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Although the direct or indirect nature of the band-gap transition is an essential parameter of semiconductors
for optoelectronic applications, the reasons for why some of the conventional semiconductors have direct or
indirect band gaps remains ambiguous. In this paper, we reveal that the existence of the occupied cation d

bands is a prime element in determining the directness of the band gap of semiconductors through the s-d
and p-d couplings, which push the conduction band energy levels at the X and L valley up, but leave the
�-valley conduction state unchanged. This unified theory unambiguously explains why diamond, Si, Ge, and
Al-containing group III-V semiconductors, which do not have active occupied d bands, have indirect band gaps,
and the remaining common semiconductors, except GaP, have direct band gaps. Besides s-d and p-d couplings,
bond length and electronegativity of anions are two remaining factors regulating the energy ordering of the �,
X, and L valleys of the conduction band, and are responsible for the anomalous band-gap behaviors in GaN,
GaP, and GaAs that have direct, indirect, and direct band gaps, respectively, despite the fact that N, P, and As
are in ascending order of the atomic number. This understanding will shed light on the design of direct band-gap
light-emitting materials.
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I. INTRODUCTION

Whether a semiconductor has a direct or indirect band
gap is of fundamental importance to its optoelectronic ap-
plications [1,2]. If the conduction band minimum (CBM)
occurs at the same point in k space as the valence band
maximum (VBM), which is usually at the center (� point)
of the Brillouin zone for conventional semiconductors, then
the energy gap is referred to as a direct band gap, otherwise
as an indirect band gap [2]. If a semiconductor has a direct
band gap and the electric dipole transition from VBM to CBM
is allowed, the electron-hole pairs will recombine radiatively
with a high probability. As a result, high-quality direct band-
gap semiconductors, such as GaAs and InP, are used to make
highly efficient light emitters. They are essential materials
for lasers, light-emitting diodes (LEDs), and other photonic
devices [3,4], whereas, in indirect band-gap semiconductors,
such as Si and Ge, optical transitions across an indirect band
gap are not allowed, and, thus, these materials are not efficient
light emitters. Despite the paramount importance of the direct
or indirect nature of the band-gap transition for conventional
semiconductors, which have been extensively studied in the
past seven decades, the understanding of the formation of their
direct or indirect band gaps remains ambiguous.

In spite of the extensive utilizing of sophisticated but
opaque computational approaches like the semiempirical
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pseudopotential method and first-principles density functional
theory to correctly reproduce the experimentally measured
band structures for semiconductors, the simple nearest-
neighbor tight-binding (TB) theory is more straightforward to
gain insight into the formation of the band structures because
of its intuitive simplicity [5]. However, this simple TB model
fails to reproduce some important band structure features,
such as the band-gap nature for indirect semiconductors [2,6].
Although the introduction of additional unphysical parameters
can cure the flaw of the simple sp3 TB model [7–10], it loses
the advantage of its intuitive simplicity and thus is unlikely
to uncover the origin of the direct and indirect band-gap
natures of semiconductors. The poor understanding impedes
the design of new direct band-gap light-emitting materials.
Specifically, Si is ubiquitous in the electronics industry but
is unsuitable for optoelectronic applications because it has an
indirect band gap. In the past five decades, numerous ideas
have been offered but failed to transform Si into an efficient
light emitter [11,12] utilizing various modalities of symmetry
reduction, including the use of porous silicon [13,14]; invok-
ing alloy-induced luminescence [15,16]; and the method of
low-symmetry allotropes of silicon [17–19], and diamondlike
(III-V)-Si alloys [20,21]. Lack of fundamental understanding
of the mechanism controlling the indirect band-gap nature of
Si might be the main reason for the difficulty of developing
Si-based direct band-gap materials.

