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Two-hole ground state wavefunction: Non-BCS pairing in a t- J two-leg ladder
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Superconductivity is usually described in the framework of the Bardeen-Cooper-Schrieffer (BCS) wavefunc-
tion, which even includes the resonating-valence-bond (RVB) wavefunction proposed for the high-temperature
superconductivity in the cuprate. A natural question is if any fundamental physics could be possibly missed
by applying such a scheme to strongly correlated systems. Here we study the pairing wavefunction of two
holes injected into a Mott insulator/antiferromagnet in a two-leg ladder using variational Monte Carlo approach.
By comparing with density-matrix renormalization group (DMRG) calculation, we show that a conventional
BCS or RVB pairing of the doped holes makes qualitatively wrong predictions and is incompatible with
the fundamental pairing force in the t-J model, which is kinetic-energy driven by nature. By contrast, a
non-BCS-like wavefunction incorporating such novel effect will result in a substantially enhanced pairing
strength and improved ground state energy as compared to the DMRG results. We argue that the non-BCS
form of such a new ground state wavefunction is essential to describe a doped Mott antiferromagnet at finite
doping.

DOI: 10.1103/PhysRevB.98.245138

I. INTRODUCTION

Three decades after the discovery of high-temperature
superconductivity in the copper oxide materials [1], it still
remains a mystery whether the superconductivity can be
described by a wavefunction of Bardeen-Cooper-Schrieffer
(BCS) type [2]. For example, as a nonphonon mechanism,
the resonating-valence-bonds (RVB) ground state proposed by
Anderson [3] may be still regarded as BCS-like, only subject
to a Gutzwiller projection onto a restricted Hilbert space to
enforce the no double occupancy of the electrons. Such a pro-
jection is due to the on-site Coulomb repulsion U , which will
make the electrons form an insulating antiferromagnetic state
(Mott insulator [4,5]) at half-filling, where the condensate
of the Cooper pairs reduces to that of the neutral spin RVB
pairing. The true Cooper pairing similar to a conventional
superconductor is expected [3] to emerge by charging the
neutral RVB background upon doping. Such an “RVB pairing
mechanism” of superconductivity has been intensively studied
[6,7] based on the variational RVB state [3,8–11].

Taking an instructive limit of two holes injected into the
half-filled spin background, one may examine the RVB origin
of pairing by the following variational construction:

|�BCS〉2h = �̂|RVB〉, (1)

in which the two doped holes form a Cooper pair

�̂ =
∑
i,j

g(i, j )ci↑cj↓, (2)

on a half-filling insulating ground state denoted by |RVB〉.
Here |RVB〉 is governed by the Heisenberg superexchange
term with the coupling constant J , which is assumed [3] to
be the main driving force for the Cooper pairing of doped

holes. Namely, the antiferromagnetic correlations in |RVB〉
can provide a bare binding force for the two holes injected
into such a spin background. Then Eq. (1) may serve as
an important test of the RVB mechanism. To this end, the
pair amplitude g(i, j ) is taken as a c number, which can be
determined variationally by using the variational Monte Carlo
(VMC) method [9–12] based on the t-J model description of
the doped Mott insulator.

However, the ansatz state in Eq. (1) does not necessarily
capture the fundamental physics of two-hole pairing [13–15].
The key assumption there is that the quantum fluctuation is
negligible such that g(i, j ) may be simulated by a “mean
field” in the variational approach. However, a recent density-
matrix renormalization group (DMRG) study on the ground
state of two holes [16,17] has revealed a different nature of
pairing other than Eq. (1). For such a strongly correlated
model in which two holes are injected into two distinct
Mott insulators of two-leg ladder systems, a strong phase
fluctuation has been identified [17] in the pair-pair correlation
functions. It suggests [17] that the pair amplitude g(i, j ) in
Eq. (2) should be replaced by

g(i, j ) → g(i, j )e−i(�̂i+�̂j ), (3)

where �̂i represents a nonlocal phase shift produced by
doping a hole into the system. Here �̂i has been explicitly
identified [17] as a pure spin string operator [cf. Eq. (11)]
acting on the half-filling background |RVB〉, and is very
sensitive to the spin-spin correlation in |RVB〉. In essence,
it implies that the correct two-hole ground state should be
properly characterized by

|�G〉2h = D̂|RVB〉, (4)
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FIG. 1. The structure and parameters for a two-leg t-J square
ladder doped by two holes. Here, the intrachain hopping and superex-
change coupling constants are denoted by αt and αJ , respectively,
with α > 0 as the anisotropic parameter and the interchain superex-
change coupling defined by J . Note that the interchain hopping
t⊥ = 0 in the present work.

where

D̂ =
∑
i,j

g(i, j )c̃i↑c̃j↓ (5)

is equal to �̂ in Eq. (2) with

ciσ → c̃iσ ∝ ciσ e−i�̂i . (6)

Namely, the Cooper pairing of two bare holes in the BCS-like
ground state (1) should be replaced by the pairing of two new
“twisted” quasiparticles, created by c̃i↑ and c̃i↓ on the “vac-
uum” |RVB〉. In other words, each doped hole has to change
the spin background |RVB〉 by a nonlocal phase shift �̂i to
become a true quasiparticle. Due to the spin-dependent many-
body phase shift operator e−i�̂i , which is nonperturbative by
nature [17], the resulting new ground state (4) is obviously
non-BCS-like in the original electron representation.

Similar novel quantum phase fluctuations have been also
identified in a symmetry-protected topological phase of the
two-leg system [17], in which two spins at each rung are
coupled by ferromagnetic instead of antiferromagnetic cou-
pling. It implies that the pairing structure may be generally
of non-BCS type in a doped spin system enforced by the no-
double-occupancy constraint. Recently, the pairing of holes
at finite doping has been clearly found by DMRG in various
generalized doped Mott insulators [18–22]. It is thus highly
intriguing and motivating to understand the microscopic ori-
gin of the hole pairing state in the limit of a two-hole case,
which should shed light on the superconducting mechanism
and the wavefunction structure at finite doping, which are
experimentally relevant.

In this paper, we comparably study the two variational
ground states, Eqs. (1) and (4), by the VMC approach based
on the t-J model. Specifically, the half-filling ground state
|RVB〉 will be first determined in a Heisenberg two-leg square
ladder model as illustrated in Fig. 1, which describes a short-
range antiferromagnetic or RVB spin state. Then we exam-
ine the two-hole ground state with turning on the hopping
integral along the chain direction (but without the interleg
hopping along the rung direction for simplicity in analytic
analysis). We variationally determine the parameter g(i, j )
by minimizing the two-hole ground state energies of Eqs. (1)
and (4), respectively. We find that the ground state energy
and various pair-pair correlations of the ground state (4) are
significantly and qualitatively improved over the BCS pairing
state (1), in excellent agreement with the DMRG results.

