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Superabsorbing metamaterial wormhole: Physical modeling and wave interaction effects
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Conjugate-impedance matched superabsorbers are metamaterial bodies whose effective absorption cross
section greatly exceeds their physical dimension. Such objects are able to receive radiation when it is not
directly incident on their surface. Here, we develop methods of physical modeling of such structures and
investigate interactions of the superabsorbers with passing electromagnetic radiation. The particular superab-
sorbing structure under study is a wormhole composed of meshes of loaded transmission lines. A theory of
electromagnetic wave propagation and absorption in such metamaterial structures is developed. At the frequency
of operation, the structure exhibits greatly enhanced absorption as compared to the black-body-type absorber
of the same size. Peculiar wave absorption effects such as trapping of nearby passing beams of electromagnetic
radiation are demonstrated by numerical simulations. Possible modifications of the wormhole structure under
the goal of optimizing absorption while minimizing complexity of the involved metamaterials are discussed.
Conjugate-impedance matched superabsorbers may find applications as efficient harvesters of electromagnetic
radiation, antennas, and sensors.
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I. INTRODUCTION

From wave optics, it is known that the scattering and
absorption cross sections of resonant particles can be much
greater than those of nonresonant bodies with the same di-
mensions [1]. For instance, the extinction cross section in
subwavelength particles exhibiting plasmonic or polaritonic
resonances can be orders of magnitude greater than the same
for a black-body-type absorber of a comparable physical size
[2–9]. Effectively, such resonant particles are able to collect
the incident wave power from an area much bigger than their
physical cross section.

The same physical principle of optimal resonant absorption
is used when designing compact receiving antennas. From
the theory of wire antennas [10–12], it is known that a short
wire dipole (with length much smaller than half wavelength)
is an ineffective receiver unless it is loaded with complex
impedance Zload(ω) = Z∗

dip(ω), where Z∗
dip(ω) is the complex

conjugate of the input impedance of the dipole antenna at
the frequency ω. Such a conjugate-impedance matched load
compensates for the excess reactance of the short dipole
antenna, tunes it in resonance with the incident field, and
provides for the maximum of the received power [10].

The ultimate limit for the effective receiving area of a
resonant dipole is (3/8π )λ2 (e.g., Ref. [2]), where λ is the
radiation wavelength. Note that this limit is determined by the
wavelength rather than by the dimensions of the dipole. If a
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particle supports higher order multipolar resonances (besides
the main electric dipolar mode) at the same frequency ω, its
absorption cross section can be made larger than that of a
resonant dipole [8,9]. In fact, it can be shown that there is no
ultimate upper limit on the effective absorption cross section
of a resonant object when more multipolar modes of the object
pile up at the same resonant wavelength. Analogous results
for the gain and directivity of conjugate-impedance matched
antennas have been known for a long time [13,14].

Cylindrical metamaterial superabsorbers utilizing isotropic
double-negative metamaterials are known from literature [15].
However, their performance is limited to the normal incidence
of vertically polarized waves. Perfectly conjugate-impedance
matched metamaterials that enable optimal absorption of the
incident electromagnetic radiation in arbitrary excitation sce-
narios have been proposed in Ref. [16]. With this princi-
ple, a spherical object—“metamaterial thermal black hole”—
formed by a medium with simultaneously negative permit-
tivity and permeability[17] can be constructed to possess
arbitrarily large absorption cross section, theoretically, inde-
pendent of the physical radius of the object [18]. The required
condition is that the double-negative (DNG) metamaterials
with arbitrarily small loss and arbitrarily large ranges of per-
mittivity and permeability values are attainable. Such meta-
material superabsorbers, if realized in practice, could be used,
for example, as efficient harvesters of electromagnetic radia-
tion at microwave frequencies or as super-Planckian radiative
heat emitters at infrared and optical frequencies [18,19].

It is also known that the subwavelength superscat-
tering objects [3] under plane wave incidence and the
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metamaterial thermal black holes with optically large radii
[18,20], when illuminated by Gaussian beams, exhibit very
peculiar behaviors of the Poynting vectors in their vicinity,
which so far has been only studied theoretically. Unusual
wave effects, such as trapping of nearby passing beams of
light, have been predicted for such objects [20]. Although
one may introduce an effective optical “Schwarzschild radius”
for such superabsorbers [20], they do not actually mimic the
behavior of light close to a celestial black hole. Note that the
beam trapping effects discussed here are very different from
the ones reported for the optical black holes with positive
index of refraction and the metamaterial black holes [21–24]
because in the latter a beam has to enter the gradient index
medium in order to be captured, while in our case the DNG
metamaterial body captures the beam propagating in free
space near the body. In other words, the effective absorption
cross section of the optical black holes with positive refractive
index does not exceed their physical cross section, in con-
trast to the superabsorbing structures studied in the present
article. It is therefore of a great interest to identify ways to
physically (both numerically and experimentally) model such
structures.

In this article, we look for ways to do such physical
modeling by employing topological equivalence (i.e., home-
omorphism) between a superabsorbing conjugate impedance
matched object in n-dimensional space and a correspond-
ing wormhole structure in n + 1 dimensions (which is
discussed in Sec. II), so that, for instance, the wave
absorption and scattering effects on a circular superab-
sorber in two dimensions can be modeled as for surface
waves on an equivalent wormhole structure in three di-
mensions. The respective wormhole structure can be re-
alized at microwave frequencies with readily available
techniques.

This article is structured as follows. In Sec. II, a sum-
mary of the known results regarding superabsorbers such as
the metamaterial thermal black holes is given, including the
details of the coordinate transformations that establish the
topological equivalence mentioned in the previous paragraph.
In Sec. III, possible approaches for physical modeling of such
superabsorbing structures utilizing the wormhole topology are
discussed, with the most feasible one being selected as based
on meshes of loaded transmission lines, which is supported
by the analytical theory for the electromagnetic Bloch waves
in the periodic meshes of such lines developed in the same
section. In Sec. IV, the wormhole structure realization, its
theoretical analysis, the simulation methods, and the numer-
ical results are presented (with the implementation details
of the simulation methods given in Appendix B). Finally,
in Sec. V the main conclusions of the present study are
drawn.

II. KNOWN SPHERICAL AND CYLINDRICAL
METAMATERIAL SUPERABSORBERS

From our previous studies [18], we know that a spheri-
cal metamaterial body with radius a and radially dependent
isotropic complex permittivity ε(r ) = ε′(r ) − jε′′(r ) and per-
meability μ(r ) = μ′(r ) − jμ′′(r ) [at some frequency ω; the

time dependence is assumed to be of the form exp(+jωt ),
where j = √−1] satisfying

ε′(r )

ε0
= μ′(r )

μ0
= −a2

r2
, (1)∣∣∣∣ε′′(r )

ε′(r )

∣∣∣∣ =
∣∣∣∣μ′′(r )

μ′(r )

∣∣∣∣ = tan δ → 0, (2)

has the effective absorption cross section σabs(ω) → ∞ at the
frequency ω, independent of the physical radius of the body
a. In these relations, ε0 and μ0 are the permittivity and the
permeability of the surrounding space, e.g., free space. The
parameters ε0 and μ0 are assumed to be real valued.