Here, we reveal that the occupied cation d bands, which
were neglected in previous models of the TB approach [5–10],
play a prime role in forming the direct band gap of semicon-
ductors via the s-d and p-d couplings. These couplings repel
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FIG. 1. (a) Fundamental band gaps of group II-VI, group III-V, and group IV semiconductors as a function of their lattice constants a.
Filled symbols represent direct band-gap semiconductors and open symbols indirect band-gap semiconductors. On the other hand, the squares
indicate the group IV semiconductors, the circles group III-V semiconductors, and the triangles group II-VI semiconductors. (b) The energy
difference between levels of the CB X valley and � valley as a function of the energy of the cation d bands (relative to the VBM) for
semiconductors consisting of cations having occupied d orbitals.

the conduction band energy levels of the X and L valleys up
but leave the � valley intact. From group IV through group
III-V to group II-VI semiconductors, the occupied cation d

orbitals become closer in energy to the anion s and p orbitals,
leading the s-d and p-d coupling to be strongest in group
II-VI semiconductors, and hence all their band gaps are direct.
Either the lack of, or the low-lying position of, the occupied
d orbitals in cations of diamond, Si, Ge, and Al-containing
group III-V semiconductors is responsible for their nature of
indirect band gap.

II. COMPUTATIONAL APPROACH

In this study, electronic structures are calculated utilizing
density functional theory (DFT) [22–24] based first-principles
methods within the general gradient approximation (GGA)
[25] implemented in the Vienna ab initio simulation pack-
age (VASP) [26]. In the DFT calculations of conventional
semiconductors, The projector augmented wave (PAW) pseu-
dopotential [27,28] and Perdew, Burke, and Ernzerhof (PBE)
functional [25] are employed with a plane-wave expansion
up to 400 eV and a �-centered 8 × 8 × 8 Monkhorst-
Pack [29] k mesh for the Brillouin zone sampling. Without
shifting the qualitative results, we use the experiment lattice
constants [30–32] for our models. To accurately reproduce
the experimental results of band structures of conventional
semiconductors, a modified Becke and Johnson exchange
potential (mBJ) method [33] is adopted to improve the GGA
description of band structures, which yields a comparable
accuracy to GW methods but is computationally in expensive
compared with standard DFT calculations. To investigate the
role of occupied d orbitals, we explicitly treat the occupied
d shell of elements by considering them as valence states in
the calculations. The obtained band gaps [see Fig. 1(a)] are in
excellent agreement with experimental results. We employ the
GGA + U method [34] to artificially tune the energy position
of occupied d orbitals in semiconductors. Within this method,
the energy level of the semicore d shell of cations can be tuned

by the on-site Coulomb interaction parameter U . This enables
us to straightforwardly investigate the effect of cation d levels
on the band edge states and further the band-gap properties.

III. RESULTS AND DISCUSSION

A. All direct band-gap semiconductors possessing occupied
cation d orbitals

We at first examine the nature of band gaps of all con-
ventional group IV elemental, and group III-V and group
II-VI compound semiconductors, which are the semiconduc-
tors of practical interest for information technology [2,4,35].
Figure 1 shows that all group II-VI compound semiconductors
and the majority of group III-V compound semiconductors,
except Al-containing compounds and GaP, have a direct band
gap, whereas all group IV elemental materials, except gray
Sn, are indirect band gap [35,36]. We note that the cations of
all group II elements (Zn, Cd, and Hg), group III elements Ga
and In, and group IV elements Ge and Sn contain occupied d

orbitals, which, however, are absent in the remaining group III
element Al and group IV elements C and Si. Because cation
elements of all direct band-gap semiconductors encompass
occupied d orbitals, whereas all semiconductors made of
cations without occupied d orbitals have indirect band gaps,
it strongly suggests that the occupied cationic d orbitals play
a central role in determining the directness of the band gap
for conventional semiconductors. However, the filled d shells,
if they exist, are often treated as core or semicore shells and
are usually neglected in the description of the band structures
for conventional semiconductors in early studies [6–11]. To
uncover the role of the cationic d orbitals in the formation
of bands, we carried out the theoretical analysis of the band
structures of diamond elements and zinc-blende (ZB) com-
pounds relying on the perturbation theory along with the sym-
metry analysis. For simplicity, here we study only the band
structures of compounds in the zinc-blende structure, even for
GaN and ZnO, which prefer to be in the hexagonal wurtzite
(WZ) structure under ambient conditions. The relationship
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TABLE I. The point group of the wave vector at the �, X,
and L points in the zinc-blende structure and the corresponding
irreducible representations of atomic s, p, and d orbitals as well
as semiconductor conduction (CBE) and valence (VBE) band edges
under these point groups.

