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Many-body approach to Luttinger’s theorem for the Kondo lattice
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A numerical verification of Luttinger’s theorem, based on a recently developed many-body approach, is given
for the Kondo-lattice model. For a two-dimensional lattice the completely localized spins (S = 1/2) are found to
contribute to the Fermi sea volume as if they were electrons, which is in agreement with Oshikawa’s topological
proof of Luttinger’s theorem. Underpinning this result we explicitly calculate the momentum-resolved one-
particle spectral function showing nearly dispersionless excitations clearly below the Fermi level for different
values of the conduction electron filling. Numerical integration over momentum and energy always leads to the
correct particle number of the localized spins according to the well-accepted picture of a large Fermi surface.
In this paper, a first many-body approach is shown, which is able to reproduce the correct value of Luttinger’s
theorem for this model.

DOI: 10.1103/PhysRevB.98.245139

I. INTRODUCTION

The minimal model of heavy-fermion systems is the
Kondo-lattice model. It is formed by a periodic array of
localized spins which are coupled to a system of free
conduction electrons. A theoretical description of the Kondo-
lattice physics is demanding since perturbation theory in the
Kondo coupling jK is essentially singular at jK = 0 (see, for
example, Ref. [1]). Therefore, effects up to infinite order in
jK have to be systematically included in a study of this model.
One possible way to circumvent this difficulty is to apply a so-
called large-N expansion, which is based on the idea that due
to the large spin-orbit coupling in heavy-fermion compounds
[2] the number of spin components of the electrons can
be extended to a very large number N . In particular, the
limit N → ∞ enables the negligence of the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [3,4], and the
Kondo-lattice ground state becomes stable. Historically, these
considerations have motivated a large number of path-integral
mean-field treatments of the Kondo lattice [4–11] where the
picture of the composite heavy fermions has been developed.
One important result of these studies is that within the mean-
field approximation the Fermi-surface volume expands in
response to the formation of heavy electrons to accommodate
the total number of occupied quasiparticle states [12].

From the experimental point of view the interest in study-
ing the transition between large and small Fermi surfaces
within the Kondo-lattice model has been mainly motivated by
de Haas–van Alphen experiments where the observation of a
many-body enhancement of cyclotron masses has led to the
conclusion that the coherent heavy-fermion state influences
all electrons and not just those with primarily f characters
[13,14]. The presence of a large Fermi surface was further
corroborated by measurements of the low-temperature Hall
effect where a sudden collapse of the heavy-fermion state
is observed near a quantum critical point [15]. An abrupt
change in the Fermi surface from localized to itinerant has

been confirmed by de Haas–van Alphen experiments under
pressure [16].

In two dimensions and higher the Kondo-lattice model is
believed to belong to the class of Fermi liquids [5,17], apart
from some regions of the phase diagram [18,19]. At zero tem-
perature, a Fermi liquid of interacting electrons has a Fermi
surface, which is similar to that of noninteracting fermions.
One of the most fundamental properties of Fermi liquids is
Luttinger’s theorem [20,21], which states that the volume
inside the Fermi surface is invariant against a change in the
interaction strength if the number of conduction electrons is
held fixed. This requirement has remarkable consequences for
the Fermi-surface properties in interacting systems as found
by studies of the Friedel sum rule [22] and the Luttinger
sum rule [23] for the Kondo problem. For the many-body
physics in the Kondo-lattice model, the question came up
whether the localized spins should be counted to the Fermi
surface as electrons or not [24–26], leading either to the
picture of a “large Fermi surface” as found in the mean-field
treatments mentioned above or a “small Fermi surface” where
conduction electrons would solely contribute to the Fermi sea
volume. This question was answered by a topological proof by
Oshikawa [27] who showed that localized spins in the Kondo-
lattice model indeed contribute to the Fermi sea volume as
electrons (in two dimensions and higher), provided the system
is a Fermi liquid. Apart from the topological proof, in this
paper, we show a many-body approach which can demonstrate
that the Fermi sea volume is given by ν + 1. Here, ν is the
filling with conduction electrons, and the number 1 stands
for the number of localized spins per unit cell (S = 1/2 and
spin-symmetric case).

A theoretical approach taking into account contributions
beyond the mean-field approximation has been applied to
the infinite-dimensional Kondo-lattice model within the dy-
namical mean-field theory (DMFT). In a series of papers by
Otsuki and collaborators [28,29], it was shown that for not
to small Kondo coupling jK the model is a Fermi liquid,
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characterized by strong mass renormalization and a large
Fermi surface. Thereby both conduction electrons and local-
ized moments participate in the formation of the Fermi liquid,
and the Luttinger volume is formed by both particle species.
However, DMFT is only exactly valid for infinite dimensions
and it cannot be easily extended to physical dimensions. Also
the method seems not to be capable to verify the accurate
value of Luttinger’s theorem. Similarly, the appearance of a
steplike discontinuity in the momentum distribution, found in
Ref. [28], symbolizing the large Fermi surface, might be a
questionable result of the DMFT. Therefore, alternative the-
oretical many-body methods, which are applied to the Kondo
lattice in physical dimensions, are reasonable to consider.

