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Breakdown of Herring’s processes in cubic semiconductors for subterahertz
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In the present work we explain the anomalous behavior of the attenuation of the longitudinal acoustic phonon
in GaAs as a function of the phonon energy ω in the subterahertz domain. These attenuations along the [100]
direction show a plateau between 0.6 and 1 GHz at low temperatures. We found an excellent agreement between
measurements performed by some of us, and new ab initio calculations of third-order anharmonic processes. The
formation of the plateau is explained by the competition between different phonon-phonon scattering processes
such as Herring’s mechanism, which dominates at low frequencies, saturates, and disappears. The plateau is
shown to be determined by the phononic final-state phase space available at a given temperature. We predict that
a change of scattering mechanism should also show up in the attenuation of silicon around 1.2–1.7 THz, and
argue that the attenuation plateau is a general feature of cubic semiconductors.
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I. INTRODUCTION

Many efforts have been devoted to the measurement of the
absorption of ultrasonic waves with frequencies below a few
gigahertz [1]. The results have been discussed in the frame-
work of the Landau-Rumer or Akhiezer theories according to
the frequency and temperature ranges in which they have been
performed [2–7]. On the other hand, high frequency phonon
lifetimes are actively studied nowadays in relation to thermal
and thermoelectric transports, both experimentally [8,9] and
by computer simulations [10–15].

However, there are only very few studies about the damp-
ing of subterahertz acoustic waves although a full understand-
ing of the attenuation of these waves is becoming crucial in
several respects: (i) Efforts are devoted today to develop non-
destructive methods for phonon imaging of deeply embedded
nanostructures using picosecond acoustics, potentially very
important for microelectronics [16]. It is thus important to
know the absorption length of short acoustic pulses in stan-
dard semiconducting materials (silicon, germanium, sapphire,
GaAs) commonly used for microelectronics. (ii) Quantum
optomechanics can play a major role in quantum information:
the challenge is to use resonators with higher frequencies (tens
of gigahertz, instead of the current threshold of some hundreds
of megahertz), which would allow one to observe the quantum
regime at higher temperatures [17]. Then, a key problem is
the limitation of the quality factor of such resonators due to
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the intrinsic phonon-phonon interaction intervening at higher
temperatures [18,19].

Attenuation of subterahertz acoustic waves can be studied
by the so-called “picosecond ultrasonic technique” [20]. In
such experiments, either short acoustic pulses with a broad
spectrum ranging from a few tens of gigahertz up to hundreds
of gigahertz, or monochromatic coherent acoustic waves up
to a few terahertz, can be generated and detected by metallic
films, quantum wells, or semiconducting superlattices
[21–23]. The attenuation of these propagating sound waves
can be measured over a large temperature range using
samples with thickness going from a few micrometers up to
millimetric size [23–27]. At low temperature in pure crystals,
the damping of acoustic waves above 10 GHz is mainly due to
three-phonon interactions, which corresponds to the so-called
Landau-Rumer (LR) regime. Under such conditions, one
can get access to accurate experimental information about
lifetimes of individual longitudinal acoustic (LA) phonons.
At higher temperatures, the LR regime holds only for higher
frequencies (above 100 GHz). At lower frequencies, the
three-phonon perturbation description breaks down and the
system crosses into the Akhiezer regime, where the collective
response of phonon populations under the effect of the strain
field induced by the acoustic wave has to be taken into
account. In the intermediate regime between the LR and
Akhiezer ones, the finite lifetime of phonons interacting with
the exciting longitudinal acoustic wave should also be taken
into account.

In the LR regime, the interaction of three phonons is the
main mechanism of the phonon decay [28]. For a longitudinal
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acoustic wave propagating in an anisotropic crystal, Her-
ring has pointed out a dominant three-phonon coalescence
mechanism involving the scattering of the excited longitudi-
nal acoustic wave by a slow transverse phonon into a fast
transverse phonon: ωLA + ωT As

→ ωT Af
, where ω are the

phonon frequencies, LA refers to the longitudinal branch,
and T As , T Af to the transverse branches with, respectively,
the lowest and highest sound velocities [29]. Herring’s pro-
cesses are dominant because they allow the coupling of
low-energy longitudinal phonons close to the � point, to
transverse phonons which have a much higher wave vec-
tor q and, thus, a large density of states. Using symmetry
arguments, Herring predicted that the contribution of this
process should be proportional to ω2T 3 in cubic crystals,
where T is the temperature. However, this dependence only
holds in a very limited frequency and temperature domain
[30] and no general theoretical statement has been made
beyond these limits yet. Recent experimental measurements
on the absorption of subterahertz longitudinal waves made
by some of us in gallium arsenide [27] showed that after a
steep increase, the attenuation exhibits an unexpected plateau
as a function of the excitation frequency in the 700 GHz
to 1 THz range. This plateau has been ascribed, on the
basis of strong hypotheses, to a breakdown of the Herring
processes [27].