k Point G (k) CBE (k) VBE (k) s p d

� Td �1 �15 �1 �15 �15⊕�12

X D2d X1 or X3 X5 X1 X3⊕X5 X1⊕X2⊕X3⊕X5

L C3v L1 L3 L1 L1⊕L3 L1⊕L3⊕L3

between the band gaps of ZB and WZ structures are well
studied [37]. For example, if the band gap is direct in the ZB
structure, such as for GaN and ZnO, it is also direct in the WZ
structure; if the band gap is indirect in the ZB structure, such
as for AlN, it could still be direct in the WZ structure. Because
the ZB X and L points fold to the same U points in the WZ
structure, the eigenvalues at the U points in the WZ structure
are the average of the ZB states at X and L. Such average
raises the conduction band valley at the U points to higher
than that at � and thus makes WZ AlN direct band gap [37].

B. Symmetry enforced s-d and p-d coupling

The relative energy positions between the � valley, X

valley, and L valley in the lowest conduction band determine
the direct or indirect nature of the band gap in ZB semicon-
ductors since the VBM occurs exclusively at the � point in
all group II-VI, group III-V, and group IV semiconductors.
As given in Table I [38], in the zinc-blende structure, the CB
edge at the � point (� valley) transforms according to the �1

irreducible representation, the VB edge transforms according
to the �15 irreducible representation, and the atomic d orbitals
belong to the �15 and �12, respectively. Since the d orbitals
have the same �15 irreducible representation as the p-like VB
edge state, the coupling between p and d orbitals at the �

point could be quite significant. However, the s-d coupling
is forbidden because the atomic d orbitals have no common
irreducible representations with the s-like CB �-valley state.
Therefore, the existence of the occupied d orbitals will have
a significant influence on the formation of the band gap by
pushing the VBM up and leaving the CB � valley intact. The
CB edge at the X point (X valley) transforms according to the
X1 (or X3) irreducible representation of the D2d wave-vector
group, and is mainly derived from atomic s and p orbitals,
whereas five d orbitals belong to the X1, X2, X3, and X5

irreducible representations, respectively. Therefore, at the X

point, the d orbital state can couple to the CB X valley. The
mostly s-like CB edge at the L point (L valley) has the L1

representation of the C3v wave-vector group, whereas the five
d orbitals belong to the L1 and two L3 representations, respec-
tively. Same as the X point, the d orbital state can couple to
the CB L valley. Subsequently, the existence of the occupied d

orbitals will repel the CB X valley and L valley up due to the
symmetry allowed s-d coupling and p-d coupling at the X and
L points, but will not affect the CB � valley owing to its lack
of atomic p orbitals plus symmetry forbidden s-d coupling at
the � point (see Appendix C for diamond structure). Such s-d
coupling at the X and L points is evidenced by the fact that,
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FIG. 2. Band structure of GaAs and the varying of its band edge
levels as a function of the energy position of the Ga 3d bands. (a) The
band structure of GaAs calculated using the mBJ-GGA approach. (b)
The varying of the band edge levels of the CB �, X, and L valleys
and VBM as pulling the Ga 3d bands down through increasing the
applied on-site Coulomb U on the Ga 3d orbitals relying on the mBJ-
GGA approach. The vertical arrow indicates the transition between
direct and indirect band gap because of the crossing between the �

valley and the L valley. Inset of (b) summarizes the atomic orbital
components of GaAs band edges at U = 0 projected to spheres
around each atom.

due to the low-lying s orbital energy of nitrogen, the s-d cou-
pling away from the � point is so strong in GaN and InN that
leads to two s-like peaks observed in their photoemission near
the bottom of the valence band [39]. This s-d coupling not
only has significant influence on the band structure near the
bottom of the valence band but should also largely affect the
conduction band at both the X and L points. Unfortunately,
the latter has yet to be discovered even though a remarkable
amount of the d character was found 30 years ago in the CB
X and L valleys in conventional semiconductors [40].