For objects made of the materials with finite values of
the loss tangent, tan δ > 0, and a limited variation range of
the relative material parameters when r → 0, |ε′(r )/ε0| < ∞,
|μ′(r )/μ0| < ∞, the absorption cross section is finite, but still
it can be large as compared to the physical dimensions of the
body, σabs � πa2, even when a � λ, where λ = 2πc/ω is
the radiation wavelength (with c = 1/

√
ε0μ0 being the speed

of light in the surrounding space).
This result can be explained by the fact that a body with

the parameters (1) and (2) is conjugate-impedance matched
with the surrounding space, at every possible spatial harmonic
of the incident field [18]. In order to prove this fact, one
can use, for instance, the expansion of an arbitrary incident
plane wave into spherical harmonics with the origin at the
center of the body, as was done in Ref. [18]. It can be
shown that all incident spherical harmonics in this expansion
are absorbed by such body without reflections, and thus
the body is able to receive all (theoretically, infinite) power
transported by a plane wave. This result means that the
absorption cross section of such a body is also theoretically
infinite.

An analogous result can be obtained as well in the case of
a cylindrical body [16] with radius a and anisotropic radially
dependent material parameters

ε
′

ε0
= μ

′

μ0
=

⎛
⎝−m 0 0

0 − 1
m

0

0 0 − 1
m

(
a2

ρ2

)1+1/m

⎞
⎠, (3)

where the components of the material tensors are given
in the cylindrical coordinate system (x1, x2, x3) ≡ (ρ, ϕ, z),
with ρ being the radial distance in this system and m >

0 being an arbitrary parameter. When m = 1, the material
parameters (3) become uniaxial with respect to the z axis
and thus are isotropic in the xy plane. Because the latter
case is simpler to realize in practice, in what follows, we
select m = 1.

The superabsorbing property of such spherical and cylin-
drical objects can be also explained with a coordinate trans-
formation (transformation optics [25]) technique [16,18].
Namely, under the coordinate transformation r 	→ a2/r (in
the spherical case) or ρ 	→ am+1/ρm (in the cylindrical case),
the media with the parameters (1) and (3) transform into a
uniform DNG medium with isotropic parameters ε′ = −ε0

and μ′ = −μ0; i.e., they transform into the left-handed [17]
counterpart of the surrounding space. The same transfor-
mation also maps the region r < a into the region r > a
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(or ρ < a to ρ > a in the cylindrical case), while keeping
the tangential components of the electric and magnetic fields
intact at the surface r = a (ρ = a).

Therefore, the plane wave incidence onto a spherical
or cylindrical object with the parameters (1) or (3) in a
n-dimensional space (for the spherical case, n = 3; for the
cylindrical case, n = 2) can be equivalently reformulated as
a problem defined on a hypersurface in (n + 1)-dimensional
space, in which the two separate r > a regions—the
surrounding space and the transformed material object—are
joined on the same n-dimensional sphere, on which r = a.
Topologically, a junction of two such regions or subspaces is
a (n + 1)-dimensional wormhole.

When tan δ → 0, the material parameters ε(ω) and μ(ω)
in these two joined regions differ only by sign. Therefore,
any time-harmonic solution (with frequency ω) of the uniform
Maxwell equations in the first region has a time-reversal
“mirror” solution in the second region. From here, it follows
that if the tangential components of E and H in both subspaces
are continuous at the interface r = a when passing from
one subspace to another, any wave propagating from r = ∞
toward r = a in the first region will be continued by a wave
propagating from r = a toward r = ∞ in the second region,
without any reflections at the interface. Thus, this observation
allows for an alternative explanation of the superabsorption
phenomenon and, as will be shown later, also provides us
with an ability to demonstrate the superabsorption effect in
practice.

III. TOWARD PHYSICAL MODELING OF
SUPERABSORPTION EFFECT IN TWO DIMENSIONS

Unfortunately, with the facilities that are currently avail-
able, a practical demonstration of the superabsorption effect
in three dimensions appears to be rather difficult. Therefore,
here we aim at physical modeling of this effect in a setup with
reduced dimensionality, namely, in just two dimensions (2D).

Indeed, the case of the cylindrical object mentioned in
Sec. II reduces to an effectively 2D case when the wave vector
of an incident wave lies in the xy plane. In this case, an
incident wave of the transverse electric (TE) polarization has
the electric field vector Einc parallel to the z axis and the
magnetic field vector Hinc in the xy plane. Conversely, an
incident wave of the transverse magnetic (TM) polarization
has the magnetic field vector along the z axis and the electric
field vector in the xy plane. The fields are independent of the
z coordinate.

Note that the zz component of the permeability tensor
μ has no influence on such waves of the TE polarization
(respectively, the zz component of the permittivity tensor
ε has no effect on the waves of the TM polarization). In
particular, this means that the superabsorption effect in
the 2D case can be demonstrated for the waves of the TE
polarization by, for example, using a double negative (DNG)
metamaterial with isotropic negative permeability (which
is the case of Ref. [15]), or even a metamaterial which is
nonmagnetic along the z axis.

Moreover, for the waves of the TE polarization, only the zz

component of ε matters, because in such waves the electric
field is oriented along the z axis. Hence, the in-plane xy

components of the dielectric tensor can have arbitrary values
without affecting the performance of the superabsorber for the
incident waves of this polarization.

Based on these considerations, one may think of using the
well-known uniaxial metamaterial designs [26] when realiz-
ing the superabsorber. In such designs, the negative dielectric
permittivity is realized with metallic rods or strips, and the
negative magnetic response is due to split ring resonators
(SRR). There is, however, a disadvantage in these designs:
Because the magnetic response is realized with a resonant
inclusion (the SRR), the loss tangent of the effective magnetic
permeability of such metamaterials is relatively high. Addi-
tionally, the realizable range of |μeff | in such media is rather
low: It is usually hard to obtain |μeff/μ0| � 3 while main-
taining a reasonably small tan δ (the latter limitation is less
critical in the 2D case, because, in this case, one has to realize
a material with μ′

ρ/μ0 = μ′
ϕ/μ0 = −1). These considerations

have led us to a realization based on considerably different
ideas, which is discussed next.

A. Superabsorbing transmission-line-based wormhole structure

The limitations of the conventional metamaterials dis-
cussed above can be overcome when using 2D metamaterials
realized with meshes of loaded transmission lines (TL). The
theory of such 2D metamaterials has been developed in a
number of works (for a review, see Ref. [27]). There is also
a possibility to extend such concepts to 3D [28–30]. The
electromagnetic waves in such structures are represented by
waves of electric currents and voltages in the TL segments.

Moreover, as it was mentioned in Sec. II, a conjugate-
impedance matched n-dimensional superabsorber can be
modeled with a wormhole structure in space with (n + 1) di-
mensions. Replacing a highly nonuniform DNG metamaterial
object by an equivalent wormhole “tunnel” to a uniform DNG
subspace greatly reduces the realization costs and complexity
while preserving all observable physical phenomena associ-
ated with the original structure.

In our case, the 2D superabsorption effect can be mod-
eled by a wormhole structure composed of two separate TL
meshes: the double-positive (DPS) mesh and the DNG mesh,
electrically connected at the circumference of the wormhole.
This structure is shown in Fig. 1. In what follows, we dis-
cuss the realization of such 2D metamaterials and derive
conditions under which the DPS and DNG domains in the
top and bottom halves of the structure shown in Fig. 1 are
conjugate-impedance matched, which is necessary for the
superabsorption effect to occur.

