73B [T] meV, (5)

�Z = g∗μBB = 0.02 6B [T] meV, (6)

Ecoul = e2

κ�
= 4. 36

√
B [T] meV. (7)

If we use e2/κ� as our units of energy, then

�̃Z = g∗μBB

e2/κ�
= 5. 99 × 10−3

√
B [T] (8)

and

Ẽcyc = h̄ω∗
c

e2/κ�
= 0.40

√
B [T]. (9)

The Landau-level mixing increases with the ratio Ẽcyc.
Figure 1 shows how the density ne, the magnetic field B,

and the cyclotron energy Ẽcyc vary with � for the square and
triangular crystals of electrons when a0 = 50 nm and ν = 1.
For the range of � considered, this figure shows that the
density and magnetic field should be accessible experimen-
tally. Figure 1(b) suggests that Landau-level mixing may be
important for a grid parameter a0 = 50 nm. Mixing can be
reduced by decreasing a0, but the magnetic field then rapidly
rises to very high values (for example, with a0 = 20 nm, the
magnetic field is B = 52 T for � = 1/5 and a square lattice).
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FIG. 1. Behaviour of (a) the magnetic field B and electronic
density ne and (b) the cyclotron energy ratio Ecyc/(e2/κ�) as a
function of the parameter � for the square and triangular lattices at
filling factor ν = 1 and for a lattice constant of the external grid given
by a0 = 50 nm.

III. HARTREE-FOCK HAMILTONIAN

The Hartree-Fock Hamiltonian of the interacting 2DEG in
the presence of the grid is given by

HHF = −Nϕ

�Z

2

∑
α

∑
n

Eα
n ρα,α

n,n (0)

− eNϕ

S
Vg

∑
G0

∑
α

∑
n1,n2

Fn1,n2 (−G0)ρα,α
n1,n2

(G0)

+Nϕ

e2

κ�

∑
α,β

∑
n1,...,n4

∑
G �=0

Hn1,n2,n3,n4 (G)

× 〈
ρα,α

n1,n2
(−G)

〉
ρβ,β

n3,n4
(G)

−Nϕ

e2

κ�

∑
α,β

∑
n1,...,n4

∑
q

Xn1,n4,n3,n2 (G)

× 〈
ρα,β

n1,n2
(−G)

〉
ρβ,α

n3,n4
(G), (10)

where Nϕ = S/2π�2 is the Landau-level degeneracy with S

the 2DEG area. The variables α, β = ±1 are spin indices
while ni = 0, 1 (with i = 1, 2, 3, 4) are Landau-level indices.
The G = 0 Fourier component in the Hartree term is canceled
by the neutralizing positive background.

In Eq. (10), we have defined the operator

ρα,β
n,m(G) ≡ 1

Nϕ

∑
X,X′

e− i
2 Gx (X+X′)

× δX,X′+Gy�2c
†
n,X,αcm,X′,β , (11)

where c
†
n,X,α creates an electron with guiding-center index X

(in the Landau gauge) with spin α in Landau-level n. These
operators are related to the ground-state averaged electronic
and spin densities by

nα (r) = 1

2π�2

∑
n1,n2

∑
G

Fn1,n2 (−G)
〈
ρα,α

n1,n2
(G)

〉
eiG·r, (12)

S±(r) = 1

2π�2

∑
n1,n2

∑
G

Fn1,n2 (−G)
〈
ρ±,∓

n1,n2
(G)

〉
eiG·r, (13)

Sz(r) = h̄

2
[n+(r) − n−(r)], (14)

where S± = Sx ± iSy . The form factors Fn1,n2 (G) are
defined by

Fn1,n2 (G) =
√

min (n1, n2)!

max (n1, n2)!
L

|n1−n2|
min (n1,n2 )

(
G2�2

2

)

× e−G2�2/4

((
χn1,n2Gy + iGx

)
�√

2

)|n1−n2|
, (15)

where Lm
n (x) is a generalized Laguerre polynomial and

χn1,n2 = sgn(n1 − n2) with sgn the signum function. The
dimensionless Hartree and Fock interactions are defined by