In particular, by using a unitary transformation, we show that
the ground state (4) properly incorporates the kinetic-energy-
driven pairing force hidden in the t-J -type model, which is
completely missed in the RVB-like description in Eq. (1). In
fact, in the latter state, we show variationally that two holes
do not form a bound state at all, even though |RVB〉 as an
RVB state possesses the same short-range antiferromagnetic
correlation in the two-leg ladder. In other words, a new
pairing mechanism distinct from the RVB mechanism can
be explicitly identified in the strong binding state of Eq. (4),
which is argued to be Amperean-like [23,24]. Generalizations
to the t⊥ �= 0 or the two-dimensional case, as well as the finite
doping case, will be also briefly discussed.

The rest of the paper is organized as follows. In Sec. II A,
we first introduce a t-J -type model for the two-leg ladder
illustrated in Fig. 1 and the corresponding σ · t-J model for
the purpose of comparison. Then, in Sec. II B, we study the
ground state properties of two different types of variational
wavefunction, |�BCS〉2h and |�G〉2h, outlined in the Introduc-
tion, by the VMC calculation. By making a comparison with
the DMRG results, we show that the latter ground state does
capture the essential physics, especially the non-BCS pairing
in the t-J -type model, whose nature is further analyzed in
Sec. II C. Finally, the summary and discussion of the main
results, as well as some perspectives, are given in Sec. III.

II. MODEL AND RESULTS

A. The model

In this paper, we mainly focus on the ground state proper-
ties of the two-hole-doped Mott insulator on a two-leg square
ladder illustrated in Fig. 1, which is described by the t-J
Hamiltonian [17,25] Ht-J = Ht + HJ as follows:

Ht =−αt
∑
iσ

(c†1iσ c1i+1σ + c
†
2iσ c2i+1σ + H.c.), (7)

HJ = αJ
∑

i

(S1i · S1i+1 + S2i · S2i+1) + J
∑

i

S1i · S2i ,

(8)

where the subscripts 1 and 2 label the two legs and the
anisotropic parameter α > 0 can continuously tune the spin-
spin correlation length along the chain direction in the quan-
tum spin background. (Note that if one starts with a large-U
Hubbard model with an α-dependent hopping, α in HJ should
be replaced by α2 instead. Previous investigations [26] have
shown that the two models are quantitatively similar provided
that α is not much larger than 1.) Si denotes the spin operator
and ciσ is the hole creation operator at site i with spin index
σ . The Hilbert space should satisfy the no-double-occupancy
constraint

∑
σ c

†
1,2iσ c1,2iσ � 1. We choose the typical ratio

t/J = 3, while, for simplicity, the injected holes are only
allowed to move along the chain (leg) direction with the rung
hopping integral t⊥ = 0 (cf. Fig. 1).

Previously the corresponding two-hole ground state has
been studied numerically by DMRG in Ref. [17] for t⊥ = 0,
and in Ref. [16] for the general case at t⊥ = t , respectively.
In both cases, a strong binding between the two injected holes
has been well established by DMRG [16,17]. By contrast, in
these numerical studies, it has been shown that the pairing
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between the holes will get substantially weakened [17] or even
disappear [16] if the hidden phase-string sign structure in the
t-J model is precisely removed in the so-called σ · t-J model
defined by Hσ ·t-J = Hσ ·t + HJ , in which the superexchange
Hamiltonian HJ remains the same, but the hopping term is
changed to [16,17]

Hσ ·t = −αt
∑
σ i

σ (c†1iσ c1i+1σ + c
†
2iσ c2i+1σ + H.c.) (9)

by inserting a spin-dependent sign factor σ = ±1 in the origi-
nal hopping term of Eq. (7). Then the novel non-BCS-pairing
mechanism hidden in the t-J model will lie in the distinction
between the t-J and σ · t-J model, which can be effectively
revealed by using the σ · t-J model as a useful reference
Hamiltonian in the following variational study.

B. Ground state wavefunctions:
Variational Monte Carlo calculation

As pointed out in the Introduction, the ground state (1)
depicts the simplest pairing wavefunction of two holes doped
into an RVB (short-ranged antiferromagnetic) background as
envisaged originally by Anderson [3]. By contrast, the ground
state (4) is modified nonperturbatively by that each doped hole
induces a nonlocal phase shift as given by [17]

c̃γ iσ = cγ iσ e−i�̂γ i (10)

and

�̂γ i = π
∑
l>i

n
↓
γ l , (11)

where the subscript γ = 1, 2 labels the two legs of the square
ladder shown in Fig. 1, and n

↓
γ l denotes the number operator

of a down spin at site l along the chain of leg γ [17]. Note that
�̂γ i is taken as purely one-dimensional here in Eq. (11) simply
because the hopping integral t⊥ = 0 along each rung of the
ladder (cf. Fig. 1). In general with t⊥ �= 0, the spins in another
chain of the two-leg ladder will also play a non-negligible role
in �̂γ i [27].

Note that at half-filling, both the ground states of Eqs. (1)
and (4) reduce to the same |RVB〉, which can be accurately
determined based on the Liang-Doucot-Anderson bosonic
RVB wavefunction [28] for the two-leg Heisenberg model
[27]. As previously studied by DMRG and VMC calculations,
|RVB〉 describes a short-range antiferromagnetic ground state,
with gapped low-lying spin excitations [29,30]. Based on such
|RVB〉, we can then optimize the ground state energies of
the RVB state in Eq. (1) and the non-BCS-like wavefunction
of Eq. (4) with regard to the variational parameter g(i, j ).
The details of the variational procedure are presented in
Appendix A, which has been developed based on the method
firstly applying to the one-hole ground state in Ref. [27].

Figure 2 shows the variational ground state energies for the
two ground states, Eqs. (1) and (4), respectively, as computed
by the VMC method for a finite size ladder. As compared to
the DMRG result, Fig. 2(a) shows that the total energy of
the “RVB wavefunction” in Eq. (1) is indeed much higher
as compared to both the non-BCS wavefunction in Eq. (4)
as well as the DMRG result, which are relatively much
closer. In particular, as shown in Figs. 2(b) and 2(c), the
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FIG. 2. The variational ground state energies of |�BCS〉2h in
Eq. (1) (blue triangle) and |�G〉2h in Eq. (4) (red square) in com-
parison with the DMRG results (solid circle). (a) The total energies,
(b) the superexchange energies, and (c) the kinetic energies. The
ladder size is N = 20 × 2 under the open boundary condition.

deviation between the two variational ground states mainly
comes from the hopping energy Et = 〈Ht 〉, while they agree
well with each other in the superexchange energy EJ = 〈HJ 〉.
In other words, by incorporating the nonperturbative phase
shift effect in Eqs. (10) and (11), the kinetic energy does get
substantially improved in the new ground state (4), while the
superexchange energy remains approximately unchanged.