The paper is organized as follows. In Sec. II we introduce
the Kondo-lattice Hamiltonian. In Sec. III we review the basic
idea of our many-body approach, called the projective renor-
malization method, and explain the approach to the one-
particle spectral function. In Sec. IV we derive and discuss
the renormalization equations for relevant parameters. The
starting conditions for our numerical analysis are fixed in
the beginning of Sec. V. We then show numerical results for
the one-particle spectral function and momentum distribution
and explain the observed features within our formalism. Fi-
nally, based on the numerical results of the previous section,
we present in Sec. VI a numerical verification of Luttinger’s
theorem and a corresponding discussion using analytical ar-
guments.

II. MODEL

The Kondo-lattice Hamiltonian,

H =
∑
kσ

εkc
†
kσ ckσ + jK

∑
i

Si · si = H0 + H1 (1)

describes a coupled system of conduction electrons and a
periodic array of localized spins Si , (S = 1/2) at sites i. The
first term H0 is the kinetic energy of the conduction elec-
trons. Here, c

†
kσ = (1/

√
N )

∑
i c

†
iσ exp ikRi is the Fourier-

transformed creation operator, where c
(†)
iσ annihilates (creates)

an electron with spin σ at site i. The second term H1 is the an-
tiferromagnetic Kondo exchange (jK > 0) between localized
spin Si and conduction electron spin,

si =
∑
αβ

σ αβ

2
c
†
iαciβ, (2)

and σ αβ is the vector Pauli matrix. Note that the Kondo
exchange H1 prevents the direct solution of the model through
the presence of transitions between the different eigenstates
of H0.

III. METHOD

Let us start from a short review of the projective renor-
malization method (PRM) [30]. The PRM is a novel renor-
malization scheme in which the renormalization process is
implemented in the Liouville space (that is built up by all
operators of the Hilbert space). The basic idea of the PRM
is to integrate out the interaction H1 by a series of small
unitary transformations starting from large-to-zero transition
energies. Assuming that all transitions with transition energies

higher than some energy cutoff λ have already been integrated
out, the transformed Hamiltonian will be denoted by Hλ. The
transformation of Hλ to a new renormalized Hλ−�λ with a
slightly reduced energy cutoff λ − �λ is formally obtained by

Hλ−�λ = eXλ,�λHλe
−Xλ,�λ , (3)

where Xλ,�λ = −X
†
λ,�λ is the generator of the unitary trans-

formation. It is fixed by the requirement that Hλ−�λ no longer
contains excitations with energies higher than λ − �λ. Ex-
plicit evaluation of the unitary transformation leads to discrete
renormalization equations, which connect the parameters of
Hλ−�λ with those of Hλ. The complete elimination procedure
starts from the parameter values of the original model (1) and
proceeds in small steps �λ until λ = 0 is reached. Then all
transitions from H1 are used up, i.e., in the fully renormalized
Hamiltonian H̃ := Hλ=0 the perturbation H1 is completely
integrated out.

Note that the PRM resembles alternative renormalization
methods developed independently by Głazek and Wilson
[31,32] and Kehrein [33] and by Wegner and co-workers [34],
which are also based on the application of unitary transfor-
mations. Thereby as in the PRM, no states are eliminated.
Instead, the basic states are changed in such a way that
the renormalized Hamiltonian, which was called Hλ in the
PRM, only includes states with unperturbed energy differ-
ences smaller than some chosen energy cutoff λ. However,
there is a difference between these methods. During the
renormalization procedure of the PRM the interaction H1 is
successively integrated out in small energy steps �λ between
λ and λ − �λ. That is, only states with excitation energies
within the respective energy interval �λ are eliminated in
each step. In contrast, in the so-called “similarity renormal-
ization group” by Głazek and Wilson [31,32] and Kehrein
[33] and similarly in “the flow equation method” by Wegner
and co-workers [34], all states with energy differences smaller
than λ and not only within the interval �λ are involved in
each elimination step. However, in order to obtain thereby an
increasingly diagonal Hamiltonian matrix an appropriate uni-
tary transformation has to be chosen by hand, which implies
an additional choice for an appropriate unitary transformation.
In contrast, the unitary transformation in the PRM is fixed
by the above-mentioned rules although the generators of the
transformations of Głazek and Wilson and Wegner and co-
workers may be included in the PRM [35] as well. Finally,
one should mention that Wegner’s flow equation method is a
continuous version of the renormalization approach where the
width of the integration steps has approached zero.

In actual calculations using the PRM the total number of
renormalization steps �λ should be very large, i.e., on the
order of the particle number. Therefore, the width �λ of
each small renormalization step is very small, which allows
using perturbation theory in H1 in each renormalization step.
To be more specific in this point, the number of renormal-
ization processes in each energy step �λ due to H1 has to
be small compared to the total number of such processes.
Thus, roughly speaking, the “smallness parameter” for the
present perturbative treatment is not simply the strength of the
perturbation H1 compared to the energy scale of H0. Instead
this ratio is multiplied by the number of renormalization
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processes inside the shell �λ compared to their total number.
Therefore, perturbation theory in each renormalization step is
usually allowed. The overall renormalization procedure down
to λ = 0 is valid far beyond usual perturbation theory since
renormalization processes to infinite order in H1 are taken into
account.