Hn1,n2,n3,n4 (G) = 1

q�
Fn1,n2 (G)Fn3,n4 (−G), (16)

Xn1,n2,n3,n4 (G) =
∫

dp�2

2π

1

p�
Fn1,n2 (p)

×Fn3,n4 (−p)e−îz·(p×G)�2
. (17)

The averaged “densities” {〈ρα,β
n,m(G)〉} are the order param-

eters that describe the various CDW or crystal states. They
are computed by solving the Hartree-Fock equation for the
single-particle Green’s function Gα,β (G,τ ) defined by

Gα,β
n,m(G,τ ) = 1

Nϕ

∑
X,X′

e− i
2 Gx (X+X′)

× δX,X′−Gy�2Gα,β
n,m(X,X′, τ ), (18)

where
Gα,β

n,m(X,X′, τ ) = −〈T cn,X,α (τ )c†m,X′,β (0)〉. (19)

The order parameters are obtained using the relation〈
ρα,β

n,m(G)
〉 = Gβ,α

m,n(G,τ = 0−). (20)

The equation of motion for G
α,β
n,m(G,ωn) =∫ βh̄

0 dτeiωnτG(G, τ ), where ωn = (2n + 1)π/βh̄ with
β = 1/kBT is a fermionic Matsubara frequency, is a
straightforward generalization of Eq. (14) of Paper 1 that
includes two Landau levels instead of one. It leads to

[iωn − (Em,α − μ)/h̄]Gα,β

m,m′ (G, ωn)

= δG,0δm,m′δα,β − 1

h̄S

∑
G′

∑
n

Vg (G − G′)Fm,n(G − G′)
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× γG,G′G
α,β

n,m′ (G′, ωn)

+
∑

n

∑
G′ �=G

UH
m,n(G − G′)γG,G′G

α,β

n,m′ (G′, ωn)

−
∑

n

∑
γ

∑
G′

ŨF,α,γ
m,n (G − G′)γG,G′G

γ,β

n,m′ (G′, ωn), (21)

where γG,G′ = e−iG×G′�2/2 and n,m,m′ = 0, 1. The Hartree
and Fock potentials are defined by

UH
m,n(G) =

(
e2

h̄κ�

) ∑
γ

∑
n1,n2

Hn1,n2,m,n(−G)
〈
ργ,γ

n1,n2
(G)

〉
, (22)

ŨF,α,γ
m,n (G) =

(
e2

h̄κ�

) ∑
n1,n2

Xn1,n,m,n2 (−G)
〈
ργ,α

n1,n2
(G)

〉
, (23)

and n1, n2 = 0, 1.

As described in Paper 1, the Hartree-Fock approximation
leads to a set of NG coupled and self-consistent equations,
where NG is the number of RLVs kept in the calculation.
This set of equations is solved numerically using an iterative
method. Good convergence after ≈1000 iterations is achieved
by taking NG ≈ 600.

Once the Green’s function is known, the density of states
per area, g(ω), can be obtained from the relation

g(ω) = − 1

2π2�2

∑
α,n

Im
[
GR,α,α

n,n (G = 0, ω)
]
, (24)

where GR,α,α
n,n (G = 0, ω) is the retarded single-particle

Green’s function obtained by the analytical continuation
G

α,β
n,m(G,iωn → ω + iδ) of the Matsubara Green’s function.

The Hartree-Fock transport gap (at T = 0 K) can be extracted
directly from g(ω) since the Fermi level is fixed by the
condition that ν = 1.