B. Realizing DPS and DNG domains

The unit cell of a generic 2D TL-based metamaterial is
shown in Fig. 2. By selecting proper loads, such a TL-based
metamaterial can be made to support forward or backward
waves and thus operates effectively as a DPS medium with
ε′

eff > 0 and μ′
eff > 0, or as a DNG medium with ε′

eff < 0 and
μ′

eff < 0.
The dispersion relation for the 2D plane waves (also called

Bloch waves) in a periodic structure with the unit cell shown
in Fig. 2 can be obtained with the use of the ABCD matrices
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FIG. 1. Schematic representation of a TL-based wormhole struc-
ture formed by two electrically connected two-dimensional DPS
and DNG domains. The DPS and DNG domains are realized by
employing TL-based metamaterials, which are 2D meshes of loaded
TLs. In this figure, the domains are shown as golden (top) and blue
(bottom) surfaces of zero thickness, although, in a real structure, the
two meshes will always have finite thickness. The two TL meshes are
electrically connected at the circumference ρ = a of the wormhole
neck.

of the TL segments, in a manner analogous to what was done
in Ref. [29]. The result is

FIG. 2. Circuit diagram of the loaded 2D transmission line (TL)
mesh. The unit cell of the structure is indicated with a dashed
square. The distance between the centers of the neighboring unit
cells is xi+1 − xi = yi+1 − yi = d . Because the load impedance Z

at the unit cell edges is shared between the two neighboring cells,
it is split in two halves in the schematic: Z = Z/2 + Z/2. The
shunt admittance Y connects every node of the TL mesh with the
common ground shared by all TL segments. The elements labeled
by TL are transmission line segments (e.g., microstrip lines) with
the characteristic impedance Z0, the propagation factor β0, and the
length d/2.

cos(kxd ) + cos(kyd )

= YZ

4
+ cos(β0d )

(
2 + YZ

4

)

+ j sin(β0d )

(
Z

Z0
+ YZ0

2

)
. (4)

Here, d is the size of the (square) unit cell, k = (kx, ky ) is the
wave vector of the propagating Bloch wave, and β0 and Z0 are
the propagation factor and the characteristic impedance in the
(unloaded) TL segments, respectively. These parameters, in
general, depend on the frequency: β0 ≡ β0(ω), Z0 ≡ Z0(ω).

Considering, for instance, all Bloch waves with a fixed
value of the transverse wave number ky , we can express the
longitudinal propagation factor kx as

kx = ± 1

d
cos−1

[
YZ

4
− cos(kyd ) + cos(β0d ) (5)

×
(

2 + YZ

4

)
+ j sin(β0d )

(
Z

Z0
+ YZ0

2

)]
.

Here the ambiguity in sign of kx is related to the fact that in
a reciprocal structure there always exist two waves with the
positive and negative phase velocities which satisfy the same
dispersion equation.

We can introduce an analog of the plane wave impedance
for such Bloch waves, the Bloch impedance ZB, as a ratio
between the line voltage and the x-directed current in the TL
mesh at any fixed cell boundary x = const (for more details,
see Ref. [29]). The result is

ZB = ±
(

Z0 tan
β0d

2
− jZ

2

)
cot

kxd

2
, (6)

where kx is given by (5) and the sign must be chosen so that
Re ZB > 0.

Let us consider the case when the loads are such that Z =
1/(jωC) (i.e., a serial capacitor is inserted between the line
ends in the neighboring cells) and Y = 1/(jωL) (i.e., there
is a shunt inductor to the ground at every line crossing). We
can also express the TL parameters β0 and Z0 through the
inductance L0 and the capacitance C0 per unit length of the
TL as β0 = ω

√
L0C0 and Z0 = √

L0/C0.
Then, in the long wavelength limit, when |k|d 
 1 and

β0d 
 1, the solution of the dispersion equation (4) can be
approximated as

kx = ±
√

ω2LeffCeff − k2
y, (7)

and the Bloch impedance can be approximated as

ZB = ±ωLeff

kx

, (8)

where Leff = L0 − 1/(ω2Cd ) and Ceff = 2C0 − 1/(ω2Ld ).
The situation without loads (i.e., a square mesh of the

unloaded TLs) can be modeled with the same equations when
Z = 0, Y = 0. In this case, the dispersion equation (4) reduces
to

cos(kxd ) + cos(kyd ) = 2 cos(β0d ), (9)

and the expression for the Bloch impedance (6) reduces to
ZB = ±Z0 tan(β0d/2) cot(kxd/2). From here, in the limit
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when |k|d 
 1 and β0d 
 1, we obtain

kx = ±
√

2ω2L0C0 − k2
y (10)

and ZB = ±ωL0/kx.

By comparing Eqs. (7) and (8) with analogous expressions
for the propagation factor and the wave impedance of the TE-
polarized plane waves in continuous media, we can identify
the parameters Ceff and Leff as the analogs of the permittivity
εeff and the permeability μeff of such media. Respectively,
in the 2D configuration we are discussing, a TL mesh with
no loading and with Ceff = 2C0, Leff = L0, will model the
surrounding space with the parameters ε0, μ0 (the DPS do-
main), and a loaded TL mesh such that Leff < 0, Ceff < 0
will model the medium with negative material parameters (the
DNG domain).

C. Conjugate-impedance matching between DPS and DNG
domains

For the superabsorption effect to appear, the absorber must
be conjugate-impedance matched to the surrounding space. In
order to study the possibility of realizing this condition in 2D
with the TL-based metamaterials, let us consider an interface
between a DPS half-plane and a DNG half-plane. Without any
loss of generality, we may assume that this interface is located
at x = 0, so that the DPS region is located at x < 0 and the
DNG region is at x > 0.

In the DPS region, both group and phase velocities of a
wave propagating toward the interface (the incident wave)
are positive, and thus Re kDPS

x > 0, and one has to select the
positive branch of Eq. (5). In the DNG region, a wave prop-
agating away from the interface (the transmitted wave) has
positive group velocity and negative phase velocity. There-
fore, Re kDNG

x < 0, and one has to select the negative branch
of Eq. (5).

The Bloch impedance for the incident wave in the DPS
region, therefore, reads

ZDPS
B = ZDPS

0 tan
βDPS

0 d

2
cot

kDPS
x d

2
, (11)

where we select the plus branch of Eq. (6) in order to
have Re ZDPS

B > 0. Respectively, the Bloch impedance for the
transmitted wave in the DNG region reads

ZDNG
B =

(
ZDNG

0 tan
βDNG

0 d

2
− jZ

2

)
cot

kDNG
x d

2
, (12)

where the plus sign in front of Eq. (6) is selected because when
Leff < 0 (which holds in the DNG domain) the real part of
the parenthesized expression in Eq. (12) is negative and also
Re kDNG

x < 0.
The conjugate-impedance match of the DPS and the DNG

regions occurs when

ZDNG
B (ω, ky ) = [

ZDPS
B (ω, ky )

]∗
. (13)

This equality must hold at a given frequency ω and at arbi-
trary real ky in order for the two regions to be matched for all
propagating and evanescent spatial harmonics of the incident
field with the selected frequency ω.

As follows from Eqs. (11) and (12), the required matching
for arbitrary ky can be achieved only when

kDNG
x (ω, ky ) = −[

kDPS
x (ω, ky )

]∗
. (14)

In this case, Eq. (13) can be reduced to

Z = −2j

[(
ZDPS

0

)∗
tan

(
βDPS

0

)∗
d

2
+ ZDNG

0 tan
βDNG

0 d

2

]
.