In Ref. [36] the following ansatz was shown to be an
appropriate choice for the transformed Kondo Hamiltonian
Hλ at cutoff λ,

Hλ = H0,λ + H1,λ, (4)

with

H0,λ =
∑
kσ

εk,λc
†
kσ ckσ +

∑
q

Jq,λSq · S−q + Eλ, (5)

H1,λ = 1√
N

∑
kk′

jk′k,λ�k′k,λKk′k. (6)

The �-function �k′k,λ = �(λ − |εk′,λ − εk,λ|) in Eq. (6)
limits the excitations to energies smaller than λ and Kk′k
results from the decomposition of H1 into dynamical eigen-
vectors of H0,λ,

Kk′k = 1

2

∑
αβ

Sk′−k · σ αβc
†
kαck′β. (7)

Moreover, a k dependence in the Kondo coupling jk′k,λ was
generated by transformation (3) as well as an effective RKKY
exchange interaction between localized spins Si and Sj . Eλ is
an additional energy shift. As already anticipated, all parame-
ters of Hλ depend on the cutoff λ. Note that Hλ reduces to the
original Hamiltonian H for the initial parameters,

εk,� = εk, Jq,� = 0, E� = 0, jk′k,� = jK,

(8)

where λ = � is the cutoff of the original model (1).
According to Ref. [36] the generator Xλ,�λ of transforma-

tion (3) is given to lowest order in jk′k,λ by

Xλ,�λ = 1√
N

∑
kk′

Xk′k(λ,�λ)Kk′k, (9)

with

Xk′k(λ,�λ) = jk′k,λ

εk′,λ − εk,λ

�k′k,λ(1 − �k′k,λ−�λ). (10)

Xλ,�λ is fixed by the requirement that Hλ−�λ no longer
contains excitations with energies higher than λ − �λ. Evalu-
ating the unitary transformation to order j 2

kk′,λ discrete renor-
malization equations for the parameters εk,λ, Jq,λ, Eλ, and
jk′k,λ are obtained which connect the parameters at cutoff
λ with those at λ − �λ. As above mentioned, the complete
elimination procedure starts from the parameter values (8) of
the original model (1) and proceeds in steps �λ until λ = 0
is reached. Then all transitions from H1 are used up, and the
fully renormalized Hamiltonian H̃ := Hλ=0 = H0,λ=0 reads

H̃ =
∑
kσ

ε̃kc
†
kσ ckσ + H̃J + Ẽ, (11)

with

H̃J =
∑

q

J̃qSq · S−q. (12)

Here, ε̃k, J̃q, and Ẽ are the fully renormalized quantities.
Note that expression (11) describes an uncoupled system of
conduction electrons and localized spins.

The fully renormalized Hamiltonian H̃ can be used to
calculate physical quantities. This follows from the property
that any operator below a trace is invariant under unitary
transformations. Applied to the one-particle spectral func-
tion A(k, ω) = (1/2π )

∫ ∞
−∞〈[ckσ (t ), c†kσ ]+〉eiωtdt , this prop-

erty immediately leads to

A(k, ω) = 1

2π

∫ ∞

−∞
〈[c̃kσ (t ), c̃†kσ ]+〉H̃eiωtdt. (13)

Now both the time dependence and the expectation value are
formed with H̃. The quantity c̃

†
kσ = c

†
kσ (λ = 0) is the trans-

formed one-particle operator. Here, c
†
kσ (λ) = eXλc

†
kσ e−Xλ ,

which has the operator structure,

c
†
kσ (λ) = uk,λc

†
kσ + 1√

N

∑
k′

vk′k,λD†
kσ ;k′ , (14)

with

D†
kσ ;k′ =

∑
α

Sk−k′ · σ ασ

2
c
†
k′α. (15)

Similar to Hλ [Eq. (4)] the operator structure (14) follows
from a low coupling expansion of c

†
kσ (λ). The initial condi-

tions of the λ-dependent coefficients are

uk,� = 1, vk′k,� = 0,

where λ = � is again the cutoff energy of the original model.
Neglecting in Eq. (13) the influence of the spin interaction H̃J

on the dynamics of c̃kσ (t ) one immediately finds

A(k, ω) = |ũk|2δ(ω − ε̃k )

+ 1

4N

∑
k′

|ṽk′k|2SJ (k′ − k)δ(ω − ε̃k′ ), (16)

where SJ (k′ − k) is the spin-correlation function formed with
the fully renormalized Hamiltonian H̃,

SJ (k′ − k) = 〈Sk′−k · Sk−k′ 〉H̃. (17)