Note that the Hartree-Fock approach described here forces
the CDW or crystal to be commensurate with the lattice
potential. In Paper 1, however, we showed that a grid with
a square unit cell of area a2

0 could induce a crystal with a
spin texture periodicity

√
2a0 × √

2a0 . To describe this state
and keep the grid potential unchanged, we take the RLVs
in the Hartree-Fock Hamiltonian of Eq. (10) to be given by
G = 2π√

2a0
(n,m), with n,m = 0,±1,±2, ... and take G0 in

Eq. (2) to be on the second shell of these new RLVs, thus
ensuring that |G0| = 2π/a0 is unchanged. We use a similar
trick for the triangular grid, which, as we find in the present
paper, can induce a crystal with a spin texture periodicity√

3a0 × √
3a0. In this case, the grid potential is unchanged

if we take G0 to be on the third shell of the new RLVs
given by G = nG1 + mG2 where n,m = 0,±1,±2, ... and
G1 = 2π√

3ao

( 2√
3
, 0), G2 = 2π√

3ao

( 1√
3
, 1).

IV. PHASE DIAGRAM OF THE 2DEG FOR THE
SQUARE GRID

We now derive the phase diagram of the 2DEG as a
function of the potential strength Vg [see Eq. (10)] for a square
grid. We take ν = 1, a0 = 50 nm, and � ∈ [0, 1] including the
two Landau levels n = 0, 1. The phase diagram that we find is
shown in Fig. 2. (Note that the lines connecting the � points in
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FIG. 2. Phase diagram of the 2DEG under a square superlattice
potential Vg . The number above each red symbol gives the magnetic
field (in tesla) for that particular value of �. Note that the lines are
only a guide to the eye. Only the symbols correspond to calculated
values. The dashed line indicates the upper limit in Vg of our
numerical calculation.

this graph are merely a guide to the eyes and not a true phase
boundary.) The numbers above the red symbols indicate the
magnetic field B in tesla that corresponds to the corresponding
value of �.

The phase diagram contains four phases. The electronic
density is modulated spatially in all of them, i.e., n(r) =
n0 + δn(r), where n0 = 1/2π�2 is the uniform density of a
filled Landau level and δn(r) is the density modulation. The
magnitude of the spin density is also modulated spatially and,
for some phases, the orientation of the spins as well. The
different phases are:

(1) CDW1: A fully spin polarized CDW with all spins
pointing in the direction of the external magnetic field. Both
n(r) and Sz(r) have the periodicity a0 × a0 of the external
potential. CDW1 is the ground state for Vg � 2.0 meV at all
values of �.

(2) VORTEX1: A CDW with a
√

2a0 × √
2a0 magnetic

unit cell. The density modulation is accompanied by a topo-
logical spin texture S(r). The unit cell contains four spin vor-
tices: two with a counterclockwise rotation (negative vorticity,
i.e., nv = −1) and two with a clockwise rotation (positive
vorticity, i.e., nv = 1). The spin texture is similar to that
shown in Fig. 4 of Paper 1 where only level n = 0 was
considered. The spin density Sz(r) is everywhere positive.
Adjacent vortices with the same vorticity have the global
phase of their spin texture rotated by π with respect to one
another. In a language where the global phase is mapped into
an xy spin, this π rotation can be seen as an antiferromagnetic
ordering of the vortex pair. The topological spin texture of
this phase is reminiscent of that of the Skyrme crystal that
occurs near ν = 1 in the absence of an external potential [14].
The antiferromagnetic ordering keeps the spins as parallel as
possible everywhere in space, thus minimizing the exchange
energy. The exchange energy is minimal when all spins are
parallel, a situation realized in a quantum Hall ferromagnet.

245306-4



PHASE TRANSITIONS INDUCED BY A LATERAL … PHYSICAL REVIEW B 98, 245306 (2018)

(3) VORTEX2: A phase similar to VORTEX1 with the
same antiferromagnetic ordering but with the vorticity and
sign of Sz at each vortex core inverted. This phase is absent
of the phase diagram for � � 1/2.

(4) CDW2: A phase similar to CDW1 but only partially
spin polarized with 〈Sz〉 = | 1

2 − �
ε
|. There is no spin texture

in this phase. The density modulations have larger amplitude
than in CDW1 because of the stronger external potential.