In this paper, we consider acoustic waves of frequency
up to 1 or 2 THz, at temperatures between 50 and 300 K
for silicon, and down to 2 K for gallium arsenide. We study
acoustic phonon attenuation in GaAs and Si by means of
ab initio calculations based on the density functional per-
turbation theory [31]. We show that the attenuation plateau
observed experimentally [27] in GaAs can be fully reproduced
by ab initio calculations, and can be explained by the density
of final states available for different phonon-phonon scattering
processes. More precisely, the plateau is explained by the
rapid decrease of the probability of Herring’s processes in the
700 GHz to 1 THz range, whereas the probability of other
phonon-phonon scattering processes is found to increase.
Moreover, we predict that a similar plateau in the attenuation
of acoustic phonons should be observed in silicon around
1.2–1.7 THz.

The paper is organized as follows: first, we present our
ab initio method to compute phonon attenuation due to
three-phonon interaction, and provide technical details which
concern in particular the convergence of phonon lifetimes.
Secondly, we present our calculations for the attenuation of
acoustic phonons in GaAs, comparing with experimental data.
We discuss the origin of the attenuation plateau found both
theoretically and experimentally and examine the roles of the
joint density of final states available for different phonon-
phonon scattering processes, in particular for Herring’s
processes. The role of the matrix elements of the phonon-
phonon interaction is investigated. In the fourth and fifth
sections, we present our predictions for the attenuation in
silicon, we justify our conclusion that Herring’s breakdown
is general to cubic semiconductors, and discuss the conditions
of its observation. Finally, we discuss the applicability of the
long-wavelength approximation for the anharmonic coupling
coefficients which we express in terms of third-order elastic
constants [32–34].

II. METHOD

The computational method to obtain fully ab initio the
matrix elements of the phonon-phonon interaction has been
described in detail in Ref. [31], and in papers cited therein.
For the sake of completeness, we review the theory involved
using the compact notation of Ref. [14]. To first order in
perturbation theory, the intrinsic phonon-phonon interaction
is described by one single Feynmann’s diagram (the “bubble”
diagram) [35]. This diagram describes both the decay (fission)
process, where the initial phonon decays into two phonons,
and the coalescence (fusion) process, where the phonon is
scattered by another one to create a new phonon. In both kinds
of processes, the total energy and the crystal momentum have
to be conserved, the latter modulo a vector G of the reciprocal
lattice because of periodic boundary conditions.

Identifying the phonon by its wave vector q and branch
index j , and referring to the phonon energy ωq,j and Bose-
Einstein occupation nq,j , we define the inverse of the phonon
lifetime τ−1

q,j as a sum in the reciprocal space [35,36]:

(τ )−1
q,j = π

h̄N0

∑
q′,j ′,j ′′

∣∣V (3)(qj, q′j ′, q′′j ′′)
∣∣2

× [(1+nq′,j ′ + nq′′,j ′′ )δ(h̄ωq,j − h̄ωq′,j ′ − h̄ωq′′,j ′′ )

+ 2(nq′,j ′ − nq′′,j ′′ )δ(h̄ωq,j + h̄ωq′,j ′ − h̄ωq′′,j ′′ )].

(1)

In this equation, we have introduced V (3)(qj, q′j ′, q′′j ′′),
the matrix elements of the phonon-phonon interaction that
are closely related to the third-order derivatives of the total
electronic energy, calculated with respect to three phonons.
We compute them fully ab initio, using density functional
perturbation theory [37] and the “2n + 1” theorem [38–40].
The conservation of momentum is imposed by requiring that
q′′ = −(q + q′). In our case, q is the momentum of the
initial acoustic wave (phonon) for which the attenuation is
calculated, q′ runs on a regular grid of N0 points in the whole
Brillouin zone, and q′′ is fixed by momentum conservation.

The first term of Eq. (1) describes decay processes, while
the second one describes coalescence processes. Because of
the magnitude of the Bose-Einstein occupation terms, decay
processes usually dominate. However, the conservation of
energy [expressed by the first Dirac δ function in Eq. (1)]
requires that the two created phonons (q′, j ′) and (q′′, j ′′)
have values of the energy lower than that of the initial phonon.
As a consequence, for low-energy initial acoustic phonons,
there tends to be no suitable final states for decay, so that
the contribution of decay terms to the sum of Eq. (1) is
negligible. On the other hand, the second term of Eq. (1)
describes coalescence processes whose contribution to the
sum of Eq. (1) is small for optical phonons, but turns out
to dominate for low-energy acoustic phonons, as predicted
by Herring, but with limitations that are the subject of the
following sections.