Furthermore, an interesting but surprising result is illus-
trated in Fig. 3, in which the pair-pair correlators in the two
variational ground states are computed and compared with
the DMRG simulation. For all the spin-singlet and -triplet
channels with the two-hole pairing at the same rung or at
the diagonal bond of a plaquette of the ladder in Fig. 1, the
pair-pair correlations are all vanishingly small (<10−11) in
the “RVB variational wavefunction” (1). By comparison, the
pair-pair correlations are more enhanced in the wavefunction
(4) in all channels shown in Figs. 3(a)–3(d). In particular, the
pair-pair correlators of the ground state (4) are in excellent
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FIG. 3. Pair-pair correlators, Cs,t (r ), as a function of distance r calculated in the ground states |�BCS〉2h (blue triangle) and |�G〉2h (red
square), respectively, in comparison with the DMRG results (solid circle), are shown for different channels in (a)–(d) as labeled by the pairing
parameters defined in the text. While the present variational ground state |�G〉2h in Eq. (4) has well captured the correct pair-pair correlations
in all channels as compared with the DMRG results, the RVB-type ground state |�BCS〉2h in Eq. (1), however, does not show any meaningful
pair-pair correlations in all channels. The ladder size is N = 40 × 2 with α = 1.

agreement with the DMRG results, which are also shown in
Figs. 3(a)–3(d). Note that in Fig. 3, the pair-pair correlators
are defined as Cs,t (r ) = 〈�̂s,t

1i ′2j ′ (�̂s,t
1i2j )†〉 where the singlet

and triplet channels are

�̂s
ij = 1√

2

∑
σ

σc1iσ c2j−σ ,

�̂t
ij = 1√

2

∑
σ

c1iσ c2j−σ . (12)

Here we only focus on the local rung pairing �̂s,t
rung (i = j )

with r = |i − i ′| and local diagonal pairing �̂
s,t
diag (i = j + 1),

which represent the dominant pairings in the present two-leg
ladder system [17].

Therefore, in contrast to conventional wisdom, the “RVB
ground state” of Eq. (1) actually is not in favor of pairing
between two holes upon doping, even though the half-filling
|RVB〉 state has already exhibited a short-range antiferromag-
netism (an RVB state). On the other hand, in the new ground
state of Eq. (4), two doped holes do form a strong bound pair,
accompanied by the fact that its kinetic energy is significantly
lowered as compared with the variational energy of Eq. (1).
The overall ground state variational energy of |�G〉2h is in

qualitative agreement with the corresponding DMRG result.
In particular, the pair-pair correlations calculated based on
|�G〉2h is in excellent agreement with the precise results. It
thus clearly indicates that a kinetic energy driven mechanism
must be at play in the t-J model. This is in sharp contrast to a
conventional BCS theory or Anderson’s RVB theory, in which
the pairing strength is usually gained from the potential (su-
perexchange) energy, whereas it causes the further increase of
the kinetic energy in forming a bound state. In the following,
we further explore the underlying pairing mechanism.

C. Non-BCS pairing mechanism

The above variational calculations demonstrate that two
doped holes injected into the short-range antiferromagnet
|RVB〉 can indeed form a tightly bound state. However, it is
not described by Eq. (1) but by Eq. (4). The latter is non-BCS-
like as each hole has to simultaneously induce a nonlocal spin
“twist” via the phase string factor e−i�̂i in the spin background
|RVB〉, which is in favor of pairing once two holes are present.
By contrast, the pairing between the two holes vanishes in
Eq. (4) once �̂i is turned off, which results in Eq. (1).

In order to further understand the underlying physics, let
us note that the two variational states in Eqs. (1) and (4) can

245138-4



TWO-HOLE GROUND STATE WAVEFUNCTION: NON-BCS … PHYSICAL REVIEW B 98, 245138 (2018)

be connected by the following unitary transformation:

|�G〉2h = ei�̂|�BCS〉2h, (13)

where

ei�̂ ≡ e−i
∑

γ i nh
γ i�̂γ i (14)

with nh
γ i denoting the hole number operator at the site i of the

leg γ (clearly this unitary transformation can be generalized
to arbitrary dopings).

Then, given the fact that |�G〉2h is an excellent variational
ground state for the t-J model, the RVB ground state |�BCS〉2h

in Eq. (1) can be taken as the correct trial wavefunction only
if the target Hamiltonian is transformed from the t-J -type
Hamiltonian Ht-J in Eq. (7) by eHt-J ≡ e−i�̂Ht-J ei�̂, which
has the following form:

eHt-J = Hσ ·t-J + H
string
I . (15)

Here the first term on the right-hand side (rhs) is the σ · t-J
model defined in Sec. II A, in which the hopping term is
changed to Hσ ·t in Eq. (9), which is free from the frustration
caused by the phase-string sign structure in the original t-J
model [13–15]. It has been previously shown by DMRG [17]
that such σ · t-J model with t⊥ = 0 would only lead to a
weakly bound state of two holes, which may be regarded as
the RVB mechanism for pairing due to HJ . By contrast, the
pairing is absent in the two-leg σ · t-J ladder model for the
isotropic case with t⊥ = t [16]. However, as pointed out in
the above, in either case of t⊥ = 0 or t⊥ = t , a strong binding
between the two doped holes has been clearly identified in the
t-J model by DMRG [16,17].

Thus, the last term H
string
I on the rhs of Eq. (15) in the

transformed representation must play a dominant role in the
pairing mechanism of the t-J model. It reads [17]

H
string
I = 1

2
J

∑
i

(S+
1iS

−
2i + S−

1iS
+
2i )

(
��h

i − 1
)
, (16)

where the summation over i is along the chain direction, in
which

��h
i = e−iπ

∑
l<i (n

h
1l−nh

2l ) (17)

describes the nonlocal phase shift effect created by the doped
holes at both chains (legs) of γ = 1, 2. Since 〈S+

1iS
−
2i +

S−
1iS

+
2i〉 < 0 at half-filling, one finds that two doped holes will

generally acquire a stringlike pairing potential as follows:
(1) If both holes lie on the right hand or left hand of the

rung 1i, 2i, the factor ��h
i = 1 makes a vanishing contribu-

tion in Eq. (16).
(2) Only when the rung 1i, 2i is sandwiched by the two

holes along the chain direction, does the factor ��h
i = −1

make a finite contribution in Eq. (16). Consequently, an effec-
tive potential given by Eq. (16) for two holes can be found:

V (h1, h2) ∝ J
∣∣xh1 − xh2

∣∣, (18)

where |xh1 − xh2 | denotes the distance between the two holes
at site h1 and h2 along the chain (x) direction.

Namely, if one insists on using the BCS-type wavefunction
of Eq. (1) to describe the hole pairing ground state, then the
original t-J Hamiltonian has to be transformed into a new

Hamiltonian eHt-J in Eq. (15), in which the hopping term is
replaced by that of the σ · t-J that is free from the phase string
effect. Nevertheless, there emerges an additional nonlocal
stringlike pairing potential besides the original superexchange
term. It is this new stringlike potential H

string
I that will lead

to the strong binding between the two doped holes in eHt-J

rather than the superexchange term HJ in the σ · t-J term in
Eq. (15).