The topological three-dimensional spin texture associated
with each vortex is similar to that of a meron. In a meron, the
spin points up or down at the core center and tilts away from
the ẑ direction away from the core. At large distance from
the core, the spins point purely radially in the x − y plane.
For a meron core at r = 0 and for a field of unit spins, the
topological charge Q of a meron is defined by

Q = 1
2 [Sz(∞) − Sz(0)]nv, (25)

where nv is the vortex winding number (i.e., the number
of 2π rotation around the vortex core) [10]. There are four
flavors of meron and they all have half the topological charge
of a skyrmion or antiskyrmion, i.e., |Q| = 1

2 . In this paper,
we associate a positive vorticity, nv = 1, with a clockwise
rotation of the spins. For nv = −1, a positive Sz at the meron
core is thus associated with a topological charge Q = +1/2
and, by the spin-charge coupling, with a positive density
modulation (a local increase with respect to the uniform
density, i.e., δn(r) > 0). The opposite is true for Q = −1/2,
i.e., δn(r) < 0. Since no charge is added to the 2DEG which
is kept at ν = 1, there is an equal number of merons (Q =
+1/2) and antimerons (Q = −1/2). We remark here that we
use the word “meron” in a loose sense since we are not really
dealing with a classical field of unit spins but rather with a spin
field that can be modulated both in orientation and in density.
It follows that the charge in our “merons” is not quantized. As
Vg is increased, δn(r) at the center of the vortices with positive
density modulation becomes larger than δn(r) at the center of
the vortex with negative modulation but

∫
δn(r)dr = 0.

The addition of a second Landau level modifies the results
reported in Paper 1. The most dramatic change is the disap-
pearance of the uniform phase, which was present before the
VORTEX1 phase and its replacement by the CDW1 phase,
which now evolves continuously into the VORTEX1 state.
The other two phase boundaries (VORTEX1-VORTEX2 and
VORTEX2-CDW2) are only slightly modified by the addition
of the second Landau level.

To evaluate the importance of the second Landau level, we
compute the occupation of the four Landau levels as a function
of the grid potential Vg . Figure 3 shows these occupations for
� = 3/4 where, according to Fig. 1, the Landau-level mixing
is expected to be the strongest. Our calculation shows that
the mixing is small, but not negligible at that value of �. It
varies very slightly with the grid potential in the range of
values considered. The presence of the second Landau level
is especially important at small value of Vg where, as only
ν0,↑ and ν1,↑ are nonzero, it allows for the formation of a
nonuniform state with no spin texture. As Vg increases, the
occupation of the n = 0, α =↓ state is more important than
that of the n = 1, α =↑ state. For � < 3/4, the occupation
of the n = 1 Landau level is much smaller than for � = 3/4.
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FIG. 3. Occupation (filling factor) of Landau levels n = 0, 1 with
spin σ = ±1 as a function of the grid potential Vg (in meV) for the
square lattice at � = 3/4. The vertical dashed lines indicate the phase
boundaries.

For example, it is 6% at � = 1/2 and 3.5% at � = 1/4 so that
mixing is indeed small for small �′s.

In the square lattice, the transition between the VORTEX1
and VORTEX2 phases for � < 1/2 and between the VOR-
TEX1 and CDW2 phases for � > 1/2 is accompanied by a
discontinuity in the spin component Sz which we show in
Fig. 4 for different values of �. The discontinuity increases
with � until it reaches a maximum (in absolute value) at

Γ

ΔS
z

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

square
triangular

FIG. 4. Discontinuity in the z component of the spin density as
a function of � for the square and triangular grids. For � < 1/2, the
discontinuity is between the VORTEX1 and VORTEX2 phases for
the square lattice and VORTEX3 and VORTEX4 for the triangular
lattice, while for � > 1/2 it is between the VORTEX1 and CDW2
phases for the square lattice and between CDW1 and CDW2 for the
triangular lattice.
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FIG. 5. Phase diagram of the 2DEG under a triangular superlat-
tice potential Vg (in meV). The number above each symbol gives
the magnetic field (in tesla) for that particular value of �. Note
that the lines connecting the symbols are only a guide to the eye.
Only the symbols correspond to calculated values. The dashed line
indicates the limit in Vg of the numerical calculation.