The attenuation of ultrasound waves is related to the acous-
tic field amplitude by the following relation:

Az(T ) = A0e
−α(T )z, (2)
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where Az is the measured amplitude, A0 is the amplitude
of the generated pulse, z is the distance from the pulse
source, and α is the attenuation. The attenuation is inversely
proportional to the phonon lifetime and its group veloc-
ity, i.e., to the derivative of the phonon frequency with re-
spect to the wave vector [41] vq,j = ∇qωq,j . The attenuation
reads

αq,j = 1

2|vq,j |τq,j

. (3)

In order to understand which decay mechanisms contribute
to the attenuation, we will study the temperature-dependent
joint phonon density of states (T-JDOS) which gives informa-
tion about the phase space available for scattering processes
involving a specific phonon (q, j ). In its most general form
the definition of the T-JDOS, θq,j , is based on Eq. (1), with
matrix elements set to a constant value:

θq,j = π

h̄N0

∑
q′,j ′,j ′′

× [(1 + nq′,j ′ + nq′′,j ′′ )δ(h̄ωq,j − h̄ωq′,j ′ − h̄ωq′′,j ′′ )

+ 2(nq′,j ′ − nq′′,j ′′ )δ(h̄ωq,j + h̄ωq′,j ′ − h̄ωq′′,j ′′ )].

(4)

If we only take the first line of the definition, we get the
decay-specific T-JDOS (θD

q,j ), while the second line would
give the coalescence part (θC

q,j ). Furthermore, we can restrict
the latter to processes that are described by Herring’s mech-
anism: a coalescence process where a LA phonon combines
with a slow TA phonon to form a fast TA. In practice, this
can be done by imposing that all of the phonons involved
are acoustic ones, that (q, j ) is longitudinal, and that ωq′,j ′ �
ωq′′,j ′′ . With these constraints, we get the Herring contribution
to the T-JDOS (θH

q,j ). We will see in Sec. IV D 1 up to which
point the Herring T-JDOS is a good approximation for the full
decay mechanism.

III. COMPUTATIONAL METHOD

A. Calculation details

Calculations were performed with the QUANTUM-ESPRESSO

code [42,43] using the LDA-PZ [44] exchange and correlation
functional. This functional is less popular than the Perdew-
Burke-Ernzerhof [45] one. It gives, however, a theoretical
lattice parameter close to the experimental one in cubic semi-
conductors, which is extremely important to obtain a good de-
scription of the phonon dispersion. For silicon, we have used
pseudopotentials from the Fritz-Haber-Institut library [46].
The pseudopotentials for gallium and arsenic were generated
with the FHIPP code [46], and are the same ones as those used
in Refs. [47–49].

We constructed a crystal unit cell and relaxed it to the
theoretical lattice parameter, which was found to be 10.591
bohrs for GaAs and 10.167 bohrs for Si. The use of the ex-
perimental lattice parameters for both GaAs and Si was found
to yield very little difference in the results. The Kohn-Sham
set of equations was integrated in the reciprocal space over
a shifted Monkhorst-Pack [50] grid of 12×12×12 (GaAs)
or 8×8×8 (Si) k points. The use of a grid shifted from the

� point was crucial to obtain properly converged results in
GaAs, especially in the calculation of effective charges from
the linear response theory. We used a kinetic cutoff energy
of 45 Ry, for which phonon frequencies at the � point were
converged within 1 cm−1. For the present application, we
decided to converge very strictly all parameters, as the cost
of the ab initio calculation using the “2n + 1” theorem is
negligible with respect to the integration over the Brillouin
zone in Eq. (1).

B. Convergence of the inverse lifetime

Indeed, Eq. (1) includes two Dirac delta functions that
enforce the conservation of energy. To make the integration
feasible, these delta distributions are replaced by Gaussian
functions of finite width, under the condition that the chosen
width is smaller than energy differences of phonons involved
in the process. In order to obtain good quality results, the
sum over q points of the reciprocal space must be done
over a grid which is sufficiently fine to sample a significant
number of nonzero scattering processes. However, the num-
ber of points increases rapidly as we tackle low-temperature
and low-energy phonons, because the finite width of the
Gaussian has to be reduced to maintain the computational
accuracy.

Such a fine grid cannot be directly computed from den-
sity functional perturbation theory. We thus exploit the fact
that phonon dynamical matrices and phonon-phonon cou-
pling matrices change smoothly in reciprocal space, and use
Fourier transform to pass from a relatively coarse grid of
points, computed directly ab initio, to short-ranged two- and
three-body force constants in real space. The latter quantities
are interpolated in real space, assuming that they are short
ranged. A second Fourier transform, back to the reciprocal
space, allows one to compute phonon dynamical matrices and
phonon-phonon coupling matrices at any q on an ultrafine
grid. Details of the interpolation scheme can be found in
Ref. [31].