(15)

By substituting this expression into Eq. (4) and using Eqs. (9)
and (14), we find that in order to achieve matching at all kx

the load admittance Y has to be

Y = − 2j

cos2
(
βDNG

0 d/2
)
{[

sin
(
βDPS

0 d
)

ZDPS
0

]∗
+ sin

(
βDNG

0 d
)

ZDNG
0

}
.

(16)

In the case when βDPS
0 = βDNG

0 = β0, Im β0 → 0, and
ZDPS

0 = ZDNG
0 = Z0, Im Z0 → 0, Eqs. (15) and (16) reduce

to

Z = −4jZ0 tan
β0d

2
, (17)

Y = − 8j

Z0
tan

β0d

2
. (18)

When, additionally, β0d 
 1, we may approximate these
relations as

Z = −2jZ0β0d = −2jωL0d, (19)

Y = − 4j

Z0
β0d = −4jωC0d. (20)

From here, one can see that the conjugate-impedance match-
ing between a dense unloaded DPS TL mesh and a dense
loaded DNG TL mesh with negligible loss is achieved when
LDNG

eff = −LDPS
eff = −L0 and CDNG

eff = −CDPS
eff = −2C0, which

is analogous to the conjugate matching condition for the DPS
and DNG regions of continuous media [16].

IV. WORMHOLE STRUCTURE NUMERICAL MODELING
AND ANALYSIS

In a practical realization of the wormhole structure
schematically shown in Fig. 1, one can employ meshes of
strip lines with the unit cells depicted in Figs. 3(a) and 3(b).
These unit cells fill the DPS and the DNG domains shown
in Fig. 1 by the golden (top) and the blue (bottom) surfaces,
respectively. In practice, these DPS and DNG networks can be
laid atop one another so that they are separated by the common
ground plane (for example, the bottom metalization of the
DPS network can also serve as the top metalization for the
DNG network, or vice versa). Note that in the middle of this
structure, where the wormhole is located, there are no strip
lines or loads so that no in-plane propagation may happen in
that region. Instead, at the perimeter of the wormhole neck,
the open ports of the DPS unit cells are electrically con-
nected to the corresponding ports of the DNG unit cells with
short vertical metallic strips that pass through the opening in
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)b()a(

(c)

FIG. 3. The unit cells of the DPS (a) and the DNG (b) TL
meshes. The DPS unit cell is formed by an unloaded crossing of two
symmetric strip lines. The DNG unit cell is formed by two crossed
strip-line segments loaded at the crossing by a lumped inductor
connected to the ground (which realizes Y ), and by four lumped
capacitors at the edges of the unit cell (which realize Z/2). The
lumped elements are shown in blue. The ground metalizations at
the top (shown as semitransparent) and the bottom are electrically
connected by cylindrical metallic pillars at the corners of the unit cell
in order to prevent excitation of the unwanted parallel plate waveg-
uide mode. Panel (c) shows a possible realization of the wormhole
structure shown in Fig. 1 with these DPS and DNG cells. The top
layer is formed by the DPS cells. The bottom layer is formed by the
DNG cells. The strip lines in the DPS and DNG cells are electrically
connected at the wormhole edge. The pictures are produced with the
CST MICROWAVE STUDIO software.

the middle ground layer. Therefore, a wave propagating in
the DPS network toward the wormhole neck, after passing
through the connections at the circumference of the wormhole
neck, will continue to propagate in the DNG region in an
outward direction.

In order to numerically analyze such a structure composed
of many DPS and DNG unit cells, one can either use a general-
purpose electromagnetic simulator (such as CST MICROWAVE

STUDIO [31] or ANSYS HFSS [32]) or develop a custom soft-
ware. However, note that the detailed full-wave simulation of
a structure with 104–105 unit cells requires a lot of computing
resources.

In this work, we employ a strategy in which a general
purpose simulator is only used to model isolated DPS and
DNG unit cells. From these simulations, the scattering pa-
rameters (the S parameters) of the unit cells are found. A
very good approximation for the same parameters for the main
propagating mode can be also obtained analytically by using
the TL-based unit cell model from Sec. III B, which is done in
Appendix A.

When the S parameters of the cells are known, the behavior
of the whole structure formed by many thousands of cells is

FIG. 4. Dispersion of the Bloch waves in the uniform DNG and
DPS networks realized by meshes of loaded strip lines obtained with
the analytical model (AM) and with the eigenmode solver of the CST

MICROWAVE STUDIO (CST). The propagation direction is along the x

axis. Here, k0d is the normalized frequency, k0d = ωd/c, and qx is
the normalized propagation factor, qx = kxd . The unit cell size is d =
5 mm. The characteristic impedance of the strip lines in both DNG
and DPS networks is Z0 = 71.6 �. The relative permittivity of the
dielectric is εr = 3. In the AM, the load inductance and capacitance
in the DNG network are L = 5.16 nH and C = 2.01 pF, as found
from Eqs. (17) and (18), assuming that, at the operation frequency,
β0d = √

εrk0d = 0.315. In the CST simulations with the unit cells
from Figs. 3(a) and 3(b), L = 5.77 nH, and C = 2.11 pF.

modeled with an in-house simulator based on the frequency-
domain transmission line matrix (FDTLM) method [33]. In
this method, the unit cells are represented as multiport waveg-
uide joints or blocks with a given number of ports (which
is four for a structure with square unit cells) and a given
number of incident and reflected waves in each port (which
is two when only the main modes of a single polarization
are considered). The implementation details of the FDTLM
method are given in Appendix B.

A. Numerical results of analytical model and CST simulations

The typical dispersion curves for the Bloch waves propa-
gating in the uniform conjugate-impedance matched DPS and
DNG domains realized as meshes of loaded strip lines are
shown in Fig. 4. These results are obtained with the analytical
model of Sec. III B (AM) and with unit cell simulations in
the CST MICROWAVE STUDIO (CST). In Fig. 4, the normalized
free space wave number k0d = (ωd/c) is displayed on the
vertical axis, and the normalized Bloch wave propagation
factor qx = kxd is displayed on the horizontal axis.

Let us first discuss the results of the AM. For this case,
the curves for both real and imaginary parts of qx are shown
in Fig. 4. In the considered range of frequencies, the wave
dispersion in the DPS network is similar to the dispersion
of a plane wave in a dielectric. Indeed, in this example,
the relative permittivity of the dielectric that fills the strip
lines is εr = 3, and, therefore, as follows from Eq. (10), at
low frequencies, kx = √

2εrk0 ≈ 2.45k0. The wave disper-
sion in the DNG network exhibits a band-gap region at the
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normalized frequencies k0d � 0.075, where the normalized
Bloch wave propagation factor qx is such that Re qx = ±π ,
Im qx �= 0. The region 0.075 � k0d � 0.256 is the backward
wave propagation region, in which qx (∂qx/∂ω) < 0. The
dispersion curves for the waves in the DPS and the DNG
networks intersect in this range at k0d ≈ 0.182, qx ≈ ±0.447.

At k0d ≈ 0.256, the backward wave dispersion branch of
the DNG network transitions into the forward wave dispersion
branch of the same network. Normally, a second band gap
opens around this point. However, this band gap closes when
the characteristic impedances of the DPS and the DNG TL
segments match and the values of L and C loads are obtained
from the conjugate-impedance match conditions [Eqs. (17)
and (18)], which is our case.