Let us further examine the pair-pair correlators in such a
transformed representation. Note that in the new Hamiltonian
(15) the pair operators �̂

s,t
ij defined in Eq. (12) will correspond

to the following operators D̂
s,t
ij in the original t-J model:

D̂
s,t
ij ≡ ei�̂�̂

s,t
ij e−i�̂ = �̂

s,t
ij e−i(�̂i+�̂j ), (19)

or

D̂s
ij = 1√

2

∑
σ

σ c̃1iσ c̃2j−σ ,

D̂t
ij = 1√

2

∑
σ

c̃1iσ c̃2j−σ . (20)

One may then calculate the pair-pair correlators of D̂
s,t
ij based

on Eq. (19) in the original representation of Ht-J and |�G〉2h.
As shown in Fig. 4, the VMC calculations are in excel-
lent agreement with the DMRG simulation, indicating that
the two-hole ground state in the transformed representation
governed by the new Hamiltonian (15) is indeed described
by a BCS-like “Cooper pairing” in the wavefunction (1).
Equivalently in the original representation, it is the operator
c̃ instead of the bare hole creation operator c that plays the
central role in Cooper pairing.

As indicated in the insets of Figs. 4(a) and 4(b), the
strengths of the D̂ correlators generally get enhanced as
compared with those of the true Cooper pairs characterized
by �̂ in the original t-J model. It indicates that the true
Cooper pair operator �̂ must possess a composite structure
including both a pairing amplitude (mean-field-like) D̂

s,t
ij and

a phase fluctuation as shown in Eq. (19), which has already
been established by the DMRG calculation in Ref. [17].

III. DISCUSSION

In this work, the pairing of two holes doped into a Mott in-
sulator has been studied by the VMC calculation. Specifically,
we have explored a non-BCS-type wavefunction [Eq. (4)]
with incorporating an intrinsic phase fluctuation discovered in
a previous DMRG approach [16,17]. Such a new variational
wavefunction has been shown to give rise to the correct
behavior of the two-hole ground state in comparison with
the DMRG results [17]. By contrast, the conventional BCS-
(RVB-) like wavefunction [Eq. (1)] leads to the qualitatively
wrong behavior in both the ground state energy and the pair-
pair correlations. In particular, it predicts the absence of any
meaningful pairing as opposed to a strong binding between
the holes as revealed by DMRG [17] as well as by the present
variational wavefunction.

It means that the so-called RVB mechanism [3] is not
sufficient at least in the present two-leg ladder case in describ-
ing the hole pairing, even though the spin-spin correlation is
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calculated by VMC (open square) and DMRG (solid circle) in the
singlet (a) and triplet (b) channels. Here D̂

s/t

diag/rung may be regarded

as the pair amplitude of the Cooper pair operator �̂
s/t

diag/rung, and the
correlations of both operators are presented in the insets of (a) and
(b), which indicate the strengths of the phase fluctuations in the
Cooper pair correlators [17]. The system size is N = 40 × 2 with
α = 1.

already short ranged here as envisaged originally by Anderson
[3] for an RVB state. Rather than the conventional RVB
pairing potential contributed by the superexchange term HJ ,
the strong pairing state for the two holes is found to be due
to a distinct mechanism, which is “kinetic energy driven”
by nature. Namely, each doped hole will have to induce an
irreparable phase string effect in the spin background [13–15],
which strongly frustrates its kinetic energy [16,17]. The bare
hole is then renormalized by a nonlocal phase shift to form a
“twisted” quasiparticle as given in Eqs. (10) and (11). What
we have found in this work is that two of the twisted holes can
indeed form a tightly bound pair as described by Eq. (4), and
by doing so the strong frustration on the kinetic energy can be
effectively released.

Thus, the Cooper pairing of two doped holes can no longer
be simply attributed to exchanging a “bosonic mode” or via an
RVB pairing of the spins. Instead, the dominant pairing force
is originated from the phase-string effect of the t-J model.
Such a non-BCS pairing force can be explicitly revealed
by utilizing a unitary transformation to “gauge away” the
phase-string effect from the hopping term, which results in
an effective stringlike pairing potential in Eq. (16) that is
nonlocal and of nonperturbative nature. Physically, the phase-
string effect can be also interpreted in terms of the spin current

backflow produced by the hopping of the doped holes [31].
In this sense, the stringlike force shown in Eqs. (16) and
(18) may be also regarded as a special type of the Amperean
pairing potential [23,24].

We point out that both the ansatz states given in Eqs. (4)
and (1) have omitted the usual “spin-polaron” [32–35] or
“spin bag” effect [36,37], which arises from the “amplitude”
distortion in the spin background around the doped hole,
in contrast to the “phase” or the “transverse” (spin current)
distortion given in Eq. (10). The former should further im-
prove the variational ground state energy shown in Fig. 2,
and renormalize the effective mass of the doped hole. But
we do not think such an effect will violate the Landau’s one-
to-one correspondence, as the present phase shift in Eq. (10)
does, to result in a qualitative change in the ground state
properties, including the pairing mechanism. Nevertheless,
properly including such an effect is expected to further lower
the variational energy of Eq. (4) in comparison with the
DMGR results, even though the pair-pair correlations should
not be improved much according to Fig. 3.

The present study of the hole pairing in the t-J model has
been carried out in one of the simplest limits. Namely, we
have considered two holes doped into a spin gapped two-leg
Heisenberg ladder, in which two holes are only allowed to
hop along the chain direction of the ladder with t⊥ = 0. As
a consequence, the phase-shift operator �̂i takes the simple
one-dimensional form given in Eq. (11). On the other hand,
with t⊥ �= 0, the DMRG calculation (cf. Appendix B) shows
that the two-hole ground state persists continuously from
t⊥ = 0 without phase transition. In other words, the non-BCS
pairing revealed in the present work should remain similar
at t⊥ �= 0. There, the form of �̂i associated with one-hole
doping will generally involve both chains of the two-leg
ladder as previously shown in Ref. [27]. The pairing of the
two twisted holes should thus remain the same as in Eq. (4)
in the variational approach, with �̂i being modified. A similar
approach may be further generalized to the two-dimensional
case, where the phase-shift operator �̂i will take an isotropic
form [13–15].

Finally, a natural generalization of the ground state ansatz
in Eq. (4) for the two-hole case to the finite doping may be
straightforwardly written down as follows:

|�G〉 = eD̂|RVB〉, (21)

which has been previously constructed in Ref. [13], where
|RVB〉 still denotes a spin “vacuum” state and the “twisted”
Cooper pair D̂ is defined in Eq. (5). As a technical remark,
we note here that the compact form in Eq. (21) should be
correctly understood as an abbreviation expression for a truly
fractionalized state [13,14]. That is, the phase-shift operator
�̂i in D̂ [Eq. (5)] should always act on the half-filling vacuum
state |RVB〉 before the annihilations of the electrons at the
hole sites byD̂, which can only be precisely implemented
by introducing a specific fractionalization [13,14]. By such a
construction, the pairing amplitude g(i, j ) in Eq. (11) and the
RVB pairing in |RVB〉 can still remain mean-field-like to give
rise to a nontrivial/non-BCS superconducting ground state at
finite doping, which is to be further investigated variationally
elsewhere.
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APPENDIX A: VARIATIONAL
MONTE CARLO PROCEDURE

For the sake of self-consistency, we first present the VMC
procedures for the half-filled RVB state. Subsequently, we
derive the two-hole variational wavefunctions and some for-
mulas used in the VMC procedure.