In the present application, we have computed the phonon
dynamical matrices ab initio on an initial 8×8×8 q-point
grid in the reciprocal space, and the phonon-phonon coupling
matrices on a 4×4×4 q-point grid. To evaluate the integral
of Eq. (1) the code does not employ symmetry operations to
reduce the grid size, hence a uniform �-centered grid is not the
best choice for the integration, as a large number of equivalent
points would be included in the integral. We found instead that
the use of a randomly shifted grid, which is incommensurate
to any symmetry operation, yields the fastest convergence.
Although symmetry is formally broken, we checked that it
is numerically recovered at convergence. All of the phonon
lifetime calculations have been performed with a grid con-
taining as many as 199×199×199 points. The finite smearing
was chosen to be 0.2 cm−1 for GaAs and 0.5 cm−1 for Si,
respectively. Reducing the grid size to 39×39×39 q-point was
proven to be sufficient in almost every case, when used with a
large smearing value of 2 cm−1 (66 GHz). It was, however,
insufficient to reproduce the correct behavior of the atten-
uation when the initial-phonon frequency was smaller than
100 GHz.
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(a) 50 K - ω dependency (b) 713 MHz - T dependency

FIG. 1. Phonon attenuation in GaAs: comparison of calculations with experiments (a) at fixed temperature (50 K) as a function of
phonon frequency along the [100] direction and (b) at fixed energy (ω = 713 GHz) as a function of temperature. The inset shows data on
a logarithmic scale for α to magnify the low-temperature behavior. Similar pictures for all of the points measured in Ref. [27] are provided in
the Supplemental Material [52].

IV. RESULTS FOR GALLIUM ARSENIDE

A. Attenuation of LA phonons along [100]

We focus on the case for which we are able to di-
rectly compare experimental results and calculations: the
longitudinal phonon branch along the [100] direction. As
shown in Fig. 1(a), the agreement is remarkable. Not only
does the calculation correctly reproduce the qualitative be-
havior of α(ω), and the presence of the plateau between
600 GHz and 1 THz, but also the experimental and calculated
absolute values of the attenuation are very close. We stress that
no renormalization has been applied to the data: the values of
the attenuation directly come from the ab initio calculations.

In Fig. 1(b), we examine the behavior of α at the fixed
frequency value of 713 GHz, as a function of the tem-
perature, and compare it with the experimental data. The
low-temperature region is magnified in the inset of Fig. 2.
The agreement between the ab initio calculations and the
experimental data (starting from 20 K) is strikingly good
even at very low temperature. We report in the Supplemental
Material [52] the comparison for eight different frequencies,
with similar conclusions.

At this point it is important to note that the experimental
data correspond only to the relative change of attenuation with
temperature defined by

α(T ) − α(10 K) = −1

z
ln

(
Az(T )

Az(10 K)

)
, (5)

where Az is defined in Eq. (2), while the ab initio data is the
absolute value of the attenuation given by Eq. (3).

Thus, the experimental points would eventually go exactly
to zero, at zero temperature, while the theoretical data, which
take into account spontaneous decay processes, have therefore
a finite limit at 0 K. The extremely good agreement above
approximately 30 K implies that, indeed, the experimental
points can also be considered as absolute values of the sound
attenuation. The behavior of the ab initio data displayed
in Fig. 1(b) is typical of what could be expected from the
temperature dependence of the inverse lifetime: a slow growth
starting from a finite value at low temperature, which eventu-
ally becomes linear, in this case above 90 K (not shown).

B. Comparison of LA and TA modes and propagation directions

In Fig. 2 we extend the computation to the [111] direction,
and to phonon modes which are not readily accessible by
experiment.

The behavior of the computed attenuation for transverse
phonons is different from that of the longitudinal one: while
for the LA branch we have a very clear plateau between
600 GHz and 1 THz, for the TA branches the attenuation only
shows a shoulder around 1 THz.

We also report the attenuation of LA and TA phonons
along the [111] direction. None of the attenuations of the
two branches has such a clear plateau as the LA phonon
attenuation along the [100] direction, but we observe a change
of behavior around 1 THz, where the attenuation starts to grow
faster as the phonon energy increases.

At room temperature [panel (b), Fig. 2], the plateau ob-
served for the longitudinal wave along the [100] direction
moves to lower energies, around 400 GHz, and extends over a
frequency range smaller than the one at 50 K. Finally, a small
dip is predicted at 400 GHz for the longitudinal wave along
the [111] direction as well as for the transverse waves in both
[100] and [111] directions.