IV. RENORMALIZATION EQUATIONS FOR uk,λ AND vk′k,λ

Next the renormalization equations for the parameters uk,λ

and vk′k,λ are needed. According to the Appendix, one finds

uk,λ−�λ − uk,λ = − 1

8N

∑
k′

[uk,λXk′k(λ,�λ) + 2vk′k,λ]

×Xk′k(λ,�λ) S(k′ − k) + 1

4N3/2

×
∑
k′q

[uk,λXk′k(λ,�λ) + 2vk′k,λ]

×Xqk(λ,�λ)〈Kk′q〉, (18)
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and

vk′k,λ−�λ − vk′k,λ = uk,λXk′k(λ,�λ) + 1

4N

×
∑

q

[uk,λXqk(λ,�λ) + 2vqk,λ]

×Xk′q(λ,�λ)[2〈c†qαcqα〉 − 1]. (19)

In Eq. (18) the spin-correlation function S(k′ − k) is formed
with the original Hamiltonian H and not with H̃ as before

S(k′ − k) = 〈Sk′−k · Sk−k′ 〉. (20)

Note that in the heavy-fermion regime the spin correlations
between different sites are small [37,38] so that S(k′ − k) is
almost wave-vector independent and can be replaced by its
single-site value. Therefore, we set for simplicity S(k′ − k) ≈
S(S + 1) ≈ SJ (k′ − k).

Let us first study the properties of Eq. (18). This equation
contains two renormalization contributions on the right-hand
side. Taking advantage of the fact that uk,λ � 0 and S(k′ −
k) > 0, one finds that the first contribution is always negative
and tends to decrease the parameter uk,λ. Thereby one has
used that vk′k,λ has the same sign as Xk′k(λ,�λ). Similarly,
also the second term of Eq. (18) is negative since 〈Kk′q〉 is
always negative. This quantity indicates the formation of the
singlet state [36]. It strongly decreases to large negative values
with decreasing temperature for wave-vectors k′ ≈ q ≈ kF .
Thus, in the renormalization procedure both renormalization
contributions of Eq. (18) tend to reduce uk,λ thereby starting
from its initial value of 1. The fully renormalized quantity
ũk should vanish, which is verified by the explicit solution
of Eqs. (18) and (19).

Thus, only the second part ∼|ṽk′k|2 of expression (16) for
A(k, ω) survives, and the spectral function reduces to

A(k, ω) = S(S + 1)

4N

∑
k′

|ṽk′k|2δ(ω − ε̃k′ ). (21)

Note that the remaining coefficients ṽk′k in Eq. (21) obey the
following sum rule for any k:

1 = S(S + 1)

4N

∑
k′

|ṽk′k|2, (22)

which follows from the anticommutator relation∫
dω A(k, ω) = 〈[c†k,σ , ckσ ]+〉 = 1. To find A(k, ω) the

renormalized frequencies ε̃k′ and the coefficients ṽk′k must be
evaluated.

The momentum distribution 〈c†kαckα〉, which enters
Eq. (19), is related to the single-particle spectral function
A(k, ω) via the fluctuation-dissipation theorem,

〈c†kαckα〉 =
∫ ∞

−∞

A(k, ω)

1 + eβω
dω = S(S + 1)

4N

∑
k′

|ṽk′k|2f (ε̃k′ ),

(23)

where f (ε̃k′ ) = 1/(1 + eβε̃k′ ) is the Fermi function. At zero-
temperature T = 0 only energies ε̃k′ below the Fermi surface
contribute to the sum over k′.

V. NUMERICAL RESULTS

In the actual evaluation of the renormalization equations,
we restrict ourselves to a two-dimensional square lattice (d =
2) with N = 103 lattice points in order to minimize the
numerical effort. Also, we consider only electron concen-
trations ν away from half-filling since in the specific half-
filled case the system becomes insulating. Here, we define
ν = (2/N )

∑
k<kS

F
1 for the filling of a free conduction elec-

tron system with both spin directions included. Here, kS
F is

the corresponding Fermi momentum as specified below. For
the initial dispersion εk of the free system we consider an
isotropic parabolic band εk = −2t (1 − k2) − μ, where μ is
the chemical potential and t is the nearest-neighbor hopping
matrix element. Using chosen values for the two initial param-
eters jK/t and ν (which is fixed by μ/t) we solve the system
of Eqs. (18), (19), and (23) self-consistently. Finally, these
results are used to calculate the one-particle spectral function
A(k, ω) from Eq. (21) and particle numbers from Eq. (23).

A. Single-particle spectrum

Figure 1 shows the one-particle spectral function A(k, ω)
as a function of ω for various k values around the Fermi
momentum kS

F between kS
F − π/10 and kS

F + π/10. Here, kS
F

is the Fermi momentum of the free conduction electron system
(small Fermi surface) as defined by −2t[1 − (kS

F )2] − μ = 0.