1. VMC for half-filling wavefunctions

At half-filling both the t-J and the σ · t-J model reduce to
a pure Heisenberg spin ladder whose ground state |RVB〉 is an
antiferromagnetic gapped system. A pure Heisenberg model
can have a good simulation by the Liang-Doucot-Anderson-
type bosonic RVB variational wavefunction [28]:

|RVB〉 =
∑

υ

ωυ |υ〉, (A1)

where |υ〉 is a singlet pairing valence bond (VB) state where
spins on sites i and j from different sublattices form a singlet
pairing, which enables |RVB〉 to obey the Marshall sign rule
[38]. The amplitude of each VB state |υ〉 can be factorized
by ωυ = ∏

(ij )∈υ hij . Here hij is a non-negative function with
respect to sites i and j . Such a scheme will tremendously
decrease the number of variational parameters. In Ref. [27],
the VMC calculations for a 40 × 2 Heisenberg ladder system
with open boundary condition show high accuracy as com-
pared with the DMRG results.

The norm of the RVB state in Eq. (A1) is given as

〈RVB|RVB〉 =
∑
υ,υ ′

ωυωυ ′ 〈υ ′|υ〉. (A2)

The positiveness of ωυωυ ′ 〈υ ′|υ〉 allows an explanation as
a distribution function. The sampling of 〈υ ′|υ〉 is time-
consuming. We can introduce the Ising configuration σ (sim-
ply use σ for {σ }), whose relation to the VB state is

|σ 〉〈σ |υ〉 = δυ,σ |υ, σ 〉, (A3)

in which δυ,σ = |〈σ |υ〉| and 〈σ |υ〉 is zero or the Marshall sign
for the RVB state. Then the RVB state in Eq. (A1) can be
rewritten as

|RVB〉 =
∑

υ

ωυ |υ〉 =
∑
υ,σ

δυ,σ |υ, σ 〉. (A4)

The summation is constrained in the space where the VB state
|υ〉 is compatible with the Ising basis |σ 〉. With the fact

〈υ ′|υ〉 = 2N
loop
υ,υ′ , 〈υ ′, σ ′|υ, σ 〉 = δσ,σ ′ ,

the norm in Eq. (A2) has a more explicit form

〈RVB|RVB〉 =
∑

υ,υ ′,σ

ωυωυ ′δυ ′,σ δυ,σ . (A5)

Here N
loop
υ,υ ′ is the number of loops in the transposition-graph

covers (υ, υ ′).

The formulas for averaging physical operators can be
found in Ref. [27]. Whereafter, we will generalize the same
trick to two-hole wavefunctions.

2. Two-hole ground state

We can construct a two-hole VB state by removing two
electrons with opposite spin indexes from the half-filled VB
state:

|h1, h2, υ〉 ≡ sgn(h1 − h2)ch1↑ch2↓|υ〉
=

∑
σh

δυ,σh
|h1, h2, σh〉, (A6)

where |υ〉 is a half-filled VB state and |h1, h2, σh〉 ≡ sgn(h1 −
h2)ch1↑ch2↓|σh〉 with |σh〉 denoting a half-filled Ising basis.
The function sgn(h1 − h2) is the sign function, i.e., if h1 >

h2, sgn(h1 − h2) = 1; if h1 = h2, sgn(h1 − h2) = 0; and if
h1 < h2, sgn(h1 − h2) = −1. If υ and σh are not compatible,
δυ,σh

= 0, namely, for some dimmer (i, j ), σh(i) = σh(j )
[σh(i) is the spin index on the site i in the Ising basis |σh〉]
or σh(h1) =↑ or σh(h2) =↓.

The two-hole variational wavefunction is obtained by re-
moving two antidirected spins on the RVB state in Eq. (A1)
accompanied with a unitary transformation �̂:

|�〉G = �̂
∑
h1 ,h2
h1 �=h2

g(h1, h2)sgn(h1 − h2)ch1↑ch2↓|RVB〉

=
∑
h1 ,h2
h1 �=h2

∑
σh,υ

g(h1, h2)�̂(h, σh)δυ,σh
ωυ |h1, h2, σh〉

(A7)

in which g(h1, h2) is the hole wavefunction that only depends
on the holes’ position and it will entangle with antiferromag-
netic background through the phase operator �̂. The phase
�(h, σh) generally is the function of the two hole positions h1

and h2 and spin configuration σh and is defined by

�̂(h, σh)|h1, h2, σh〉
=

∏
h∈{h1,h2}

∏
l �=h1,h2

�[h, l, σh(l)]|h1, h2, σh〉. (A8)

We factorize �̂(h, σh) via �[h, l, σh(l)], which is a phase
factor felt by a hole from the spin at site l. Specifically, it has
different forms for different variational assumptions:

(1) If we take �[h, l, σh(l)] = 1, then �̂ = 1 and we get
the BCS-type wavefunction in Eq. (1).

(2) For the non-BCS-type wavefunction in Eq. (4) in the
t-J ladder system with t⊥ = 0 in the main body,

�[h, l, σh(l)]

=

⎧⎪⎨
⎪⎩

1, h, l lie in different legs

e−iπ δσh(l),↓, h, l lie in the same leg and xl > xh

1, h, l lie in the same leg and xl < xh,

(A9)

where xl is the coordinate of site l along the chain (x)
direction.
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(3) For the t-J model with t⊥ �= 0 ladder systems or two-dimensional systems, the expression of �[h, l, σh(l)] can be found in
Ref. [27].

With the inner product formulas

〈h′
1, h

′
2, σ

′
h′ |h1, h2, σh〉 = δh′

1,h1δh′
2,h2δσh,σ

′
h
δσh(h1 ),−σh(h2 ), (A10)

〈h′
1, h

′
2, υ

′|h1, h2, υ〉 =
⎧⎨
⎩

δh′
1,h1δh′

2,h2 2N
loop
υ,υ′−1(1 − δ sublatt

h1h2

)
, h1, h2 ∈ s.l.

δh′
1,h1δh′

2,h2 2N
loop
υ,υ′−2

, h1, h2 /∈ s.l.,
(A11)

where h1, h2 ∈ s.l. means that sites h1 and h2 belong to the same close loop in the transposition graph (υ, υ ′) and δh′
1,h1 = 1 if

h′
1 = h1, and otherwise δh′

1,h1 = 0. δsublatt
h1h2

= 1 if sites h1, h2 are in the same sublattice, and otherwise, δsublatt
h1h2

= 0, we can express
the norm of |�〉G as

〈�|�〉G = 1

4

∑
υ,υ ′,σ 0

δυ,σ 0δυ ′,σ 0ωυ ′ωυ

⎡
⎢⎣ ∑

h1 ,h2 ,

h1 ,h2∈s.l.