C. Results at cryogenic temperatures

Some measurements of the phonon attenuation in GaAs,
additional to those of Ref. [27], are available in Ref. [51].
The mean-free path (MFP) of the 650 GHz LA phonon along
[111] was measured at a temperature of 2 K, the reported
value being 0.8 mm. At such a low temperature, the intrin-
sic phonon-phonon scattering is small with respect to the
scattering of phonons with isotopic disorder and potentially
with other lattice defects and impurities. We have simulated
this MFP including only intrinsic scattering (not shown), and
found a value of 40 mm. However, when we included isotopic
scattering, as done in Ref. [14], the MFP was reduced to
2.7 mm, which we consider an acceptable estimation of the
intrinsic MFP. Indeed, the difference between our result and
the experiment of Ref. [51] is the signature of the presence
of additional scattering sources in the experiment, i.e., lattice
defects and surface roughness.

245201-4



BREAKDOWN OF HERRING’s PROCESSES IN CUBIC … PHYSICAL REVIEW B 98, 245201 (2018)

(a) 50 K (b) 300 K

FIG. 2. GaAs. Attenuation of longitudinal and transverse phonons along the [100] and [111] directions at 50 K (left panel) and 300 K
(right panel). Note the change of scale between the two temperatures (panels), as well as the different axis for the TA mode (on the right) in
the left panel.

D. Discussion on the frequency dependence of the attenuation

To understand the origin of the plateau, we study whether
it comes from the behavior of transition matrix elements, or
whether it is a property of the phonon dispersion, modulated
by the matrix elements.

1. Temperature-dependent joint density of states

We have computed the T-JDOS of Eq. (4) in the subtera-
hertz region of the acoustic phonons in GaAs, along the [100]
and [111] high-symmetry directions at two temperatures, 50
and 300 K, as well as contributions to T-JDOS from different
scattering channels. We have observed that the T-JDOS is
almost perfectly isotropic at the energies under consideration;
furthermore, the effect of temperature is limited to a change in
magnitude, both absolute and between different contributions.
For these reasons, in Fig. 3, we only report the T-JDOS at
50 K and along the [100] direction, which we discuss below.

FIG. 3. Temperature-dependent joint density of states (T-JDOS)
at 50 K for the LA branch of GaAs along the [100] direction. The to-
tal T-JDOS (thick black solid line) is decomposed into decay (dashed
orange) and coalescence (dot-dashed blue) processes, the latter being
further divided into Herring’s (LA → TAS + TAF ; blue dash-dotted
lines) and non-Herring’s (blue long-dashed lines) processes.

As one can see from Fig. 3, for initial phonon frequen-
cies under 1 THz, it is indeed the Herring mechanism that
dominates over other phonon-phonon scattering mechanisms.
However, while the contribution of other decay and coales-
cence events grows linearly when the frequency increases,
the Herring contribution saturates around 500 GHz. At this
frequency, Herring’s mechanism is still contributing by more
than one-half, up to two-thirds, to the total value of the T-
JDOS, but it quickly loses importance until it completely dies
off just beyond 1 THz. This breakdown of Herring’s processes
produces the change of slope in the total T-JDOS, which is the
origin of the attenuation plateau experimentally observed in
GaAs at low temperatures (Fig. 2 and Ref. [27]).

At 300 K (results not shown in the main text) [52], the
global picture is found to be very similar, but the steepness
of the non-Herring contributions is higher than at 50 K.
This moves the maximum of the total T-JDOS down toward
lower energies, as Herring’s processes are drowned sooner
by the other scattering mechanisms than at 50 K. Because
the Herring contribution picks up very quickly from zero, it
may appear as a short sharp peak or only as a change in the
steepness of the total T-JDOS: the exact effect will depend
crucially on the details of the matrix elements which govern
the relative magnitude of the different mechanisms.

2. Final states for phonon scattering

On the one hand, T-JDOS plays the major role and it is
the superimposition of the hill-shaped curve of the Herring
mechanism and of the linear curve of the other processes, that
results in the formation of the plateau. On the other hand,
the matrix elements are still important: they fix the relative
magnitude of scattering mechanisms and enable (prevent) the
transitions which are allowed (forbidden) by symmetry, giving
a much more complex shape and anisotropy of the attenuation
(Fig. 2) with respect to the simple and isotropic shape of the
T-JDOS.

Furthermore, the scattering processes contributing to the
attenuation strongly depend on the direction because of the
selection rules embedded in the matrix elements. In Fig. 4
we have decomposed the contribution to the attenuation by
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(a) 150 GHz, [100] (b) 900 GHz, [100]

(c) 150 GHz, [111] (d) 900 GHz, [111]

FIG. 4. GaAs at 50 K. Brillouin volume spanned by the wave
vectors of the phonons involved in the scattering of LA phonons
along the directions [100] [panels (a) and (b)] and [111] [panels (c)
and (d)]. The initial state is either at 150 GHz [panels (a) and (c)] or
at 900 GHz [panels (b) and (d)]. The volume inside the surfaces con-
tributes 75% to the scattering events. Surface-outside/inside colors
allow one to identify the final-state phonon in the following way: TA
slow is yellow/blue, TA fast is red/cyan, and LA is green/magenta.
The [100] direction is oriented upward.