FIG. 1. Spectral function A(k, ω) versus ω for T = 0, jK/t =
0.3, and ν = 0.22. Shown are several curves for different k values
in the region between kS

F − π/10 and kS
F + π/10 around the Fermi

momentum kS
F of the small Fermi surface. The nearly dispersionless

Kondo resonance (orange shaded area) appears slightly below the
Fermi energy ω = 0 and is clearly separated from the coherent exci-
tations which follow the dispersion of the renormalized conduction
electron band ε̃k, slightly deviating from the original dispersion εk

(dashed line). The orange area highlights the energy integration in-
terval C < ω < 0 which is used to define the different contributions
to the total particle number in Eq. (35).
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FIG. 2. Spectral function A(k, ω) as in Fig. 1 but for the two
temperatures T = 0 and T = 0.005t in a very narrow region around
the Fermi momentum kS

F of the small Fermi surface between kS
F −

π/100 and kS
F + π/100. Whereas the Kondo resonance is clearly

seen for T = 0, it has disappeared for T = 5 × 10−3t which is larger
than the Kondo temperature.

The parameters are jK/t = 0.3 and ν = 0.22. Clearly seen
is the coherent one-particle excitation of the conduction elec-
trons which follows the slightly renormalized dispersion ε̃k.
The initial dispersion εk, which crosses the Fermi level at ω =
0, is indicated by a dashed line. Moreover, an additional al-
most k-independent excitation is found at an energy εKondo <

0 slightly below the Fermi level (orange shaded area). This
excitation has to be interpreted as Kondo resonance. Note that
the intensity of the Kondo resonance decreases with increas-
ing values of k away from kS

F until it completely disappears
for larger values of k. Here, only the coherent excitation far
away from the Fermi energy survives. Vice versa, for k values
very close to kS

F only the Kondo excitations remains, whereas
the coherent excitation is absent.

This feature is even better seen in Fig. 2(a) where the
spectral function A(k, ω) is shown in a much smaller k regime
around kS

F only. Here only the Kondo excitation is found,
whereas the dispersive excitation (εk again indicated by a
dashed line) is completely absent. Note that in the immediate
vicinity of kS

F (in a range of 10−3π ) the Kondo resonance
has dissipated in a rather broad and incoherent spectrum. In
the right panel of Fig. 2 the spectral function is shown for
an increased temperature of T = 5 × 10−3t which is above
the Kondo temperature of TK ≈ 5 × 10−4t . In this case, the
Kondo resonance is not found anymore.

The Kondo resonance always remains slightly below the
Fermi energy. In particular, it does not cross the Fermi energy
at some larger kL

F as is claimed in Ref. [28]. Instead, in the
present approach, the Kondo resonance loses its strength with
increasing distance from kS

F which is essential for the validity
of Luttinger’s theorem. In particular, this property leads to
the existence of a large Fermi surface which is composed
of dispersive and Kondo resonance excitations. Thereby, the
dispersionless Kondo excitation appears as a resonancelike
feature slightly below the Fermi level and is rather smoothly
connected to the coherent excitation of the conduction

FIG. 3. Momentum distribution nkα = 〈c†kσ ckσ 〉 plotted versus k
around the Fermi momentum kS

F for T = 0 and the same parameters
as in Fig. 1. Note that the shape of 〈c†kσ ckσ 〉 differs from that of free
conduction electrons due to the presence of the Kondo exchange.

electrons. Note that the overall shape of A(k, ω) in Fig. 1 is
consistent with mean-field theory and DMFT studies of the
Kondo-lattice model. However, in the present paper the Kondo
effect does not result from hybridization effects between c and
f electrons but from a many-body effect between coherent
excitations and localized spins thereby avoiding any reduction
to a single-particle description. Nevertheless, as we will show
below, our theory perfectly fulfills Luttinger’s theorem for the
Kondo-lattice model and is therefore fully consistent with the
well-accepted concept of the large Fermi surface.

B. Momentum distribution nkα

To prepare the study of Luttinger’s theorem within our
approach let us at first consider the properties of the mo-
mentum distribution nkα = 〈c†kαckα〉. For this one again needs
the renormalized coefficients ṽk′k. As aforementioned, they
follow from the solution of Eq. (18) which also depends on
〈c†kαckα〉.

Figure 3 shows the result for nkα for temperature T = 0
and the same parameters as in Fig. 1. As expected, nkα differs
from the usual Fermi function for free particles. Thereby, the
steplike behavior at the Fermi-level εF is replaced in Fig. 3
by a gradual decay. Only for large negative and large positive
values of ε̃k away from the Fermi surface the momentum
distribution approaches the values of 1 and 0 as for free
conduction electrons. Such behavior is qualitatively consistent
with other numerical work (for example, Ref. [28]). However,
in contrast to Ref. [28] and mean-field approaches, we here do
not find a steplike behavior of the occupation number at some
large Fermi momentum kL

F . Instead, a rather smooth decrease
down to zero is obtained within the PRM approach.