2
(
1 − δsublatt

h1h2

) +
∑
h1 ,h2 ,

h1 ,h2 /∈s.l.

1

⎤
⎥⎦ |g(h1, h2)|2, (A12)

where σ 0 is a compatible spin configuration with a transposition graph (υ, υ ′). Note that the norm of |�〉G depends on different
VB configuration (υ, υ ′). To overcome it, we have to employ a similar trick as Gutzwiller projection [10]: using average values
of [

∑
h1 ,h2 ,

h1 ,h2∈s.l.
2(1 − δsublatt

h1h2
) + ∑

h1 ,h2 ,

h1 ,h2 /∈s.l.
1]|g(h1, h2)|2 under the half-filled RVB state instead:

�⎡
⎢⎣ ∑

h1 ,h2 ,

h1 ,h2∈ s.l.

2
(
1 − δsublatt

h1h2

) +
∑
h1 ,h2 ,

h1 ,h2 �∈s.l.

1

⎤
⎥⎦ |g(h1, h2)|2

�

RVB

=
∑
h1,h2

[
2
(
1 − δsublatt

h1h2

)
Ph1h2 + (

1 − Ph1h2

)]|g(h1, h2)|2

≡
∑
h1,h2

a(h1, h2)2|g(h1, h2)|2, (A13)

where Ph1h2 describes the possibility of two sites h1, h2 belonging to the same loop in all the transposition graphs (υ, υ ′). The
factor a(h1, h2)2 ≡ 2(1 − δsublatt

h1h2
)Ph1h2 + (1 − Ph1h2 ) will regularize the norm that relates |�〉G to |RVB〉:

∑
h1 ,h2
h1 �=h2

a(h1, h2)2|g(h1, h2)|2 = 1, (A14)

〈�|�〉G = 1

4

∑
υ,υ ′,σ 0

δυ,σ 0δυ ′,σ 0ωυ ′ωυ = 1

4
〈RVB|RVB〉. (A15)

In Appendix A 3, we will describe the procedures for variational optimization on the wavefunction g(h1, h2). Together with
Eq. (A7) and the identity 〈υ|υ ′〉 = ∑

σ 0 δυ,σ 0δυ ′,σ 0 , the expectation value of an operator Ô can be generally expressed as

〈Ô〉 = 〈�|Ô|�〉G

〈�|ψ〉G
=

4
(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυ

∑
h′

1 �=h′
2,σ

′
h′ ,σh

δυ ′,σ ′
h′ δυ,σh

E(Ô )(∑
υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυ

, (A16)

where

E(Ô ) = Re(��)
〈h′

1, h
′
2, σ

′
h′ |O|h1, h2, σh〉
〈υ ′|υ〉 (A17)

and

Re(��) = Re[�∗(h′
1, h

′
2, σ

′
h′ )�(h1, h2, σh)g∗(h′

1, h
′
2)g(h1, h2)]. (A18)

Here Re(��) denotes the real part of ��. We interpret ωυ ′ωυ/〈�|�〉G as a distribution function in the space of compatible
spin configurations (υ, υ ′, σ 0).

3. VMC procedure

We have to optimize parameters hij of the background RVB [39] and the wavefunction g(h1, h2) with respect to the total
energy Etotal. The total energy of the system reads

Etotal = 〈�|Ht + HJ |�〉G =
∑

j1j2,i1i2

H eff
j1j2,i1i2

g∗(j1, j2)g(i1, i2), (A19)
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where H eff is an effective Hamiltonian for the hole wavefunction g,

H eff = H eff
t + H eff

J . (A20)

We introduce a renormalized wavefunction g̃ to incorporate with its normalization condition (A15),

g̃(h1, h2) = a(h1, h2)g(h1, h2).

Consistently, H eff will be transformed into eH
eff

whose elements are

eH
eff
j1j2,i1i2

= a−1(j1, j2)H eff
j1j2,i1i2

a−1(ii , i2). (A21)

Thus the total energy is expressed as

Etotal =
∑

j1j2,i1i2

eH
eff
j1j2,i1i2

g̃∗(j1, j2)g̃(i1, i2), (A22)

with the normalization condition for g̃(i1, i2): ∑
i1,i2

|g̃(i1, i2)|2 = 1. (A23)

Diagonalize eH
eff

and the minimal eigenvalue and the corresponding eigenvector are the variational energy and renormalized
wavefunction, respectively. All remaining are to simulate elements of H eff

t and H eff
J . In the following, we provide some explicit

formulas used in the Monte Carlo simulation.

4. Superexchange energy

Superexchange terms HJ only affect spin configuration with the positions of holes unchanged, which will simplify calculation
processes. The average value of the superexchange energy of two sites i, j with fixed positions of holes is

〈
HJ

ij

〉 =
(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυEJ

ij (υ, υ ′)(∑
υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυ

, (A24)

where

EJ
ij (υ, υ ′) = |g(h1, h2)|2EJ

ij (h, υ, υ ′), (A25)

EJ
ij (h, υ, υ ′) =

∑
σ ′

h′ σh

δυ ′,σ ′
h′ δυ,σh

Re[�∗(h1, h2, σ
′
h)�(h1, h2, σh)]

4〈h1, h2, σ
′
h|Si · Sj |h1, h2, σh〉
〈υ ′|υ〉 . (A26)

Given a transposition graph (υ, υ ′), we categorize EJ
ij (h, υ, υ ′) in a list below.

(1) h1 and h2 belong to the same loop Lh1h2 in a given transposition graph (υ, υ ′).
(a) One of the two holes coincides with the site i or j , which gives EJ

ij (h, υ, υ ′) = 0.
(b) Sites i and j belong to the different loops of the transposition graph (υ, υ ′). The contributions from terms S+

i S−
j +

S−
i S+

j always vanish since a closed loop cannot have a single antiferromagnetic domain. Although the expectation value of
diagonal terms Sz

i S
z
j for a fixed spin configuration is not zero, their contributions vanish after summation of all compatible

spin configurations.
(c) Sites i, j belong to the same loop Lij that contains no holes, Lij �= Lh1h2 . If the two holes belong to different sublattices

δsublatt
h1h2

= 0 (to satisfy compatibility), the contribution EJ
ij (h, υ, υ ′) reads

EJ
ij (h, υ, υ ′) = 2 × 2N

loop
υ,υ′−2Re

(
��J

ij

) −J/2

2N
loop
υ,υ′−2

+ 2N
loop

υ,υ′ −11
−J/4

2N
loop
υ,υ′−2

= 2

{
−J

2
Re

[
��J

ij (h)
] − J

4

}
. (A27)

Otherwise, EJ
ij (h, υ, υ ′) = 0.