convoluting Eq. (1) with δ(q′ − q̄):

(τ q,j,j ′
(q̄))−1

= π

h̄N0

∑
q′,j ′′

δ(q′ − q̄)|V (3)(qj, q′j ′, q′′j ′′)|2

× [(1 + nq′,j ′ + nq′′,j ′′ )δ(h̄ωq,j − h̄ωq′,j ′ − h̄ωq′′,j ′′ )

+ 2(nq′,j ′ − nq′′,j ′′ )δ(h̄ωq,j + h̄ωq′,j ′ − h̄ωq′′,j ′′ )].

(6)

We plot the resulting [τ q,j,j ′
(q̄)]−1 inside the Brillouin zone,

with different color depending on j ′. We have examined this
decomposition for GaAs at 50 K, to study the attenuation of
the LA phonons at 150 GHz, where the Herring processes
dominate the scattering, and at 900 GHz, where Herring’s
processes have become the minority. The isosurfaces are
color-coded depending on the band number of the final state.

In particular, the yellow and red surfaces contain the h̄q
vectors responsible for Herring’s scattering. We can see how
at low energy, along [100] [Fig. 4(a)] the picture is consistent
with the Herring model, with most of the scattering events
occurring along the [100] direction (the red volume), with also
an important amount of scattering around the [111] directions

FIG. 5. GaAs, [100] direction. Squared matrix element involved
in the scattering of the initial longitudinal (black line) and transverse
(blue line) phonons, averaged over the BZ with respect to the q′ wave
vector, represented as a function of the qx component of the initial
q wave vector (lower panel) and initial phonon frequency (upper
panel).

(the yellow volumes). A significant fraction of the Brillouin
zone (BZ) (around 14% of the BZ volume) is actively par-
ticipating in the scattering. However, at the same energy but
along the [111] direction [panel (c)], only a smaller volume
around [111] and some small pockets close to the surface of
the BZ in direction [100] are Herring active (about 4% of the
BZ volume). One sees in Fig. 2 by how much the attenuation
at 150 GHz is smaller along [111] than along [100]. In
panels (b) and (d) of Fig. 4, we can see that as we move
toward higher energies of the initial phonon, the scattering
mechanisms become more complex, and they involve all the
bands (including the longitudinal band, in green) and entail
large chunks of the BZ.

3. Average matrix element

The importance of the effect of the matrix elements is
illustrated in Fig. 5, where we report the average value of
|V (3)|2 involved in the scattering process of the LA and TA
phonons along the [100] direction of GaAs, as a function
of phonon frequency and wave vector. One can see that the
value is almost linear at low energy for TA phonons, but
deviates from linearity around 1000 GHz, becoming more
steep. For LA phonons, on the contrary, the behavior of the
average matrix element is not linear even below 1000 GHz,
and exhibits, after an initial growth, a saturation between 600
and 1000 GHz, followed by a rapid increase above 1000 GHz,
when processes other than the Herring one start to dominate

245201-6



BREAKDOWN OF HERRING’s PROCESSES IN CUBIC … PHYSICAL REVIEW B 98, 245201 (2018)

(a) 50 K (b) 300 K

FIG. 6. Silicon. Attenuation of the longitudinal and transverse acoustic phonons along the [100] and [111] directions at 50 K (left panel)
and 300 K (right panel). Note the change of scale between the two temperatures (panels), as well as the different axis (on the right) for the TA
mode in the left panel.

the scattering. The convolution of |V (3)|2 with the T-JDOS
explains most of the shape of the attenuation in functions of ω,
with the sharp features being imputable to the complex inter-
play between the matrix-element magnitude and the overlap
of phonon polarizations, which are inherent to the definition
[31] of V (3).

V. RESULTS FOR SILICON

In Fig. 6, we report the computed attenuation of LA and TA
phonons along the [100] and [111] directions at 50 and 300 K.
At low temperature [panel (a)], there is a visible plateau in the
LA and TA branches along the [100] direction between 1.2
and 1.7 THz. When we examine the [111] direction, as in the
case of GaAs, the plateau is not as pronounced as in the [100]
direction. Nonetheless, a change of behavior is clearly visible
in the same energy range as in the [100] direction.

At room temperature [panel (b)], the curves look smooth
in the terahertz region. However, a careful examination re-

FIG. 7. Temperature-dependent joint density of states (T-JDOS)
at 50 K for the LA branch of silicon along the [100] direction. The to-
tal T-JDOS (thick black solid line) is decomposed into decay (dashed
orange) and coalescence (dot-dashed blue) processes, the latter being
further divided into Herring’s (LA → TAS + TAF , blue dash-dotted
lines) and non-Herring’s (blue long-dashed lines) processes.

veals the presence of a small plateau, or a shoulder, around
500 GHz, which is magnified in the inset of Fig. 6(b).