� = 1/2 where CDW1 is fully spin polarized while CDW2
is spin unpolarized. We found in Paper 1 that �Sz = 0 for
the VORTEX1-CDW2 transition but this is no longer the case
when Landau level n = 1 is considered except when � � 3/4.

This discontinuity in Sz should be detectable experimentally.

V. PHASE DIAGRAM FOR THE TRIANGULAR GRID

We now consider a triangular grid. The calculated phase di-
agram is shown in Fig. 5. As in Fig. 2, the symbols correspond
to calculated values and the lines between them are guide to
the eyes. The grid potential creates modulated states with a
triangular lattice structure. Two phases, CDW1 and CDW2,
are similar to the CDWs of the square potential. They occupy
the largest portion of the phase diagram. In between these two
phases, we find two vortex phases, which we name VORTEX3
(see Fig. 6) and VORTEX4 (see Fig. 7). They are present for
� < 1/2 only. In contrast with the square potential, they are
not present if the Hilbert space is restricted to the Landau level
n = 0 only (in which case we find only two phases: a uniform
phase, fully spin polarized, and CDW2).

In the square lattice, we found that a pair of vortices (or
merons) with the same vorticity prefer an antiferromagnetic
ordering of the phase of their spin texture. In a triangular
lattice, this type of interaction should lead to frustration
and the expected ground state must have a three-sublattice
structure with a 2π/3 rotation of the phase from one meron to
the other (with the same Q). This is indeed what we find in the
VORTEX4 phase which is shown in Fig. 7. The magnetic unit
cell is indicated by the parallelogram. This phase has three
merons of positive (negative) vorticity at the each maximum
(minimum) of the density. The spin component Sz(r) doesn’t
have the same sign everywhere in space but is negative at
the core of each meron, whatever its vorticity. Vortices with

x/a0

y/
a 0

-2 -1 0 1 2-2

-1

0

1

2 n(r)

1.65
1.6
1.55
1.5
1.45
1.4
1.35
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1.25
1.2
1.15
1.1
1.05
1
0.95
0.9
0.85
0.8
0.75

FIG. 6. Electronic density n(r) in units of 1/2π�2 and spin
texture in the x − y plane for the VORTEX3 state. Parameters:
� = 1/4, a0 = 50 nm and ν = 1. The magnetic unit cell is indicated
by the parallelogram.

nv = 1 thus correspond to density maxima (the red circles
in Fig. 7) according to Eq. (25) and those with nv = −1
to density minima (the large blue triangles in Fig. 7). The
three merons with the same vorticity have the phase of their
spin texture rotated by 2π/3 from one another. They also
have the same value of the local density modulation δn(r)
in contrast with the VORTEX3 phase discussed below. Phase
VORTEX4 is the analog of a three-sublattice antiferromagnet
on a triangular lattice. As for the square lattice, maximal and
minimal values of |δn(r)| are not equal but depend on Vg.

However,
∫

δn(r)dr = 0, as no charge is added to the 2DEG.

x/a0

y/
a 0

-2 -1 0 1 2
-2

-1

0

1

2
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2.2
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1.8
1.6
1.4
1.2
1
0.8
0.6
0.4

FIG. 7. Electronic density n(r) in units of 1/2π�2 and spin
texture S(r) in the x − y plane for the VORTEX4 states. Parameters:
� = 1/4, a0 = 50 nm and ν = 1. The magnetic unit cell is indicated
by the parallelogram.
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FIG. 8. Filling factor νn,σ of the four Landau levels n = 0, 1 with
spin σ = ±1 as a function of the superlattice potential Vg/(e2/κ�)
for the triangular lattice at � = 1/3. The vertical dashed lines indi-
cate the boundaries of the different phases.