C. Discussion

Now we are in the position to discuss the origin of the ω

structure of A(k, ω). One best starts from the renormalization
equation (19) for vk′k,λ. First, note that the second term in
Eq. (19) becomes large if k′ is located close to kS

F (i.e., if
εk′ ≈ εS

F ) and with rather arbitrary values of k 
= kS
F . Here,

one uses the fact that the renormalization of ε̃k is small
and the momentum distribution 〈c†qαcqα〉 is such as shown in
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Fig. 3. Then, in the internal sum over q of Eq. (19) the factor
(2〈c†qαcqα〉 − 1) softly decreases as a function of ε̃q from 1 far
below εF to (−1) far above εF . Thereby the factor crosses the
Fermi energy at εF . Taking, moreover, the diverging character
of Xk′q(λ,�λ) at ε̃q ≈ ε̃k′ into account one easily assures
oneself that the q sum becomes largest for εk′ located closely
below the Fermi level. Thus, the fully renormalized coefficient
ṽk′k has a maximum at an energy εKondo slightly below εF .
Thereby we have restricted ourselves to T = 0 where in the
internal sum (23) of the momentum distribution 〈c†qαcqα〉
only wave-vectors k′ contribute to ṽk′q which have negative
energies ε̃k′ < 0. This property of ṽk′k explains the Kondo
resonance in Figs. 1 or 2. The k dependence of the Kondo
resonance is caused by the additional factor of Xqk(λ,�λ)
in the sum over q in Eq. (19). Together with the factor of
Xk′q(λ,�λ) it is responsible for the observed decrease in the
Kondo resonance intensity if the distance between εk and εk′ is
increased. This follows from the structure (10) of Xk′k(λ,�λ)
which shows that the product of Xqk(λ,�λ)Xk′q(λ,�λ) be-
comes weaker when the distance is increased.

However, there is a second renormalization contribution to
vk′k,λ which becomes important. This is the case when εk′,λ
and εk,λ are close to each other (ε̃k′ ≈ ε̃k). Then the first term
uk,λXk′k(λ,�λ) on the right-hand side of Eq. (19) increases
during the renormalization procedure.

To sum up, there are two main contributions to ṽk′k. One
results from ε̃k′ ≈ εF , and ε̃k is rather arbitrary. The other
one occurs for ε̃k′ ≈ ε̃k. Thereby the first one leads to Kondo
excitations, whereas the second one should be related to the
dispersive excitations in Fig. 2. Combining both contributions,
we are led to the following approximate decomposition of
A(k, ω):

A(k, ω) ≈ S(S + 1)

4N

ε̃k′ (≈εKondo )∑
k′

|ṽk′k|2δ(ω − ε̃k′ )

+ S(S + 1)

4N

ε̃k′ (≈ε̃k )∑
k′

|ṽk′k|2δ(ω − ε̃k ). (24)

The first term describes almost dispersionless excitations at
energies ε̃k′ (≈εKondo) leading to the Kondo resonance. Only
the k dependence of ṽk′k causes the k-dependent decrease
in its intensity as mentioned above. The second term in
Eq. (24) must generate the single-particle excitations since the
coefficient ũk of the original dispersive excitation in Eq. (16)
had vanished before (ũk = 0). To prove this statement, we
apply the sum rule

∫
dω A(k, ω) = 1 to Eq. (24) and obtain

1 ≈ S(S + 1)

4N

ε̃k′ (≈εKondo )∑
k′

|ṽk′k|2 + S(S + 1)

4N

ε̃k′ (≈ε̃k )∑
k′

|ṽk′k|2.

(25)

From the former discussion in Sec. IV it becomes clear that
the amplitude |ṽk′k|2 of the first term becomes increasingly
small when ε̃k is energetically well separated from the Kondo
excitations ε̃k′ ≈ εKondo. Thus, Eq. (25) reduces for large |ε̃k|

FIG. 4. Spectral function A(k, ω) at T = 0 in a wide momentum
and energy range for different filling values ν. The Kondo resonance
always appears slightly below the Fermi level (dashed line) and has
its maximum intensity in a narrow momentum region around the
Fermi momentum kS

F of the small Fermi surface (the white color
means an exaggerated intensity beyond the scale of the color bar).
Away from kS

F the intensity of the Kondo resonance decays like ∝1/k

and therefore appears in a wide momentum region (purple and red
colors). This behavior is nearly independent of ν.

to

1 ≈ S(S + 1)

4N

ε̃k′ (≈ε̃k )∑
k′

|ṽk′k|2. (26)

Comparison with Eq. (24) shows that the right-hand side of
Eq. (26) represents the amplitude of the dispersive excitation
part in A(k, ω). Therefore, A(k, ω) reduces for large |ε̃k| to

A(k, ω)|c,el ≈ δ(ω − ε̃k ), (27)

which is the spectral function of free conduction electrons.
This behavior is also clearly seen in Fig. 4 where for different
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chosen filling values always a sharp excitation with single-
particle character is found far below and above the Fermi
level. This nearly free-particle excitation appears for most of
the k vectors energetically well separated from the dispersion-
less Kondo excitation close to the Fermi level. One concludes
that both the Kondo resonance and the one-particle excitations
are contained in ṽk′k. Thus, ṽk′k has a single-particle character
as well as a many-particle character which arises from the
Kondo resonance.