We conclude that our theoretical results predict a plateau
for the attenuation of the LA [100] phonon between 1.2 and
1.7 THz, similar to the one which is found in GaAs both
experimentally and theoretically.

To the best of our knowledge, there is no experimental
data available for the attenuation of acoustic waves in sil-
icon in the range of frequencies for which we predict the
attenuation plateau. There are few experimental results of
sound absorption in silicon for frequencies above 10 GHz
[24,26,53]. In Ref. [24], data have been obtained in the 50–
100 GHz frequency and 30–130 K temperature ranges. As
explained in the Introduction, such conditions correspond to
an intermediate regime coming from the transition between
the LR regime and the Akhiezer one, where the collective
behavior of the phonon gas comes into play. The study of the
intermediate regime is beyond the scope of the present work.

In analogy to what we have seen for GaAs in Sec. IV D 1,
we examine in Fig. 7 the T-JDOS of silicon. Herring’s mech-
anism dominates in a frequency range similar to the one in
GaAs, up to 1 THz; however, the T-JDOS has a shorter and
steeper onset and a larger saturation area, and it dies off slower
than in GaAs, around 2.4 THz. This difference with respect
to GaAs is consistent with the higher values of the phonon
energy and group velocity of silicon. As a consequence, at low
temperatures, the plateau spans a larger energy range than in
GaAs, and should be observable.

At 300 K (results not shown in the main text), the weight of
scattering processes involving high-energy phonons increases:
a small plateau is visible around 500 MHz, and can be asso-
ciated with the initial high steepness of the Herring T-JDOS.
On the other hand, at 300 K, the large maximum of Herring’s
mechanism is not sufficiently steep to appear in the total
attenuation curve, unless a careful examination is performed,
as done in the inset of Fig. 6(b).

VI. GENERALIZATION TO OTHER
CUBIC SEMICONDUCTORS

We have presented in detail how the breakdown of the
Herring scattering model produces a plateau or a shoulder,
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and discussed the conditions of their observation in measure-
ments of the attenuation α for two specific materials. In the
following, we explain that it is a common feature of cubic
semiconductors.

Indeed, Herring’s model requires that the LA phonon along
the [100] direction coalesces with a nondegenerate TA phonon
into another TA phonon, the main regions that are active in
the mechanisms are around the [100] and [111] directions
(Fig. 4), with the former giving the main contribution at very
low frequencies. The model assumes that all three phonon
energies linearly depend on their wave vector: ων = Aν |qν |
(ν = LA, TAs, TAf ). As a result, it is always possible to find
a coalescence channel, as the phase space is proportional
to |q|2. However, in order to have ωLA + ωTAs = ωTAf , the
two TA phonons have to be at an energy higher than LA,
and they quickly exceed the region where their dispersion is
linear. The linear regime is in general quite limited in cubic
semiconductors, up to |q| � 0.2–0.3 inverse lattice units, in
Si and GaAs.

A similar and complementary geometric argument holds
for the main non-Herring decay process, ωLA = ωTAfast +
ωTAslow : the phase space for decay is initially very small, being
limited by energy conservation, and increases with ωLA.

The total attenuation is initially the sum of two curves,
and its behavior is an interplay between the two contribu-
tions: the Herring coalescence one that increases, saturates,
and then decreases; and the non-Herring decay one, that
increases from zero. It is clear that because of the different
behaviors, a plateau will form, although its exact energy
range and amplitude depend on the specific material, and can
be predicted, as we show in the present work, by ab initio
calculations.

VII. MODEL BASED ON ELASTIC CONSTANTS

It is worth noting that the information about the behavior
of the phonon-phonon matrix elements discussed above, can
be used to evaluate the applicability range of models used in
the past [32–34] to describe the phonon-phonon interaction in
materials. In these models, phonon-phonon matrix elements
are described via linear combinations of elastic constants,
and are linearly proportional to the phonon wave vectors of
the three phonons involved in the interaction process (see
Appendix for details). As one can see from Fig. 5, the behavior
of the average of the matrix elements for phonon-phonon
interaction starts to deviate more and more from linearity for
both transverse and longitudinal phonons as the modulus of
the wave vector grows. We have shown above in Fig. 4 that
the phonons involved in three-phonon scattering processes
responsible for acoustic wave attenuation can have wave
vectors close to the BZ boundary. Indeed, it was shown in
an earlier work [30] that it is impossible to reproduce the
experimentally observed plateau in the attenuation of the LA
[100] phonon in GaAs using the unmodified model based on
elastic constants for the phonon-phonon interaction matrix
elements. However, it was also shown in Ref. [30] that if the
model for the phonon-phonon interaction matrix element was
modified to account for saturation of the matrix elements (with
an adjustable parameter), and the ab initio phonon dispersion
was used, then the plateau could be reproduced, as shown