The second vortex phase that we find, VORTEX3, is
shown in Fig. 6. The magnetic unit cell is represented by
the parallelogram. It contains three vortices with the same
negative vorticity at the position of the density maxima. The
spin component (not shown in Fig. 6) Sz(r) is positive every-
where so that the three vortices are associated with positive
density modulations, i.e., δn(r) > 0. The negative modulation
is spread throughout the unit cell and not concentrated into
antimerons. In contrast to VORTEX4, the three vortices in the
unit cell do not share the same value of δn(r). One vortex
has a larger value of δn(r) than the other two. Moreover,
the spin texture of two of the three vortices have the same
global while the phase of the third one is shifted by π with
respect to the other two. Considering the spin texture alone,
VORTEX3 does not seem to resolve the frustration inherent
to an antiferromagnetic coupling on a triangular lattice. We
must keep in mind, however, that in our calculation both the
orientation and the spin can change locally, i.e., |S(r)| is not
uniform. In Fig. 6, vortices with the larger δn(r) are sur-
rounded by six neighbors of opposite phase, thus optimizing
the antiferromagnetic interaction. However, vortices with the
smaller δn(r) are surrounded by three neighbors of opposite
phase and three neighbors of the same phase. For them, the
interaction is not optimal. In total, however, this seems to
represent another way to resolve the frustration.

We checked for the importance of Landau-level mixing
for the triangular grid. Our results are shown in Fig. 8 for
the case � = 1/3. Clearly, the mixing is small at that value
of �. But, for � = 4/5, the occupation of the n = 1 Landau
level reaches 20% and mixing becomes significant as is the
case for the square lattice. Figure 8 also clearly shows the
discontinuous character of the transition from the VORTEX3
to the VORTEX4 phases.

The transition between the VORTEX3 and VORTEX4
phases for � < 1/2 or between the CDW1 and CDW2 phases

FIG. 9. Behavior of the Hartree-Fock gap �eh as a function of the
grid potential Vg in the different phases of the triangular lattice at � =
1/4. The gap is evaluated from the density of states, an example of
which is given in the inset for Vg = 2.17 meV, i.e., in the VORTEX3
phase. The blue line in the inset is the integrated density of states.

for � > 1/2 is accompanied by a discontinuity in Sz which
is plotted in Fig. 4. The behavior for the triangular lattice
is similar to that of the square lattice. The decrease in Sz is
maximal (in absolute value) for � = 1/2 where the transition
is between the CDW1 (spin polarized) and CDW2 (spin
unpolarized).

The VORTEX phases in the triangular lattice can also
be distinguished from the behavior of their transport gap
�eh, which is the energy to create an infinitely separated
electron-hole pair. We evaluate this gap from the density of
states given by Eq. (24). Figure 9 shows the dependency
of �eh on Vg for � = 1/4. There is a clear change in the
slope of �eh between VORTEX3 and VORTEX4 and between
VORTEX4 and CDW2. The inset in Fig. 9 shows the density
of states and the integrated density of states (blue line) in the
VORTEX3 phase at Vg = 2.17 meV. The maximum value of
the integrated density of states (DOS) is 4 in the units of Fig. 9
corresponding to full occupation of the four states n = 0, 1
with σ = ±1. The gap is given by the size of the region where
the integrated DOS is unity.

VI. ELECTRIC DIPOLES

The averaged Fourier transform of the electronic density
n(G) is related to the operator ρ

α,β

i,j (G) introduced in Eq. (11)
by the relation

n(G) = Nϕ

∑
α

∑
n,m

Fn,m(−G)
〈
ρα,β

n,m(G)
〉
. (26)

For n,m = 0, 1, Eq. (15) gives for the form factors

F0,0(G) = e−G2�2/4, (27)
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F1,1(G) =
(

1 − G2�2

2

)
e−G2�2/4, (28)

F1,0(G) =
((

Gy + iGx

)
�√

2

)
e−G2�2/4, (29)

F0,1(G) =
((−Gy + iGx

)
�√

2

)
e−G2�2/4. (30)

If we use a pseudospin language where index 0 is for orbital
n = 0 and 1 for orbital n = 1, then the electronic and spin
densities are given by

ρα (G) = ρ
α,α
0,0 (G) + ρ

α,α
1,1 (G), (31)

ρα
z (G) = (

ρ
α,α
0,0 (G) − ρ

α,α
1,1 (G)

)
/2, (32)

ρ
α,α
0,1 (G) = ρα

x (G) + iρα
y (G), (33)

ρ
α,α
1,0 (G) = ρα

x (G) − iρα
y (G). (34)

It follows that

n(G) = Nϕ

∑
α

(
1 − G2�2

4

)
〈ρα (G)〉e−G2�2/4

+Nϕ

∑
α

(
G2�2

2

)〈
ρα

z (G)
〉
e−G2�2/4

−Nϕ

√
2i

∑
α

[
Gx�

〈
ρα

x (G)
〉 − Gy�

〈
ρα

y (G)
〉]
e−G2�2/4.