VI. LUTTINGER THEOREM

A. Numerical PRM result

Next let us study the Luttinger theorem, which relates the
volume of the Fermi surface with the number of electrons
[21]. Here, we start from a modified version of the Luttinger
sum rule, which states that the conduction electron density is
equal to the difference between the Fermi-surface volume and
the volume of zeros in the Green’s function [39,40]. Note that
this version allows the Luttinger sum rule to survive in a Mott
insulator, and we show in the following that it is also fulfilled
for the Kondo lattice. The total number of particles nc per site
is given by:

nc = 1

N

∑
k,α

〈c†kαckα〉 = S(S + 1)

2N2

∑
k

∑
k′

|ṽk′k|2f (ε̃k′ ), (28)

where Eq. (23) was used. At T = 0, Eq. (28) reduces to

nc = S(S + 1)

2N2

∑
k

ε̃k′<0∑
k′

|ṽk′k|2. (29)

Only energies ε̃k′ below the Fermi-level εF contribute to
Eq. (29). We emphasize again that the matrix elements ṽk′k
contain contributions from both the one-particle excitations
and the Kondo resonance. The latter represents the poles of
the conduction electron self-energy in the Kondo lattice which
usually arise due to the hybridization with the composite
fermions. Here they appear as a result of the many-body
effect between coherent excitations and localized spins. These
contributions would lead to additional zeros in the conduction
Green’s function which instead are here straightforwardly
counted within the momentum summation (29). This property
allows us to evaluate the Luttinger sum rule without explicitly
calculating Green’s functions.

Relation (29) is again evaluated by solving the renormal-
ization equations (18) and (19) for vk′k,λ and uk,λ. The result
for nc at T = 0 is shown in Table I for various values of the
electronic-filling ν away from half-filling (ν = 1). Obviously,
the result shows that Luttinger’s theorem,

nc = ν + 1 (30)

is fulfilled. That is, the total number of particles per site at
T = 0 is given by the filling ν of the pure free-electron system
plus 1 where the number 1 corresponds to the concentration of
the localized spins (S = 1/2). Thus, the PRM is able to verify
Luttinger’s theorem on the basis of a many-body approach.
Relation (30) is one of the main results of the present work and
adds to Oshikawa’s topological proof of the Luttinger theorem

TABLE I. Calculated total particle numbers for four different
chosen values of the free conduction electron-filling ν. Within the
numerical accuracy of the PRM approach the Luttinger theorem
nc = ν + 1 is fulfilled for all the considered ν’s.

Filling ν Particle number nc

0.22 1.2194
0.17 1.1691
0.13 1.1269
0.08 1.0748

for the Kondo lattice in Ref. [27]. The dependence of nc on the
filling ν is also demonstrated in Fig. 4 as follows: Changing
the electron-filling ν, one finds that the complete structure
around εF is merely shifted to lower or higher Fermi energies,
depending on the lower or higher value of ν. Therefore,
the Luttinger theorem (30) is automatically fulfilled if it is
fulfilled for one filling.

B. Interpretation

Following the approximate expression (24) for A(k, ω) one
may also try to decompose nc into two parts,

nc = nc,el + nc,Kondo, (31)

where the first contribution results from the renormalized
single-particle excitations and the second one results from the
Kondo excitations. With the help of Eqs. (28) and (23), we
may express nc as

nc = 2

N

∑
k

∫ ∞

−∞
A(k, ω)f (ω)dω, (32)

where f (ω) = 1/(1 + eβω ) is the Fermi function. Thus, with
Eq. (21) we obtain in the T = 0 case,

nc = S(S + 1)

2N2

∑
k,k′

|ṽk′k|2
∫ 0

−∞
δ(ω − ε̃k′ )dω, (33)

where now the ω integral only allows negative frequencies.
A decomposition of nc according to Eq. (31) is found by
introducing a k-dependent boundary Ck in the negative-ω
space between the low-energy Kondo excitations and the high-
energy dispersive excitations. This boundary is schematically
shown in Fig. 1 (orange shaded area) for a selected k range in
momentum space. In the actual calculations, we have defined
Ck by the ω position of the particular minimum of A(k, ω)
with respect to ω which is placed in the energy range between
the dispersive excitation and the Kondo resonance. Using
1 = �(Ck − ω) + �(ω − Ck ), we find

nc = S(S + 1)

2N2

∑
k,k′

|ṽk′k|2[�(Ck − ε̃k′ ) + �(ε̃k′ − Ck )]

×
∫ 0

−∞
δ(ω − ε̃k′ )dω. (34)

245139-7



STEFFEN SYKORA AND KLAUS W. BECKER PHYSICAL REVIEW B 98, 245139 (2018)

TABLE II. Calculated number of conduction electrons nc,el and
number of heavy quasiparticles nc,Kondo for different chosen filling
values ν. Our PRM approach confirms the prediction of the Luttinger
theorem that the localized spins fully contribute to the Fermi volume
as a system of occupied heavy quasiparticles, i.e., nc,Kondo ≈ 1,
whereas the “light” conduction electrons behave like free electrons,
i.e., nc,el ≈ ν.