FIG. 8. GaAs at 50 K. Lines: attenuation of LA phonon obtained
in Ref. [30] with a modified model based on elastic constants and
ab initio phonon dispersion (see text). Symbols: experimental data
of Ref. [27].

in Fig. 8. Indeed, the qualitative similarity of the theoretical
results obtained in Ref. [30] with a (modified) model based
on elastic constants and ab initio phonon dispersion, shown in
Fig. 8, to the ones presented in this work in Fig. 2, highlights
once again the fact that the plateau is due to the interplay
between T-JDOS (which is determined solely by the phonon
dispersion) and the phonon-phonon matrix elements. One
must note, however, that quantitatively, the fully ab initio
results of Fig. 2 agree much better with experimental data than
the ones presented in Fig. 8. The details of the model proposed
in work [30] are described in the Appendix.

VIII. CONCLUSIONS

We have computed within density functional perturbation
theory the intrinsic phonon-phonon scattering processes for
the very low frequency region of crystalline gallium arsenide
and silicon phonon dispersion. For GaAs we have compared
the calculations along the [100] direction with experiments,
finding the agreement to be excellent, both as a function of the
phonon frequency, at constant temperature, and as a function
of temperature, for a given phonon frequency.

We are able to give some insight into the mechanisms
underlying the anomalous, but quite general, appearance of a
plateau (especially for the LA phonon) or shoulder (for TA) in
the phonon attenuation as a function of frequency, appearing
between 600 GHz and 1 THz for GaAs, and between 1.2 and
1.7 THz for silicon.

Specifically, the plateau is caused by the three-phonon
coalescence Herring processes, which dominate at low fre-
quency, progressively saturating and then rapidly decreasing
as the states involved in the scattering move up in energy,
over the limit of the acoustic part of the phonon dispersion.
The saturation is caused by the acoustic phonon dispersion
changing from linear to constant at low energy, which is a
common feature of cubic semiconductors.

One of the major consequences of the breakdown of
Herring’s processes is that the absorption length of
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longitudinal acoustic waves at 1 THz in semiconductors could
be pretty large even at room temperature (50 μm at 300 K
in silicon for a wavelength of 8.5 nm), opening interesting
possibilities for high-resolution phonon imaging of deeply
embedded nanostructures.

It is interesting to observe that the magnitude of the
attenuation can be quite different for different directions
and branches, but the plateau is still present grossly in the
same frequency range. On the other hand, it becomes less
visible at higher temperatures as more scattering channels
involving the optical bands reduce the dominance of the
simple Herring decay mechanism, drowning it out at lower
frequencies.
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APPENDIX

We briefly present the model for the anharmonic coeffi-
cients and its modification proposed in Ref. [30].

In the long-range approximation, the phonon-phonon ma-
trix element can be written as [34]

V (3)(qj, q′j ′, q′′j ′′) = �(qj, q′j ′, q′′j ′′)
ωjωj ′ωj ′′ , (A1)

with

�(qj , qj ′ , qj ′′ ) =
∑

αβγ δμν

Sαβ,γ δ,μν × qj,αqj ′,γ qj ′′,μ × ej,βej ′,δej ′′,ν ,

Sαβ,μν,ζ ξ = Cαβ,μν,ζ ξ + δαμCβν,ζ ξ + δαζ Cμν,βξ + δμζ Cαβ,νξ , (A2)

where C stands for both the second- and third-order tensors of elastic constants and e are the phonon polarizations. As one can
see, the linear dependence on the q vectors of the three phonons involved in the interaction is built in the model of Ref. [34].
Thus, the model cannot describe the saturation of phonon frequencies and phonon-phonon matrix elements for phonon wave
vectors far from the center of the Brillouin zone.

In order to take the saturation into account, a simple modification was proposed in Ref. [30]:

�(qj , qj ′ , qj ′′ ) =
∑

αβγ δμν

Sαβ,γ δ,μν × q̃j,αq̃j ′,γ q̃j ′′,μ × ej,βej ′,δej ′′,ν , q̃ =
{

q if |q| < qc

qc · q
|q| if |q| � qc,

Sαβ,μν,ζ ξ = Cαβ,μν,ζ ξ + δαμCβν,ζ ξ + δαζ Cμν,βξ + δμζ Cαβ,νξ . (A3)

As one can see, the matrix elements are now allowed to grow linearly with q only until the q vector reaches a “saturation
wave vector” qc. In Ref. [30], qc was treated as a fitting parameter, which we found to be qc = 0.37( 2π

a0
) for GaAs, for all the

temperatures and all initial acoustic phonon frequencies considered.
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