C. Effect of s-d and p-d coupling on conduction band edges

To illustrate the effect of the occupied d orbitals on the
nature of the band gap, we examined the energy level shifting
of the CB �, X, and L valleys caused by the s-d and p-d cou-
pling due to the existence of the occupied d shells, which were
neglected previously, as schematically shown in Fig. 2(a).
We took GaAs as the prototype to demonstrate the suggested
unique role of the occupied cation d orbitals (the anion d

orbitals are so low in energy that it is negligible compared with
the cation d orbitals). Figure 2(b) shows the first-principles
calculated GaAs band structure using the density functional
theory (DFT) based on the modified Becke-Johnson (mBJ)
exchange potential in combination with the generalized gradi-
ent approximation (GGA) correlation (mBJ-GGA). One can
see that the Ga 3d bands with narrow bandwidths occur about
15 eV below the VBM. The interaction between d bands and
the p-like VBM via p-d coupling leads to a significant amount
of the d character in the VBM [inset of Fig. 2(b)]. Since the
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TABLE II. The theoretical predicted and experimentally measured energy positions of the occupied cation d bands in conventional
semiconductors. The averaged energy position of the cation d bands is referred to the VBM for each semiconductor. The experiment results
are deduced from the XPS data [44] with an accuracy within 1 eV.

Group Experiment or theory Cation d bands (eV)

IV Ge Sn
Theor. 24.67 21.57
Expt. 30 –

III-V GaP GaAs GaSb InP InAs InSb
Theor. 14.51 14.78 15.04 14.12 14.34 14.57
Expt. 19 19 18 17 17 17

II-VI ZnS ZnSe ZnTe CdS CdSe CdTe
Theor. 7.33 7.39 7.65 8.35 8.62 8.70
Expt. 10 10 11 11 12 12

s-d and p-d couplings are allowed at the X and L points,
the Ga 3d bands repel the X and L valleys up in a significant
amount of energy as evidenced by the incorporation of the
finite d component in both the X1c and L1c states, in addition
to expected dominated s and p components, whereas the inset
of Fig. 2(b) shows the vanishing of the p and d characters in
the �1c state, confirming it to be purely an antibonding state
of Ga 4s and As 4s and immune to the existence of the Ga 3d

bands.
To examine the effect of s-d and p-d coupling on the band

edges, we artificially pull the Ga 3d bands down to modify the
s-d and p-d hybridizations. An adjustable Coulomb U acting
on Ga 3d orbitals is used as an effective knob to tune the
energy position of Ga d levels by introducing Hubbard-type
interactions into the DFT (DFT + U ). This method has been
widely used to correct the underestimated DFT band gaps by

FIG. 3. Chemical trends of atomic energy levels predicted by
using the local density approximation (LDA).

pulling the VBM down in energy through a p-d coupling and
leaving the CBM at � intact [41,42]. Here, we applied this
method to investigate the impact of the Ga 3d on the energies
of the CB �, X, and L valleys. Figure 2(b) shows the change
of the energy positions of the X and L valleys, and VBM as
varying the energy position of the Ga 3d bands, regarding the
� valley as an ideal reference level since, to the lowest order,
it is free from the change of the d bands. As we pull the Ga 3d

bands down, the X and L valleys also move down in energy
but in different rates, and, finally, the GaAs band gap becomes
indirect, demonstrating the importance of the energy position
of the occupied cation d bands in determining the nature of
band gap unambiguously.