The dependence of the Bloch wave impedance of the
DPS and DNG domains on the frequency (obtained with
the AM) is shown in Fig. 5(a). In the considered range of
frequencies, the wave impedance of the DPS network is close
to 50 �. The wave impedance of the DNG network is purely
imaginary in the band-gap region k0d � 0.075. Above this
region, ZDNG

B is real and positive. The curves for ZDPS
B and

ZDNG
B intersect at the point k0d ≈ 0.182, which is the same

as the intersection point of the dispersion curves of the same
networks. At this point ZDPS

B = ZDNG
B = 50 �. Moreover,

a direct numerical calculation shows that at this frequency
point, the equality ZDNG

B = (ZDPS
B )

∗
holds for the Bloch waves

with arbitrary transverse wave numbers −π/d � ky � π/d,
which confirms that the two domains are perfectly conjugate-
impedance matched. The dependency of ZDPS

B and ZDNG
B on

the transverse wave number is depicted in Fig. 5(b).
The dispersion of the same DPS and DNG cells has also

been studied with the eigenmode solver of the CST MICROWAVE

STUDIO. The geometry of the DPS unit cell as realized in the
CST MICROWAVE STUDIO is shown in Fig. 3(a). Several DNG
unit cell models were tested, in which the load capacitance C

and the load inductance L were realized by different means.
For instance, the capacitance C was realized with a gap in
the strip line capped with a metallic patch (to increase the
gap capacitance), and the inductance L was realized with a
thin helical wire. Realizations using standard surface mounted
(SMD) chip components were also checked. It has been found
that independently of the way these loading elements are
realized, the modal dispersion resulting from the full wave
simulations can be made nearly coincident with the results
of the AM (within the frequency range k0d � 0.5) by tuning
the geometrical parameters of the capacitors (the gap width,
the interlacing area) and the inductors (the wire radius, the
number of turns). Therefore, in what follows, we discuss
the results for the unit cell structure shown in Fig. 3(b),
which models the load inductors and capacitors as effective
impedance boundary conditions on an edge or a line within
the computational domain of the CST MICROWAVE STUDIO, as
the most general representation of such loads.

The dispersion curves obtained with the CST MICROWAVE

STUDIO eigenmode solver for the DNG and DPS cells with
the geometries shown in Figs. 3(a) and 3(b) are depicted
in Fig. 4 alongside the AM results. Because the eigenmode
solver allows only for calculation of the dispersion of the
propagating modes (i.e., the evanescent modes are excluded),
this figure only displays the real part of the normalized

(a)

(b)

FIG. 5. (a) Bloch wave impedances ZDPS
B and ZDNG

B for the waves
propagating along the x axis in both DPS and DNG networks as
functions of the normalized frequency k0d . (b) The same impedances
for the conjugate-impedance matched networks as functions of the
normalized transverse wave number qy = kyd , at the normalized
frequency k0d = 0.182. The curves for Re ZDPS

B and Re ZDNG
B are

indistinguishable from each other on the scale of this plot. The
parameters used in both panels are the same as in Fig. 4 for the AM.

propagation factor qx as a function of the normalized free
space wave number k0d for this case. Note that the values
of the lumped loads (L and C) differ slightly in the CST
calculations, as compared to the AM calculations. This is
because we have tuned these parameters in order to match the
position of the closed band gap in both cases. The observed
residual discrepancy is due to simplifications in the AM.

The CST eigenmode solver simulations were performed by
considering up to four propagating modes. Figure 4 shows the
dispersion curves for the first mode of the DPS unit cell and
for the first and the third modes of the DNG unit cell. It has to
be noted that, for the DNG cell, the CST MICROWAVE STUDIO

eigenmode solver predicts existence of a spurious mode in a
very narrow band close to k0d ≈ 0.256, which is right within
the closed band gap between the backward wave and the

245143-7



MASLOVSKI, FERREIRA, MEDVEDEV, AND BRÁS PHYSICAL REVIEW B 98, 245143 (2018)

(a
rb

. 
u
n
it
s)

(a
rb

. 
u
n
it
s)

FIG. 6. Distributions of the nodal voltage |Un|, n = 120(60 +
y/d ) + (60 + x/d )� + 1, −60 � x/d < 60, −60 � y/d < 60, for
the wormhole structure under the plane-wave incidence of unitary
amplitude (see main text), in both the DPS (a) and the DNG (b)
domains as functions of the normalized coordinates x/d and y/d .
The radius of the wormhole is RWH = 30d . The electrical parameters
are β0d = 0.315, tan δ = 10−4.

forward wave dispersion branches. This spurious mode (the
second mode as found by the eigenmode solver) is related
to a slight asymmetry in the transmission between the ports
(xi−1, yi ) and (xi+1, yi ) [or (xi, yi−1) and (xi, yi+1)] and the
ports (xi±1, yi ) and (xi, yi±1) (see Fig. 2) in the real unit cell
structure depicted in Fig. 3(b). This mode is not shown in
Fig. 4.

B. Numerical results of FDTLM simulations

The results of numerical simulations obtained with the
FDTLM approach are shown in Fig. 6. In this case, the
wormhole structure is formed by the DPS and DNG domains

occupying an area of 120 × 120 cells (with each cell being a
square of size d × d) and a wormhole with the radius RWH =
30d. The structure is excited by a plane wave Huygens source
(see Appendix B for details) enclosing the whole DPS plane.
Hence, Fig. 6 depicts the total (i.e., incident plus scattered)
field. The source amplitude is such that

√
1 − |�0|2|V inc

0 | = 1
(in arbitrary units), where V inc

0 is the incident wave voltage
(measured in arbitrary units) at the input ports of the unit
cells located at x = −60d and �0 is the Bloch wave reflection
coefficient in these ports (see Appendix B).

There are no cells at the middle of the domains where
r < RWH. Respectively, in this middle region (shown in white
in the figure), there is no propagation. Instead, an incident
wave in the DPS domain, when reaching the wormhole,
passes to the DNG domain through the connections at the
wormhole edge. As seen from Fig. 6, after passing through the
wormhole, the transmitted wave forms a beam that propagates
in the DNG domain in the opposite direction with respect to
the propagation direction of the incident wave.

One can also see that a shadow is formed in the DPS region
behind the wormhole. Moreover, the diameter of the shadow
is greater than the diameter of the wormhole, which indicates
that the effective absorption cross section of the wormhole is
such that

σnorm = σabs

2RWH
> 1, (21)

where σnorm is the normalized absorption cross section and
σabs is given by Eq. (B12) from Appendix B. In this case,
the numerically calculated value of σnorm is 1.46; i.e., this
metamaterial wormhole object performs about 50% better
than the ideal black-body absorber. Note that this result is
achieved for the object with a rather large electrical size
β0RWH = 30β0d = 9.45, which means that the circumference
of the object is on the order of 10 wavelengths. Figure 6 also
shows that there are practically no reflections from the front
of the wormhole in the DPS region.

Figure 7 illustrates trapping of nearby passing beams of
radiation by the metamaterial wormhole. In this example, we
have decreased the electrical cell size to β0d = 0.1 and the
wormhole radius to RWH = 15d in order to obtain a more
pronounced effect. When illuminated by a plane wave (not
shown in Fig. 7), the normalized absorption cross section
of this object is σnorm ≈ 2.7, which means that the object’s
shadow radius is about 2.7RWH ≈ 40d.