(35)

In this pseudospin language, the averaged coupling of the
2DEG with the grid potential is written as

〈W 〉 = −eNϕ

S

∑
α

∑
n,m

∑
G

Ve(−G)Fn,m(−G)
〈
ρα,α

n,m(G)
〉

= −eNϕ

S

∑
α

∑
G

Ve(−G)

(
1 − G2�2

4

)
〈ρα (G)〉

− eNϕ

S

∑
α

∑
G

Ve(−G)

(
q2�2

2

)〈
ρα

z (G)
〉

+ eNϕ

S

√
2i

∑
α

∑
G

Ve(−G)

× [
qx�

〈
ρα

x (G)
〉 − qy�

〈
ρα

y (G)
〉]
, (36)

where we have defined

ρα
i (G) = ρα

i (G)e−G2�2/4. (37)

The electric field E‖(r) in the plane of the 2DEG is given by

E‖(r) = −∇Ve(r) = − 1

S

∑
G

iGVg (G)eiG·r (38)

and

∇‖ · E‖(r) = 1

S

∑
G

G2Vg (G)eiG·r. (39)
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FIG. 10. Electronic density n(r) and dipole field d(r) in the x −
y plane for the VORTEX1 phase at Vg/(e2/κ�) = 0.22 for the square
lattice with parameters a0 = 50 nm, � = 1/4, and ν = 1.

In real space, Eq. (36) becomes

〈W 〉 = −eNϕ

∑
α

∫
dr〈ρα (r)〉Vg (r)

+ 1

2
�2eNϕ

∑
α

∫
dr

〈
ρα

1,1(r)
〉∇‖ · E‖(r)

+
√

2�eNϕ

∑
α

∫
dr

[〈
ρα

x (r)
〉
Ex (r) − 〈

ρα
y (r)

〉
Ey (r)

]
.

(40)

The third line in this equation can be written as a coupling
between a dipole density and the electric field in the plane of
the 2DEG, i.e.,

〈W 〉dipole = −
∫

drd(r) · E‖(r), (41)

if we define

d(G) = −e
√

2�Nϕ

∑
α

(〈
ρα

x (G)
〉̂
x − 〈

ρα
y (G)

〉̂
y
)
, (42)

d(r) = 1

S

∑
G

d(G)eiG·r. (43)

The superposition of the n = 0 and n = 1 orbital states can
thus be viewed as creating a density of electric dipoles d(r)
[16]. Figure 10 shows the electronic density and dipole texture
for the VORTEX1 phase at Vg/(e2/κ�) = 0.22 for the square
lattice with � = 1/4. The dipole texture on each lattice site is
qualitatively the same for all phases (CDWs and VORTEXs).
In fact, the dipole field is basically that of the vector field
E‖(r) in the plane of the 2DEG. The electric dipoles align
themselves with the external potential of the grid. In contrast
with the spin field S(r), which is topologically different
between the CDW and VORTEX phases, it does not seem
possible to distinguish between the different phases from their
dipole texture alone.
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VII. CONCLUSION

It appears from the numerical results we have presented
in this paper that the phase diagram of the 2DEG in a
square lateral superlattice potential is not radically modified
by the inclusion of a second Landau level in the Hartree-Fock
equation of motion. The main result is the replacement of
the uniform phase found in Paper 1 by a phase with density
modulation but no spin texture. As expected, the occupation of
the n = 1 Landau level increases with � since a higher value
of � means a smaller magnetic field, i.e., more Landau-level
mixing.