The energy position of the cation d bands relative to the
(anion p dominated) VBM in conventional semiconductors
depends mainly on the energy separation between the outer-
most anion p shell and the cation d shell, which decreases in
the sequence of group IV, III-V, and II-VI semiconductors as
shown in Fig. 3. Table II gives energy positions of the cation
d bands relative to the VBM predicted by the mBJ-GGA
calculations in comparison with experimental data [30–32,43]
for those conventional semiconductors possessing occupied
cation d orbitals. They are about −10 eV for group II-VI com-
pounds, −18 eV for group III-V compounds, and −25 eV for
group IV elemental semiconductors, respectively. Going from
group IV through group III-V to group II-VI semiconductors,
the shallower cation d bands lead to stronger s-d and p-d
couplings and hence larger repulsion of the X and L valleys by
the low-lying occupied cation d bands. We compare the band
structure for Ge, GaAs, and ZnSe with very similar lattice
constants around 5.65 Å (shown in Fig. 4) and for Si, GaP,
and ZnS with similar lattice constants around 5.43 Å (Fig. 5).
In compared with GaAs, the enhanced s-d and p-d couplings
in the group II-VI semiconductors repel the X and L valleys
more and lead to the band gap being more direct, whereas
in group IV Ge, the low-lying Ge 4d bands result in weak
s-d and p-d couplings so that its band gap becomes indirect.
In the group IV diamond and Si and Al-based group III-V
semiconductors, because the cation d orbitals are above the
CB edges rather than in the occupied valence bands, the s-d
and p-d couplings push the CB X and L valleys down instead
of repelling them up, and subsequently make their band gap
indirect.
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D. Effect of remaining two factors

Given that Ga possesses occupied 3d orbitals, the GaN
and GaAs band gaps are, as expected, direct. However, GaP
sitting in the middle between them is an indirect gap semicon-
ductor as shown in Fig. 6. This abnormal band-gap behavior

indicates that besides the primary s-d and p-d couplings,
other factors are also playing roles in determining the order
of the �, X, and L valleys in the lowest CB. We notice that
the lattice constants of zinc-blende GaN, GaP, and GaAs are
4.531, 5.451, and 5.653 Å, respectively [36]. The bond length
of GaP is ∼3.6% smaller than that of GaAs. Figure 6 shows
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FIG. 5. Band structure of (a) Si, (b) GaP, and (c) ZnS predicted by the mBJ-GGA approach without considering the spin-orbit interaction.
Yellow area indicates the band gap. All energies are relative to the valence band maximum (VBM), and are set to zero. The lattice constants of
Si, GaP, and ZnS are very similar.
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that, in both GaP and GaAs, increasing the lattice constant
(or expanding the volume) will raise the energy level of the
X valley and lower the �-valley energy substantially. The L

valley follows the � valley but at a much smaller rate and,
thus, often sits in between the � and X valleys in conventional
semiconductors. This phenomenon is owing to the X valley
having a positive deformation potential and the � valley
having a larger magnitude of negative deformation potential
than that of the L valley, although both possess negative
deformation potentials. If we stretch the lattice of GaP to equal

to that of GaAs, the GaP band gap would become direct. On
the other hand, GaAs undergoes a direct-to-indirect band-gap
transition as we compress the lattice of GaAs toward that of
GaP. These demonstrate that besides s-d and s-p couplings,
the bond length also plays a role in determining the nature of
the band gap. Semiconductors having a larger lattice prefer to
become more direct in the band gap (Fig. 7).

Following the above discussion, we would expect the band
gap of GaN to be indirect since the bond length of GaN
is much smaller than GaP and GaAs. However, GaN is a
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FIG. 7. Energies of the CB �, X, and L valleys relative to the VBM as a function of the change of the lattice constant in (a) GaN, (b)
GaP, and (c) GaAs. Arrows indicate the experimentally measured lattice constant a0 for each compound. The yellow areas mark the band gap
becoming indirect.
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classical direct gap semiconductor. Figure 7 shows that the
deformation potentials of GaN are substantially different from
that of GaP and GaAs; the energy level of the X valley
is insensitive to the varying of the lattice constant with an
inconsiderable negative deformation potential and the � val-
ley drops at the same rate as that of the L valley as the lattice
constant increases. AlN and InN share this exotic behavior
as GaN [45]. This unusual behavior of the group III nitrides
is due to nitrogen being among the most electronegative ele-
ments and much more electronegative than P and As elements.
Figure 3 shows that the energy level of the N 2s is 5.94 and
5.71 eV lower than that of the P 3s and As 4s, respectively.
The low-lying N 2s orbital is far away from the Ga 3s orbital
leading to a weak s-s coupling in GaN according to the TB
model [5] (see Appendix A for details), although it has a much
smaller bond length than that of GaP and GaAs. Weak s-s
coupling results in the energy level of the � valley, which is
the antibonding state of cation s and anion s orbitals, being
slightly above the Ga 3s level, and even lower than that of
GaP and GaAs. Although the low-lying position of the N
2s orbital also reduces the s-p coupling and thus lowers the
energy level of the X valley, the reduction in energy of the
X valley is much less than the � valley due to the X valley
having the lower bound limited by the atomic Ga 3p level [5].
Consequently, GaN becomes a direct band-gap semiconductor
[see Fig. 1(b)]. Thus, more electronegativity in the anions will
also make the band gap of the semiconductors more direct,
which is most significant in semiconductors containing O
or N. Our analysis above indicates that despite the size of
the atoms and electronegativity of the anions being able to
play some roles in determining the directness of the band
gap (especially for the boundary Ga compounds which have
relatively deep 3d orbitals), the coupling of the occupied
cation d bands and unoccupied s, p orbitals plays the prime
role in determining the band-gap nature as manifested by the
indirect gap of ZB AlN.