(d) Sites i, j belong to the loop Lh1h2 . This is more complicated. If and only if holes h1 and h2 belong to different
sublattices, terms Sz

i S
z
j contribute nonvanishingly to EJ

ij (h, υ, υ ′). Terms S+
i S−

j + S−
i S+

j depend on relative positions of
sites i, j and holes. For the sake of clarity, we introduce an auxiliary loop L′

h1h2
, which is obtained from the loop Lh1h2 by

setting υ[υ(i)] = j, υ[υ(j )] = i in loop L′
h1h2

. We also introduce an auxiliary dimmer configuration |h1, h2, υ
′′〉 = (S+

i S−
j +

S−
i S+

j )|h1, h2, υ〉, and spin configuration |h1, h2, σ
′′
h 〉 = (S+

i S−
j + S−

i S+
j )|h1, h2, σh〉 [σ ′′

h is compatible with transposition
graph (υ ′, υ ′′)]. Note that the auxiliary loop L′

h1h2
and dimmer configuration |h1, h2, υ

′′〉 do not satisfy original rules of
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construction. If the spin configuration σ ′′
h satisfies σ ′′

h (h1) = −σ ′′
h (h2),

EJ
ij (h, υ, υ ′) = 2

{
−J

2
Re

[
��J

ij (h)
]
δσ ′′

h (h1 ),−σ ′′
h (h2 ) − J

4

(
1 − δsublatt

h1h2

)}
, (A28)

where (1 − δsublatt
h1h2

) = 1 if the two holes h1, h2 belong to the different sublattices.
(2) Holes h1 and h2 belong to different loops Lh1 , Lh2 in a given transposition graph (υ, υ ′).

(a) If one of h1 and h2 coincides to site i or j, EJ
ij (h, υ, υ ′) = 0.

(b) Sites i, j belong to different loops of (υ, υ ′). Contributions from terms S+
i S−

j + S−
i S+

j vanish for there exists no
compatible spin configuration with a VB state. Only when i ∈ Lh1 , j ∈ Lh2 or i ∈ Lh2 , j ∈ Lh1 , the diagonal terms Sz

i S
z
j

contribute to EJ
ij (h, υ, υ ′),

EJ
ij (h, υ, υ ′) = J

4

2N
loop
υ,υ′−2

2N
loop
υ,υ′−2

(
δσh(i),σh(j ) − δ−σh(i),σh(j )

) = J

4

(
δσh(i),σh(j ) − δ−σh(i),σh(j )

)
. (A29)

(c) Site i, j belongs to the same loop Lij of the transposition graph (υ, υ ′). If Lij does not contain holes, we obtain

EJ
ij (h, υ, υ ′) = 2 × 2N

loop
υ,υ′−3Re

(
��J

ij

) −J/2

2N
loop
υ,υ′−2

+ 2N
loop

υ,υ′ −21
−J/4

2N
loop
υ,υ′−2

= −J

2
Re

[
��J

ij (h)
] − J

4
. (A30)

The case that Lij contains one or two holes shows the same result, but only one term of S+
i S−

j and S−
i S+

j helps.

5. Hopping energy

In this section, we turn to calculation of 〈Ht 〉:

〈Ht 〉 =
(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυE(υ, υ ′)(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

) , (A31)

where

E(υ, υ ′) =
∑
h1 ,h2 ,

h1 �=h2

∑
h′

1 ,h′
2

h′
1 �=h′

2

E(h, h′, υ, υ ′), (A32)

E(h, h′, υ, υ ′) = 4
∑
σ ′

h′ ,σh

δυ ′,σ ′
h′ δυ,σh

g∗(h′
1, h

′
2)g(h1, h2)

〈h′
1, h

′
2, σ

′
h′ |ei�̂Hte−i�̂|h1, h2, σh〉

〈υ ′|υ〉 , (A33)

where we take h (h′) in E(h, h′, υ, υ ′) as a shorthand for h1 and h2 (h′
1 and h′

2). Each hopping term only moves one hole within
a single action. Without loss of generality, we can assume the position of hole h1 unchanged, i.e., h1 = h′

1. Furthermore, similar
to the trick upon terms S+

i S−
j + S−

i S+
j in the superexchange energy, we introduce an auxiliary spin and VB configuration:

|h1, h
′
2, σ

′′
h 〉 = ch′

2↑c
†
h2↑|h1, h2, σh〉, (A34)

|h1, h
′
2, υ

′′〉 = ch′
2↑c

†
h2↑|h1, h2, υ〉. (A35)

The auxiliary VB configuration |h1, h
′
2, υ

′′〉 requires υ ′′(h′
2) = υ(h2) and other dimmers stay the same. The nonvanishing

contributions require compatibility between spin configuration |h′
1, h

′
2, σ

′′
h 〉 and a new transposition graph 〈h1, h

′
2, υ

′|h1, h
′
2, υ

′′〉.
The expression of E(h, h′, υ, υ ′) can be decomposed into several factors

E(h, h′, υ, υ ′) = −
∑
σh,σ

′
h

�(σh, σ
′
h)g∗(h′

1, h
′
2)g(h1, h2)

4

2n
��, (A36)

where n is the number of loops including sites h1, h2, and h′
2 in 〈υ ′|υ〉, and �(σh, σ

′
h) is the Marshall sign difference between

the initial σh and final states σ ′
h. The minus sign comes from the permutation of fermions. The phase difference ��, induced by

phase-string effect, can be divided into four parts:

�� = ��0 · ��1 · ��2 · ��3. (A37)

(1) ��0 comes from sites h1, h2, and h′
2:

��0 = �∗[h′
2, h2, σh(h′

2)]�[h2, h
′
2, σh(h′

2)]�∗[h1, h2, σh(h′
2)]�[h1, h

′
2, σh(h′

2)], (A38)

with �[h, l, σh(l)] defined in Eq. (A8).
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(2) ��1 comes from sites in the VB configuration 〈h1, h
′
2, υ

′|h1, h
′
2, υ

′′〉 loops L that contain sites h′
1(=h1) or h′

2, except
sites that coincide with h1(=h′

1), h2, or h′
2.

��1 =
∏

l∈L
h′

1
,L

h′
2

l �=h1,h2 ,h′
1 ,h′

2

�∗[h′
2, l, σh(l)]�[h2, l, σh(l)], (A39)

where Lh′
1

(Lh′
2
) is the loop containing h′

1 (h′
2).

(3) If neither of the loops Lh1 nor Lh′
2

of the VB configuration 〈h1, h
′
2, υ

′|h1, h
′
2, υ

′′〉 contain the site h2, that is, Lh2 �= Lh1

and Lh2 �= Lh′
2
, there are two different spin configurations that are compatible with the loop Lh2 , which account for the phase

factor ��2.