Since the maximum of the incident Gaussian beam is
at y0 = 30d, it falls within the “interception range” of the
metamaterial superabsorber. We can see from Fig. 7(a) that
most of the energy of the beam is captured by the wormhole.
After passing through the wormhole neck, the beam propa-
gates in the DNG plane in the opposite direction [Fig. 7(b)]
and its amplitude decreases (and the width increases) due to
diffraction, until the beam gets absorbed at the edge of the
DNG domain.

Although the results of Figs. 6 and 7 confirm the presence
of the superabsorption effect and illustrate the main phenom-
ena associated with it, from the application point of view, it
would be interesting to consider if the same effect could be
demonstrated in a structure in which the number of the DNG
cells was greatly reduced. Specifically, it is interesting to study

245143-8



SUPERABSORBING METAMATERIAL WORMHOLE: … PHYSICAL REVIEW B 98, 245143 (2018)

(a
rb

. 
u
n
it
s)

(a
rb

. 
u
n
it
s)

FIG. 7. Trapping of a Gaussian beam by the metamaterial worm-
hole. (a) The distribution of nodal voltage |Un| in the DPS plane. (b)
Same for the DNG plane. The radius of the wormhole is RWH = 15d .
The Gaussian beam source (see Appendix B) is located in the DPS
plane at x = −60d , with its maximum at y0 = 30d and the width
w = 40d . The electrical parameters are β0d = 0.1, tan δ = 10−4.

the situation in which the DNG cells (in both DPS and DNG
domains) occur only within a region of limited radius r < Robj

and with a wormhole of the radius RWH < Robj.
It is immediately understood that, in this case, the electrical

parameters of the DNG cells in the DPS domain must vary
with r . From the theoretical results for continuous media
(Sec. II, the cylindrical case), one would expect that the
normalized propagation factor β0d should vary with radius
as β0d ∝ √

εzzμϕ ∝ r−2 and the line impedance as Z0 ∝√
μϕ/εzz ∝ r2. However, direct numerical FDTLM calcula-

tions show that, for cells with reasonably small (i.e., not too
small) electrical thickness, β0d � 0.1, the results obtained
when using the profiles deduced from the continuous medium

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 3 6 9 12 15

no
rm

number of rings

Nelder-Mead
COBYLA
PRAXIS

BOBYQA
SBPLEX

σ

FIG. 8. The normalized absorption cross section σnorm of the
object formed by a number of concentric rings of the DNG cells with
varying parameters as a function of the number of the object’s rings.
The radii of the rings are as in Table I. The electrical parameters of
each ring are obtained by using a number of numerical optimization
algorithms: Nelder-Mead, COBYLA, PRAXIS, BOBYQA, and SB-
PLEX [34].

theory are far from being optimal. In fact, if β0d ≈ 0.3 (which
is an attainable value from the practical point of view) in the
uniform DPS region and at the object’s border at r = Robj,
then inside the object at, for example, r = Robj/2, the same
parameter must reach the value of 4 × 0.3 = 1.2, which is
already too large for the cell to be considered electrically
small, and thus the continuous medium approximation fails.

Therefore, in the following numerical simulations, an
optimization approach for such a structure is used, the
purpose of which is to establish some optimal variation
profiles for β0d and Z0 within the object. We consider an
object with the outer diameter Robj = 30d, which is formed
by up to 15 concentric rings of the DNG cells. The radii
of these rings and the electrical parameters of the cells in
these rings (as obtained by an optimization procedure) are
listed in Table I. The table lists only the inner radii. The outer
radius of a given ring is the inner radius of the previous ring,
and so on, until the ring of the smallest radius is reached.
The inner radius of the smallest ring is r = RWH = 15d, at
which point the wormhole starts. In the DNG domain, the
region RWH < r < Robj is filled with the cells whose electric
parameters match the parameters of the last ring.

The electrical parameters of the rings are optimized in
order to maximize σabs of the whole object. The optimization
is performed in gradual steps. First, a structure containing only
a single ring with the largest radius is considered, with the
wormhole starting at the inner edge of this ring. Because there
is only one ring in the structure at this step, it is also the last
ring, and the parameters of the cells in the DNG domain are
matched to this ring. After the electrical parameters of this
ring are optimized to maximize σabs, they are fixed, and the
second ring is added to the structure (which becomes the new
last ring) and the optimization of the electrical parameters of
this ring is performed under the same goal. In this way, the
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TABLE I. Parameters of the concentric rings of the DNG cells
forming the object: The relative inner ring radius r/d , the normal-
ized propagation factor parameter β0d , the normalized characteristic
impedance Z0/Z

DPS
0 , and the normalized absorption cross section

σnorm. The first row with r = Robj = 30d lists the electrical param-
eters of the DPS plane.

r/d β0d Z0/Z
DPS
0 σnorm

30 0.315 1 –
29 0.397 0.776 1.05
28 0.284 1.525 1.22
27 0.340 0.781 1.13
26 0.719 0.961 1.21
25 0.576 0.824 1.22
24 0.623 1.05 1.20
23 0.777 1.04 1.15
22 0.757 1.28 1.21
21 0.675 1.10 1.18
20 0.609 1.25 1.14
19 1.076 1.14 1.16
18 0.674 1.11 1.18
17 1.313 1.05 1.07
16 0.921 0.778 1.09
15 0.808 0.972 1.10

parameters of all 15 rings are found. The optimization results
are summarized in Fig. 8.

The FDTLM simulation results for two ring structures
under plane wave incidence are shown in Figs. 9 and 10. As in
Fig. 6, there are no cells in the white areas. As compared to the
simple wormhole structure, the results of Fig. 9 show that this
object has a much higher level of reflections, which means that
some part of the incident power is lost due to these reflections,
and therefore one may not expect to get a high effective σabs

for this object when a large number of rings is used.
In fact, further numerical simulations demonstrate (Fig. 8)

that there is an optimal number of rings n, 1 < n < 15, at
which σabs attains a maximum. Figure 8 shows the variation of
the normalized absorption cross section, σnorm = σabs/(2Robj),
as a function of the object’s rings number, as in the gradual
optimization procedure described earlier. For the selected
value of the β0d parameter in the DPS region, β0d = 0.315,
the optimal ring number is n = 5, with the rings’ radii and the
electrical parameters listed in the beginning of Table I (these
parameters are obtained with the Nelder-Mead optimization
algorithm from NLOPT library [34]). The normalized absorp-
tion cross section in this case is σnorm = 1.224.

The distribution of the field around this object with a rather
small number of the DNG cells is shown in Fig. 10. It is
interesting that the performance of this object is still more than
20% greater than that of the black-body absorber of the same
diameter, and such an increase in the performance is achieved
with just a small number of the DNG cells distributed around
the perimeter of the wormhole, as compared with the case of
Fig. 6, where a large number of the DNG cells distributed
over the whole DNG domain is used. We expect that with
an even better realization strategy that involves DNG cells
of varying geometry and with better optimization procedures
these results can be further improved. In fact, preliminary
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FIG. 9. Distribution of the nodal voltage |Un| (defined in the
same way as in Fig. 6) for an object composed by a set of concentric
rings of the DNG cells of varying effective βDPS

0 d and impedance
ZDPS

0 placed in the middle of the DPS domain (a) at RWH < r < Robj,
whose inner ring is connected through the wormhole to the DNG
domain (b) formed by a single uniform ring RWH < r < Robj of the
DNG cells. The structure is under the plane wave incidence of unitary
amplitude. The object radius is Robj = 30d and the wormhole radius
is RWH = 15d . The electrical parameters in the DPS region where
r > Robj are β0d = 0.315 and tan δ = 10−4. The other parameters
are listed in Table I.

results obtained with a global optimization approach replacing
the ring-by-ring approach (to be reported elsewhere) indicate
that in the same setup one can achieve, at least, σnorm ≈ 1.3.