For a triangular superlattice potential, a case not considered
in Paper 1, the phase diagram is enriched by the introduction
of the n = 1 Landau level. Apart from two CDW states with
no spin modulation, we find vortex phases analog to that
found for the square superlattice. In particular, the VORTEX4
phase has the three-sublattice structure expected for a lattice
of merons where two adjacent merons with the same vorticity
prefer to have the global phase associated with their spin
texture differing by a phase π. As for an antiferromagnet on
a triangular lattice, the spin frustration that this interaction
creates is resolved by having adjacent spins rotated by 120
degrees leading to a three-sublattice antiferromagnet. The
VORTEX3 phase which occurs just before VORTEX4 seems
to resolve the inherent frustration of an antiferromagnetic
ordering on a triangular lattice by having unequal density for
the three merons.

In Paper 1, we calculated the collective mode dispersion of
the different phases of the square lattice in the generalized
random-phase approximation (GRPA). We showed that the
VORTEX1 and VORTEX2 phases have an additional Gold-
stone mode that is related to their spin texture, the Hartree-
Fock energy being independent of the global phase of the
spin texture as is the case in a Skyrme crystal [15]. We
expect that a similar Goldstone mode should be present for
the triangular superlattice, at least for the VORTEX4 phase.
Calculating the dispersion relation of the collective modes is
one way to ascertain the stability of a phase and it would
be interesting to be able to do it for the VORTEX3 state.
When the n = 1 Landau level is considered, however, the size
of the matrices involved in the GRPA calculation are of the
order of 16NG × 16NG, where NG ≈ 600 is the number of
RLVs needed to described the vortex lattices. Those are too
big of matrices to diagonalize with our current computational
resources.

We computed the phase diagram of the 2DEG in a super-
lattice potential using the Hartree-Fock approximation (HFA).
This may raise some concern as it is well known that this
approximation often overestimates the cohesive energy of
modulated states. In the lowest Landau level, for example, the

HFA predicts a nonuniform ground state at any filling factor
ν while experiments suggest that the Wigner crystal occurs
at small filling only, i.e., for ν � 0.2. Similarly, in Landau
levels N > 1, the HFA correctly predicts the sequence of
phase transitions from Wigner to bubble to stripe crystal [17]
as the filling factor of the partially occupied level increases
from ν̃ = 0 to ν̃ = 0.5 but predicts that the last bubble crystal
has M = N + 1 electrons by bubble while M = N is obtained
in a DMRG calculation [18] and seen experimentally. On a
qualitative level however, the HFA gives a reasonable descrip-
tion of many modulated states of the 2DEG. For example, the
resistively detected nuclear magnetic resonance line shapes
of the Wigner crystal measured near filling factor ν = 2
(where the N = 0(N = 1), spin down(up) state is partially
occupied for filling factor ν slightly below(above) ν = 2)
are well approximated by using the electronic density profile
obtained in the HFA [19,20]. Also, the spin depolarization of
the skyrmion crystal [14] present near ν = 1 agrees well with
the experiments [21].

It has been noted in calculations similar to ours [22] but
where a unidirectional electric modulation of the 2DEG is
studied, that the charge-density modulation can be artifacts of
the HFA. It was concluded that the HFA should be improved
by at least including screening corrections, i.e., screening
of the exchange (Fock) interaction because this interaction
tends to favor CDW states. In this way, a more quantitatively
accurate phase diagram can be obtained. The modulated state
we study are insulators, however. The Landau levels are
transformed into subbands by the modulating potential that
are either completely filled or empty and separated by large
gaps. Thus, we do not expect screening corrections to be large.
Nevertheless, it would be important, in future work, to include
these corrections and see how the phase diagram we predict is
modified. How to include these corrections in a self-consistent
way for the complex states described in the present paper,
i.e., states that have both density and spin modulations, is a
problem on which we are currently working. In the present
paper, we consider the HFA as a starting point to study the
effect of Coulomb interaction on the 2DEG, keeping in mind
that more advanced methods that include correlations beyond
the HFA should be used to ascertain the validity of the results
it predicts.
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