��2 =
∑
σl=±

∏
l∈Lh1

�∗[h′
2, l, σh(l)]�[h2, l, σh(l)]. (A40)

Otherwise, ��2 = 1.
(4) ��3 comes from the rest of the loops of VB configuration 〈h1, h

′
2, υ

′|h1, h
′
2, υ

′′〉:

��3 =
∏

L �=Lh1 ,Lh2 ,Lh′
2

⎡
⎣1

2

∑
{σl}

∏
l∈L

�∗[h′
2, l, σh(l)]�[h2, l, σh(l)]

⎤
⎦ . (A41)

6. Pair-pair correlation

One may examine the pair-pair correlators 〈�s,t
ij (�s,t

ij )†〉 where the singlet/triplet channels are defined as follows:

�s
ij = 1√

2

∑
σ

σc1iσ c2j−σ , (A42)

�t
ij = 1√

2

∑
σ

c1iσ c2j−σ . (A43)

Expand the correlators,

C(i, j ) = 〈
�

s,t
ij

(
�

s,t
ij

)†〉 = 〈c1i↓c2j↑c
†
2j↑c

†
1i↓ ∓ c1i↑↓c2j↓c

†
2j↑c

†
1i↓〉. (A44)

For the simulation of the pair-pair correlators, we only have to deal with terms like

C(h′, h) = 〈
ch′

1↓ch′
2↑c

†
h2↑c

†
h1↓

〉
. (A45)

Here h′
1 and h′

2 correspond to the hole h1 and h2 with the same spin index, respectively. Some simple operations give

C(h′, h) =
(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυCh′h(∑

υ,υ ′,σ 0 δυ,σ 0δυ ′,σ 0

)
ωυ ′ωυ

, (A46)

where

Ch′h = 4〈h′
1, h

′
2, υ

′|ei�ch′
1↓ch′

2↑c
†
h2↑c

†
h1↓e−i�|h1, h2, υ〉g∗(h′

1, h
′
2)g(h1, h2)

〈υ ′|υ〉 . (A47)

Introduce an auxiliary spin and VB configuration:

|h′
1, h

′
2, σ

′′
h 〉 = ch′

1↓ch′
2↑c

†
h2↑c

†
h1↓|h1, h2, σh〉, (A48)

|h′
1, h

′
2, υ

′′〉 = ch′
1↓ch′

2↑c
†
h2↑c

†
h1↓|h1, h2, υ〉. (A49)

The auxiliary VB configuration |h′
1, h

′
2, υ

′′〉 requires υ ′′(h′
1) = υ(h1), υ ′′(h′

2) = υ(h2), and other dimmers stay the same.
The nonvanishing contributions require compatibility of spin configuration |h′

1, h
′
2, σ

′′
h 〉 with a new transposition graph

〈h′
1, h

′
2, υ

′|h′
1, h

′
2, υ

′′〉.
The factor C can be decomposed into several parts:

Ch′h =
∑
σh,σ

′
h

�(σh, σ
′
h)g∗(h′

1, h
′
2)g(h1, h2)

4

2n
�� , (A50)
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where

�(σh, σ
′
h): Marshall sign difference between initial σh and final states σ ′

h, (A51)

n: the number of loops including sites h1, h2, h′
1, and h′

2 in 〈υ ′|υ〉. (A52)

The phase difference �� induced by phase-string effect can be divided into four parts:

�� = ��0 · ��1 · ��2 · ��3. (A53)

(1) ��0 comes from sites h1, h2, h′
1, and h′

2:

��0 =
∏
l=1,2

�∗(h′
l , h2, σl )�

∗(h′
l , h2, σl )�(hl, h

′
1, σl )�(hl, h

′
2, σl ), (A54)

where σ1 = σh(h′
1) and σ2 = σh(h′

2).
(2) ��1 comes from sites in the VB configuration 〈υ ′|υ ′′〉 loops that contain sites h′

1 and h′
2, except sites h1, h2, h

′
1, h

′
2.

��1 =
∏

l∈L
h′

1
,L

h′
2

l �=h1 ,h2 ,h′
1 ,h′

2

�∗(h′
1, l, σl )�

∗(h′
2, l, σl )�(h1, l, σl )�(h2, l, σl ), (A55)

where σl = σh(l).
(3) Similar to the discussion in Appendix A 5, we list cases for ��2:

(a) h1 /∈ Lh′
1
∪ Lh′

2
and h2 ∈ Lh1 in 〈υ ′|υ ′′〉; or h1 /∈ Lh′

1
∪ Lh′

2
and h2 /∈ Lh1 , h2 ∈ Lh′

1
∪ Lh′

2
in 〈h′

1, h
′
2, υ

′|h′
1, h

′
2, υ

′′〉,

��2 =
∑
σl

∏
l∈Lh1

l �=h1 ,h2

�∗(h′
1, l, σl )�

∗(h′
2, l, σl )�(h1, l, σl )�(h2, l, σl ); (A56)

(b) h2 /∈ Lh′
1
∪ Lh′

2
and h1 /∈ Lh2 in 〈h′

1, h
′
2, υ

′|h′
1, h

′
2, υ

′′〉,

��2 =
∑
σl

∏
l∈Lh2
l �=h2

�∗(h′
1, l, σl )�

∗(h′
2, l, σl )�(h1, l, σl )�(h2, l, σl ); (A57)

(c) h1 /∈ Lh′
1
∪ Lh′

2
, h2 /∈ Lh′

1
∪ Lh′

2
, and Lh1 �= Lh2 in 〈h′

1, h
′
2, υ

′|h′
1, h

′
2, υ

′′〉,

��2 =
∏

L=Lh1 ,Lh2

∑
σl

∏
l∈L

l �=h1 ,h1

�∗(h′
1, l, σl )�

∗(h′
2, l, σl )�(h1, l, σl )�(h2, l, σl ); (A58)

(d) otherwise

��2 = 1. (A59)

Here, the notation Lh′
1
∪ Lh′

2
represents the set containing all sites from Lh′

1
and Lh′

2
in 〈υ ′|υ ′′〉.

(4) ��3 comes from the remaining parts of the VB configuration 〈h′
1, h

′
2, υ

′|h′
1, h

′
2, υ

′′〉:

��3 =
∏

L �=Lh1 ,Lh2 ,Lh′
1
,Lh′

2

⎡
⎣1

2

∑
{σl}

∏
l∈L

�∗(h′
1, l, σl )�

∗(h′
2, l, σl )�(h1, l, σl )�(h2, l, σl )

⎤
⎦ , (A60)

where σl = σh(l).

APPENDIX B: DMRG RESULTS OF THE TWO-HOLE-DOPED t- J TWO-LEG LADDER WITH t⊥ > 0

We investigate two-hole pairing in the limit of t⊥ = 0 for the two-leg ladder in the main body of this work. In order to show
that the non-BCS pairing discovered there can be qualitatively applied to a more general case, here we present the numerical
results of the two-hole ground state from t⊥ = 0 to t⊥ > 0 with α = 1 by DMRG. Indeed, a smooth crossover without any
“phase transition” is shown by the first and second derivatives of the ground state energy versus t⊥ over a finite range of t⊥ � 0
as illustrated by Fig. 5.
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FIG. 5. (a) The total energy and (b) the first and second derivatives with respect to t⊥ with α = 1. We calculate two different lattice sizes
20 × 2 and 40 × 2.
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