V. CONCLUSIONS

In this work, possible realizations of the superabsorbing
metamaterial objects whose effective absorption cross section
is significantly greater than the geometrical cross section
have been studied theoretically and simulated numerically.
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FIG. 10. Distribution of the nodal voltage |Un| for an object
composed of five concentric rings of the DNG cells in the DPS
domain (a) and a single uniform ring RWH < r < of the DNG cells in
the DNG domain (b). The structure is under the plane wave incidence
of unitary amplitude. The ring radii and the electrical parameters of
the DNG cells are listed in Table I.

The superabsorption effect has been modeled with the
metamaterial TL-based structures that support effectively
two-dimensional propagation of the electromagnetic
waves. We have shown that in this model a finite-size
conjugate-impedance matched superabsorbing object can be
equivalently represented with a wormhole structure formed
by two electrically connected DNG and DPS domains. With
respect to the waves propagating within the DPS domain,
the wormhole appears as a conjugate-impedance matched
absorber, while for the waves propagating in the DNG
domain, the wormhole acts as a radiation source. The waves
transmitted to the DNG domain through the wormhole neck
are then absorbed at the edges of the DNG domain, where the
open ports are terminated with matched loads.

By using the TL-based unit cells with the electrical size of
β0d = 0.1 and the loss tangent value of tan δ = 10−4, we have
obtained the normalized absorption cross section about three
times greater than that for the black body of the same size.
We have demonstrated the trapping of nearby passing beams
of radiation by the metamaterial superabsorbers that has been
predicted earlier [20]. For a larger wormhole structure with
β0d = 0.315 and β0RWH = 9.45, the obtained normalized
absorption cross section is σnorm = 1.46, which means that
even for objects with a relatively large circumference of about
10 wavelengths, the metamaterial wormhole superabsorber
can outperform the black-body absorber by about 50%.

We have found that the superabsorption effect can be also
observed in nonuniform structures with a smaller number of
DNG cells, as compared to the complete wormhole structure.
Namely, such an effect can be observed for a DNG meta-
material object that fits entirely within a region of a finite
radius r = Robj, such that β0Robj � 1. This is especially inter-
esting for applications of the metamaterial superabsorbers as
efficient harvesters of electromagnetic radiation which absorb
more energy from an incoming plane wave than what is
incident directly on their surface.

It is worth noting that the wormhole structure can be
also used to demonstrate the narrow-band super-Planckian
emitting property of the conjugate-impedance matched super-
absorbers [18]. In order to do this in practice, one will have
to perform electric (Johnson-Nyquist) noise measurements in
this structure under controlled thermal conditions. We reserve
such a study for a future work.

ACKNOWLEDGMENTS

The authors acknowledge support under Project Ref.
UID/EEA/50008/2013, subproject MMSUPER, financed by
Fundação para a Ciência e a Tecnologia (FCT)/Ministério da
Ciência, Tecnologia e Ensino Superior (MCTES), Portugal.
S.I.M. acknowledges support from Fundação para a Ciência e
a Tecnologia (FCT), Portugal, under Investigador FCT (2012)
Grant Ref. IF/01740/2012/CP0166/CT0002.

APPENDIX A: SCATTERING MATRICES OF
CONJUGATE-IMPEDANCE MATCHED DPS

AND DNG CELLS

The S matrix of the square unit cell with the schematic
depicted in Fig. 2 is a 4 × 4 matrix whose elements, Smn,
satisfy Smn = Snm due to the reciprocity and S11 = S22 =
S33 = S44 due to the symmetry of the unit cell. In addition,
if the ports are numbered around the perimeter of the unit cell
(for example, in the counterclockwise direction), the unit cell
symmetry demands that S12 = S14, S13 = S24.

Note that because in the considered analytical model all
four ports of the unit cell are equivalent to each other, the S-
parameter matrix resulting from this model also must satisfy
S12 = S13, and thus all elements of the S matrix can be
expressed through just a pair of reflection and transmission
coefficients R and T of an isolated unit cell, assuming that
its four ports are connected to infinite transmission lines with
characteristic impedance Z0. The analytical expressions for R
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and T are

R = −4(Ȳ + 2Z̄ + 2) tan2 β0d

2 − 4jZ̄(Z̄ + Ȳ ) tan β0d

2 − Ȳ Z̄2 − 8Z̄ + 4Ȳ + 8(
2j tan β0d

2 + Z̄ + 2
){

2j [Ȳ + 2(Z̄ + 2)] tan β0d

2 + Ȳ Z̄ + 2Ȳ + 8
} (A1)

and

T = 8
(

tan2 β0d

2 + 1
)

(
2j tan β0d

2 + Z̄ + 2
){

2j [Ȳ + 2(Z̄ + 2)] tan β0d

2 + Ȳ Z̄ + 2Ȳ + 8
} , (A2)

with Z̄ = Z/Z0, and Ȳ = Z0Y .

Respectively, the S-matrix elements of the unit cell are
expressed as

Smm = R, Smn = T , ∀m, n : m �= n. (A3)

When Z̄ = Ȳ = 0, which is the case of the DPS unit cell,
Eqs. (A1) and (A2) reduce to

RDPS = − 1
2e−jβ0d , T DPS = 1

2e−jβ0d , (A4)

which is the well-known result for the reflection and transmis-
sion coefficients at a junction of four equal TL segments [35].

In addition, it is easy to verify that when the values of the
loads Z and Y are taken in accordance with Eqs. (17) and
(18) for the conjugate-impedance matched DNG network with
negligible loss (Im β0 → 0) and the real-valued characteristic
TL impedance Z0, the reflection and transmission coefficients
(A1) and (A2) reduce to

RDNG = − 1
2e+jβ0d , T DNG = 1

2e+jβ0d , (A5)

and thus the S matrix of the conjugate-impedance matched
DNG cell (with the same real TL impedance Z0) satisfies

SDNG
mn = (

SDPS
mn

)∗
. (A6)

This result can be also obtained directly from the relation
between the impedance matrix Z (the Z matrix) and the
scattering matrix S of a single cell through the following
expressions: S = (Z + Z0I)−1 · (Z − Z0I) and Z = Z0(I +
S) · (I − S)−1, where I is the unit 4 × 4 matrix, and the gen-
eralized conjugate-impedance match condition from Ref. [19]
ZDNG = (ZDPS)† (here, the symbol † denotes the Hermitian
conjugate).