Filling ν Electron number nc,el Kondo excitations nc,Kondo

0.22 0.2247 0.9947
0.17 0.1731 0.9960
0.13 0.1314 0.9955
0.08 0.0812 0.9936

This leads to the decomposition (31) for nc, where

nc,el = S(S + 1)

2N2

∑
k,k′

|ṽk′k|2
∫ Ck (<0)

−∞
δ(ω − ε̃k′ )dω

= S(S + 1)

2N2

∑
k

ε̃k′<Ck (<0)∑
k′

|ṽk′k|2, (35)

and

nc,Kondo =
∑
k,k′

|ṽk′k|2
∫ 0

Ck (<0)
δ(ω − ε̃k′ )dω

= S(S + 1)

2N2

∑
k

Ck<ε̃k′ <0∑
k′

|ṽk′k|2. (36)

One easily realizes that decomposition (32) with Eqs. (35) and
(36) corresponds to a generalization of decomposition (24)
for A(k, ω). In expression (35) for nc,el all excitations ε̃k′ are
contained which have energies lower than the boundary Ck.
Thus, if excitation ε̃k belongs to the allowed values of ε̃k′ , then
Eq. (24) reduces to its coherent part. An equivalent argument
is also true for nc,Kondo.

The numerical evaluation of both parts is given in Table II.
Obviously, the results nc,el ≈ ν and nc,Kondo ≈ 1 are obtained,
which are valid away from half-filling. Thus, the origin of the
two parts contributing to Luttinger’s theorem (35) has been
identified.

In conclusion, in this paper we have applied a recently
developed many-body technique to the Kondo-lattice model in
d = 2. As one of the main results, we could verify Luttinger’s
theorem for this model. This paper presents a many-body
study which is able to reproduce the correct value of this
theorem. Note that our verification of Luttinger’s theorem is
only valid provided that the ground state of the Kondo lattice
is a Fermi liquid. However, whether the model is a Fermi
liquid is not trivial to answer. Instead, using ansatz (5) for
H0,λ, we have assumed from the beginning that the Kondo
lattice is a Fermi liquid.
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APPENDIX: DERIVATION OF THE RENORMALIZATION
EQUATIONS FOR uk,λ AND vk′k,λ

The renormalization equations for the parameters of Hλ are
derived from the transformation (3) together with the ansatz
for c

†
k,λ,

c
†
k,λ−�λ = eXλ,�λc

†
k,λe

−Xλ,�λ = uk,λe
Xλ,�λc

†
ke

−Xλ,�λ

+ 1√
N

∑
k′

vk′k,λe
Xλ,�λD†

kσ ;k′e
−Xλ,�λ . (A1)

Expanding the exponentials for small Xλ,�λ (small Kondo
exchange coupling j ) one finds

c
†
k,λ−�λ = uk,λ(c†k + [Xλ,�λ, c

†
k] + 1

2 [Xλ,�λ, [Xλ,�λ, c
†
k]] + · · · ) + 1√

N

∑
k′

vk′k,λ(D†
kσ ;k′ + [Xλ,�λ,D†

kσ ;k′ ] + · · · ). (A2)

Note that, for dominant order, Dkσ ;q is of order j and uk,σ is of order j 0. Therefore, only the commutator [Xλ,�λ,D†
kσ ;k′ ] is

needed for the renormalization of D†
kσ ;k′ , whereas for ckσ,λ the commutators for first and second orders in j have to be taken into

account.
Next, one is confronted with the evaluation of the commutators in Eq. (A2),

[Xλ,�λ, c
†
kσ ] = 1√

N

∑
k′

Xk′k(λ,�λ)D†
kσ ;k′, (A3)

[Xλ,�λ, [Xλ,�λ, c
†
kσ ]] = − 1

4N

∑
k′

[Xk′k(λ,�λ)]2〈Sk′−k · Sk−k′ 〉c†kσ − 1

2
√

N

∑
q

[
1

N

∑
k′

Xk′k(λ,�λ)Xk′q(λ,�λ)

× (2〈c†k′αck′α〉 − 1)

]
Dkσ ;q + 1

2N3/2

∑
qk′

Xk′k(λ,�λ)Xqk(λ,�λ)〈Kk′q〉c†kσ , (A4)
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and

[Xλ,�λ,D†
kσ ;k′ ] = − 1

4
√

N
Xk′k(λ,�λ)S(k′ − k)c†kσ − 1

2N

∑
q

Xk′q(λ,�λ)(2〈c†k′αck′α〉 − 1)D†
kσ ;q

+ 1

2N

∑
q

Xqk(λ,�λ)〈Kk′q〉c†kσ , (A5)

where an additional factorization has been used. Inserting Eqs. (A3)–(A5) into (A2) and comparing with ansatz (13) (where λ is
replaced by λ − �λ) one is led to the renormalization equations (17) and (18).
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