IV. SUMMARY

In summary, we have presented a unified theory for under-
standing the direct or indirect nature of the band gap in group
II-VI, group III-V, and group IV semiconductors unambigu-
ously. We found that the occupied cation d bands play a prime
role in forming the direct or indirect band gap of conventional
semiconductors via the s-d and p-d coupling with the states
of the CB X and L valleys, which remarkably pushes their
energy levels up, but leaves the � valley unchanged. From
group IV through group III-V to group II-VI semiconductors,
the occupied cation d orbitals become closer in energy to the
anion s and p orbitals, leading the s-d and p-d coupling to
be most active in group II-VI semiconductors, and hence all
their band gaps are direct. Either the lack of, or the low-lying
position of, the occupied d orbitals in cations of diamond, Si,
Ge, and Al-containing group III-V semiconductors explains
their nature of indirect band gap. This understanding will
shed light on the design of direct band-gap light-emitting
materials.
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APPENDIX A: SIMPLE NEAREST-NEIGHBOR
sp3 TB MODEL

In terms of the nearest-neighbor tight-binding approach,
the formulas of the eigenvalues at the symmetry points �, X,
and L are given as follows [5,6]:

E(�1) = εs+ + εs−

2
±

√(
εs+ − εs−

2

)2

+ Vss, (A1)

E(�15) = εp+ + εp−

2
±

√(
εp+ − εp−

2

)2

+
(

4

3
Vppσ + 8

3
Vppπ

)2

, (A2)

E(X1) = εs+ + εp−′

2
±

√(
εs+ − εp−′

2

)2

+ 16

3
Vspσ

2, (A3)

E(X3) = εs− + εp+′

2
±

√(
εs− − εp+′

2

)2

+ 16

3
V 2

spσ , (A4)

E(X5) = εp+ + εp−

2
±

√(
εp+ − εp−

2

)2

+
(

4

3
Vppσ − 4

3
Vppπ

)2

, (A5)

E(L3) = εp+′ + εp−′

2
±

√(
εp+′ − εp−′

2

)2

+
(

4

3
Vppσ + 2

3
Vppπ

)2

, (A6)
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where Vxx , Vss , and Vsp are the coupling matrix element of
the interaction Hamiltonian between the atomic orbitals and
are usually referred to as the overlap parameters.

Vll′m = ηll′m
h̄2

md2
,

(A7)
V 2

s∗pσ

εp − εs∗
= λspσ

h̄2

md2
,

and

εp − εs = 9π2

16

h̄2

md2
, (A8)

with

ηssσ = −9π2/64,

ηspσ = 3
√

3π2/64,

ηppσ = 3π2/16, (A9)

ηppπ = −3π2/32,

λspσ = −27π2/256.