APPENDIX B: IMPLEMENTATION OF FDTLM METHOD

Given the S matrices of all DPS and DNG cells, the wave
propagation in the whole structure can be studied by solving a
system of linear equations for the unknown wave amplitudes
in the ports of adjacent unit cells. Namely, if the DPS cells
are numbered as 1 . . . N and the DNG cells are numbered
as 1 . . . M , the unknown complex amplitudes of the incident
and reflected waves (which can be understood as the waves of
electric voltage) in all ports of all cells can be collected into
column vectors Vinc = (aDPS

1 , . . . , aDPS
4N , aDNG

1 , . . . , aDNG
4M )T ,

and Vref = (bDPS
1 , . . . , bDPS

4N , bDNG
1 , . . . , bDNG

4M )T , respectively.
The length of these vectors is 4(N + M ) due to the fact
that each cell has four ports, and therefore these vectors
are composed of N + M groups of four wave amplitudes
belonging to each cell.

As is evident from the above definition, the vectors Vref

and Vinc satisfy

Vref = S · Vinc, (B1)

where S = diag(SDPS
1 , . . . SDPS

N , SDNG
1 , . . . SDNG

M ) is a block-
diagonal matrix formed by the 4 × 4 scattering matrices of
all the DPS and DNG cells in the wormhole structure.

On the other hand, because the adjacent ports in the neigh-
boring cells are connected, the incident wave in one of such
ports is essentially the reflected wave in the other and vice
versa. Therefore,

Vinc = C · Vref , (B2)

where C is the so-called connection matrix. The elements of
C are mostly zeros, with some elements Cmn = 1, where m

and n are such that the electric connection of the respective
ports in a pair of adjacent cells demands that V inc

m = V ref
n .

It is evident that Cmn = Cnm. The general structure of the
connection matrix can be represented in the block matrix form
as

C =
(

[CDPS](4N×4N ) [ CWH ](4N×4M )[
CT

WH

]
(4M×4N ) [CDNG](4M×4M )

)
. (B3)

Note that besides connections between the DPS cells
within the DPS domain represented by CDPS, and similar
connections between the DNG cells in the DNG domain
represented by CDNG, there are also connections between the
DPS and DNG cells at the wormhole neck, which are taken
into account by the off-diagonal blocks CWH and CT

WH.
Additionally, the diagonal elements Cmm with indices m

that correspond to unconnected ports at the edges of the
structure can be set to a nonzero value in order to realize
an absorbing boundary condition (ABC) which will imitate
infinite continuation of the periodic DPS or DNG mesh. A
good approximation for such ABC at the edge of the DPS or
the DNG structure is Cmm = �0, where

�0 = Z⊥ − Z0

Z⊥ + Z0
, (B4)

with Z⊥ being the Bloch impedance for the wave in the DPS
(or the DNG) mesh that impinges normally at the interface
where the ABC is defined.

When external sources are present, Eq. (B2) must be
modified in order to include the contribution to the incident
waves due to such sources:

Vinc = C · Vref + Vext. (B5)
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By combining Eq. (B1) with Eq. (B5), we find that

(I − C · S) · Vinc = Vext. (B6)

In the simulations of the wormhole structure, Eq. (B6) is
solved for Vinc for a given excitation vector Vext. Next, the
vector Vref is found from Eq. (B1). The vector of total voltages
at the input ports of all unit cells is then obtained as V =
Vinc + Vref , from which we can express the electric voltage at
the middle point of nth DPS unit cell, by using the equivalent
network of Fig. 2 (with Z = Y = 0):

UDPS
n =

4∑
i=1

V4n−4+i

4 cos β0d

2

, 1 � n � N, (B7)

and, at mth DNG cell, as

UDNG
m =

4∑
i=1

VN+4m−4+i(
4 + YZ

2

)
cos β0d

2 + j
(
YZ0 + 2Z

Z0

)
sin β0d

2

,

1 � m � M, (B8)

which reduces to

UDNG
m =

4∑
i=1

VN+4m−4+i

4 cos β0d

2

, 1 � m � M, (B9)

when the load impedance Z and the load admittance Y are
given by Eqs. (17) and (18).

Equations (B1)–(B9) constitute the main theoretical for-
mulation of the employed FDTLM method. Note that the
external source vector Vext can be initialized in many dif-
ferent ways, allowing for a number of excitation scenarios
to be studied. For instance, the excitation by an incident 2D
Gaussian beam can be modeled by setting up the elements
V ext

n that correspond to the open ports at one of the four edges
of the DPS domain (for instance, at x = −Nxd/2, where Nx

is the number of cells across the whole structure along the x

axis, with x = y = 0 being at the middle of the DPS domain)
to values proportional to e−jkty−(y−y0 )2/w2

, with y0, w, and kt

being the parameters of the beam, and y being the coordinate
along the edge. Such a source will produce a Gaussian beam
that propagates in the DPS domain in the direction defined by
the wave vector k = (kx, ky ), where ky = kt and kx is given
by Eq. (10). The parameter w defines the width of the beam,
and the parameter y0 sets the initial location of its maximum.

The external source can also be defined for an effective
plane wave excitation scenario. Moreover, in this case, it is
possible to set up the source in a way that mimics electromag-
netic excitation of a body by equivalent Huygens sources—
pairs of orthogonal electric and magnetic dipole moments
defined on a surface fully enclosing the object under study

[36]. Because the field of such sources vanishes outside the
enclosed domain, the outside field is just the field scattered by
the body, i.e., excitation of an object by such sources allows
for a straightforward determination of the field scattered by
the object.

In an FDTLM simulation, such a Huygens source can be
constructed in the following way. First, based on the results
of the analytical model of Sec. III B, a vector Vinc = VDPS

B
that corresponds to a Bloch wave solution in a uniform DPS
domain with no scatterers (i.e., without the wormhole or
any other irregularities) is formed. Second, a mask M =
diag(Mn), Mn ∈ {0, 1}, is applied by calculating the product
M · VDPS

B such that it filters out the elements that relate to
the unit cells outside the domain that we wish to be enclosed
by the Huygens source. Finally, the Huygens source vector
Vext

H that creates the plane-wave-like incident field inside the
enclosed domain and the zero field outside is found as

Vext
H = (

I − CDPS
0 · SDPS

0

) · M · VDPS
B , (B10)

where CDPS
0 and SDPS

0 are the connection and scattering ma-
trices of the uniform, unperturbed DPS domain. In order to
determine the wormhole behavior under such excitation, the
source (B10) is substituted into Eq. (B6) and the resulting
matrix system is solved for Vinc. The obtained solution will
relate to the total (incident plus scattered) field in the DPS
region enclosed by the Huygens source and to the transmitted
field in the DNG region, while in the DPS region outside the
enclosed domain, it will relate only to the scattered field.

Finally, the total electric power that enters into the worm-
hole under a given excitation and becomes eventually ab-
sorbed due to the ABCs at the edges of the DNG domain can
be expressed as (we understand the time-harmonic voltages as
rms values)

Pabs = Re

[
1

Z0
Vinc† ·

(
0 −CWH

CT
WH 0

)
· Vref

]
, (B11)

and the effective absorption cross section σabs of the wormhole
is calculated as

σabs = Pabs

�inc
, (B12)

where �inc is the density of the incident power flux, which
is determined by the amplitude of the incident wave. For
example, for an incident Bloch wave propagating in the DPS
domain along the x axis and characterized by the incident
wave amplitude V inc

0 in the input ports at the edge x =
−Nxd/2, where the wave enters the structure,

�inc = 1

Z0d
(1 − |�0|2)

∣∣V inc
0

∣∣2
. (B13)

Note that in the 2D scattering problem that we consider, σabs

has the dimension of a length (and the physical meaning of a
characteristic diameter) rather than an area (as in the 3D case).
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