APPENDIX B: SIMPLE TIGHT-BINDING THEORY FAILS
TO TELL THE ORIGIN OF INDIRECT OR DIRECT

NATURE IN BAND GAP

Although semiempirical and first-principles methods are
often used to calculate and reproduce the experimentally
measured band structures for semiconductors, the simple
nearest-neighbor tight-binding (TB) theory based on the em-
pirical bond orbital model pioneered by Harrison [5] is more
straightforward to gain insight into the formation of the band
structures because of its intuitive simplicity. It is well known
that if only a minimal sp3 basis (one s orbital and three p

orbitals for each atom) is used [6], this simple sp3 TB model,
where the various tight-binding matrix elements are fitted to
experiment or to more elaborate calculations, does not repro-
duce some important band structure features. For instance, the
simple sp3 model can yield accurate valence band structures
but fail in producing good conduction bands. For example,
it predicts a rise in energy going from � to X whereas in
the real case it can decrease. To remedy this deficiency, the
addition of higher-lying unoccupied atomic states [7–10] is
often used. In this case, atomic-site s- or d-like orbitals and
bond-site “sp” orbitals were introduced ad hoc as peripheral
higher-lying atomic states on top of valence atomic s and
p states, but neglecting the existence of low-lying occupied
atomic d orbitals in many elements such as Ga, In, Zn, and
Cd, to provide a good description of the conduction bands
without modifying the valence bands much [7–10]. Such ad
hoc high-energy excited d orbitals and/or s orbital [8] push
the lowest conduction band down at the X and L points to
correct the conduction band structure by adjusting the ad hoc s
or d orbital energies and corresponding tight-binding matrixes

[7–9]. The introduction of such unphysical parameters can
cure the flaw of the simple sp3 TB model to reproduce the
conduction band structures of some semiconductors, but, in
our opinion, fails to uncover the origin of the direct and
indirect band-gap natures of these semiconductors.

APPENDIX C: SYMMETRY CONSIDERATIONS OF
ZINC-BLENDE SEMICONDUCTORS

The electronic wave functions of a crystal at the point k in
reciprocal space are labeled by the irreducible representations
of the symmetry group operations appropriate for k, which is
known as the group of the wave vector k. The group of the
k vector at the � point or zone center is always the same as
the point group of the crystal that is Td for the zinc-blende
structure [2,38], whereas the group of the k vector at the L

point is reduced to C3v and at the X point to D2d in the
zinc-blende structure [2]. It is well known that in the zinc-
blende semiconductors the VBM, which is always at the �

point and composed mostly of anion p orbitals, belongs to
the �15 irreducible representation of the Td group. Here, we
use single group representation since the spin-orbit coupling
does not affect the directness of the band gap very much. The
electronic state of the lowest CB at the � point belongs to �1

and is dominated by cation s orbitals. At the X point, it could
be either the X1 state, which is a hybridization of cation s and
anion p orbitals or the X3 state, which is a hybridization of
cation p and anion s orbitals (here, we use the anion site as
the origin [46]; for simplicity, we will use the X1 state in our
discussion below). At the L point, it is the L1 state arising
from the admixture of cation s and anion p orbitals as well as
cation p and anion s orbitals.

At the � point, the atomic d orbitals belong to �15 and �12,
respectively, and thus have the same �15 irreducible represen-
tation as the p-like VB edge state; the coupling between p and
d orbitals at the � point could be quite significant. However,
the s-d coupling is forbidden because the atomic d orbitals
have no common irreducible representations with the s-like
CB �-valley state. Therefore, the existence of the occupied
d orbitals will have a significant influence on the formation
of the band gap by pushing the VBM up and leaving the CB
�-valley intact. At the X point, five d orbitals belong to the
X1, X2, X3, and X5 irreducible representations, respectively,
and, therefore, can couple to the CB X valley. At the L point,
five d orbitals belong to L1 and two L3, respectively, and same
as the X point, the d orbital state can couple to the CB L

valley. It should be noted that for the diamond structure of the
group IV elements, the group symmetry is Oh, different from
the Td point group of the zinc-blende structure. This could
affect the coupling between the p and d orbitals. However,
since these group IV elements in general have no occupied d

orbitals—or if they have occupied d orbitals, they are deep—it
would not affect our analysis if we treat them as materials with
the reduced Td symmetry group.
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