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A violation of the Wiedemann-Franz law in a metal can be quantified by comparing the Lorentz ratio,
L = κρ/T , where κ is the thermal conductivity and ρ is the electrical resistivity, with the universal Sommerfeld
constant, L0 = (π 2/3)(kB/e)2. We obtain the Lorentz ratio of a clean compensated metal with intercarrier
interaction as the dominant scattering mechanism by solving exactly the system of coupled integral Boltzmann
equations. The Lorentz ratio is shown to assume a particular simple form in the forward-scattering limit:
L/L0 = �2/2, where � is the scattering angle. In this limit, L/L0 can be arbitrarily small. We also show how
the same result can be obtained without the benefit of an exact solution. We discuss how a strong downward
violation of the Wiedemann-Franz law in a type-II Weyl semimetal WP2 can be explained within our model.
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I. INTRODUCTION

According to the Wiedemann-Franz law (WFL) [1–3], the
Lorentz ratio L(T ) = κρ/T , where κ is the thermal conduc-
tivity and ρ is the electrical resistivity of a metal, is given by
the universal Sommerfeld constant

L0 = (π2/3)(kB/e)2. (1.1)

The WFL holds if electron scattering is elastic [1,3], such that
the relaxation times of the charge current, τρ , and of the ther-
mal current, τκ , are the same. The WFL holds both at very low
temperatures, when electrons are scattered mostly by disorder,
and at temperatures above the Debye one, when scattering of
electrons by phonons becomes quasielastic.1 At intermediate
temperatures, scattering is inelastic, the two relaxation times
differ from each other, and the WFL is violated.

In the case of inelastic electron-phonon scattering, the
difference between τρ and τκ is due to the fact that electrons
are scattered by acoustic phonons with group velocity s and
typical momenta q ∼ T/s, the latter being much smaller than
the Fermi momentum, pF . Therefore, τρ is longer than the
single-particle relaxation time, τ ∝ T −3, due to the 1 − cos �

factor, which filters out small-angle scattering events, and
ρ ∝ τ−1

ρ ∝ T 5. On the other hand, since every collision is
effective in energy relaxation, we have τκ ∼ τ , and the ther-
mal resistivity w ≡ T/κ scales as τ−1 ∝ T 3. As a result, one
obtains a downward violation of the WFL, i.e., L(T ) < L0,
which is often observed in elemental metals [4–6].

Downward deviations from the WFL are also observed
in cases when the electron-electron interaction is known (or
suspected) to be the dominant scattering mechanism. For ex-
ample, the values of L(T ) < L0 were measured in the normal
state of the cuprate superconductors [5], in heavy-fermion

1Historically, the WFL was observed first in the regime of
quasielastic electron-phonon scattering [39] because cryogenic tech-
nologies were not available in 1853.

metals [7–11], near a magnetic-field-tuned quantum critical
end point [12], and in a candidate type-II Weyl semimetal
WP2 (Refs. [13,14]).2 The interpretation of such experiments
is complicated by the fact the charge current can be degraded
only by umklapp or interband scattering, whereas the thermal
current is degraded already by intraband normal scattering,
but is affected by umklapp and interband scattering as well.
Consequently, the Lorentz ratio depends on the ratio of the
umklapp and normal scattering rates which, in turn, is very
sensitive to the geometry and topology of the Fermi surface
(FS) and thus highly nonuniversal. However, if umklapp scat-
tering is excluded because, e.g., the FS is too small [2] or the
interaction is of a long range [15–17], the situation is some-
what simplified because normal scattering in a metal with
anisotropic FS affects both electrical and thermal currents.
In general, however, one still needs to introduce momentum-
relaxing scattering, e.g., by impurities or phonons, which
ultimately renders the electrical conductivity finite.

There is one but very important exception to this rule,
namely a compensated metal (CM) with equal numbers of
electrons and holes. The electrical conductivity of a CM is
rendered finite already by normal scattering between electrons
and holes (the Baber mechanism [18]), while its thermal
conductivity contains contributions from both intra- and inter-
band scattering processes. At high enough temperatures, the
electron-hole and electron-electron interactions control both
electrical and thermal transport without the help of additional
momentum-relaxing processes, and one can make certain
statements about the magnitude of the Lorentz ratio within
a tractable model.

In this paper, we calculate the Lorentz ratio of a CM,
assuming that the intercarrier interaction is the dominant

2A drastic upward violation of the WFL is observed in graphene
at the charge neutrality point [40] and is understood as arising from
the weakness of electron-hole generation-recombination processes,
which control the thermal conductivity of graphene [40–42].
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scattering mechanism. Our particular goal is to understand
recent observation of an abnormally small (≈0.2L0) Lorentz
ratio in bulk WP2 (Ref. [14]). We will argue that this can
be attributed to weak screening in this material. In a broader
context, the family of CMs is quite large [19]: it includes
many metals and semimetals with an even number of electrons
per unit cell, e.g., Mg, Zn, Cd, Bi, graphite, etc. A relatively
recent addition to the family are iron-based superconductors
in their parent states [20], most of which have compensated
electron and hole pockets. Finally, the most recently dis-
covered members of the family are type-II Weyl semimetals
(Ref. [21]), e.g., WP2 (Refs. [22]).3 The interest in electron
transport in CMs has been rekindled by recent observations
of extremely large magnetoresistance [23,24] and possible
realization of the hydrodynamic (Gurzhi [25]) flow regime
[13,14,26] in these materials. Having even a simple model for
electrical and thermal transport in CMs would be useful for
understanding the unique properties of CMs.

In what follows, the electron band (1) and hole band (2)
will be assumed to have parabolic dispersions,

ε1,p = (p − p0/2)2

2m1
, ε2,p = − (p + p0/2)2

2m2
+ �, (1.2)

where � is the energy offset, and m1(2) is the electron (hole)
effective mass. In a CM, the electron and hole density are
equal, n1 = n2 = n, hence the Fermi momentum and Fermi
energy are given by pF = (3π2n)1/3 and εF = �m2/(m1 +
m2), correspondingly. We will only be interested in the degen-
erate regime of T � εF . (Throughout the paper, we take h̄ =
kB = 1, unless specified otherwise.) The separation between
the electron and hole bands (p0) is assumed to be much
larger than the (inverse) radius of the interaction, so interband
transfer of carriers is not allowed.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce the Boltzmann equation (BE). In Sec. III,
we show that a system of BEs allows for a simple solution for
the case of forward scattering and obtain the corresponding
results for the electrical and thermal conductivities. In Sec. IV,
we find the exact results for the electrical and thermal con-
ductivities, using the method of Refs. [27–30] for an arbitrary
interaction potential, and compare these results to the approx-
imate ones obtained in Sec. III. In Sec. V, we discuss the
Lorentz ratio for a number of models and make a connection
to an experiment on WP2 (Ref. [14]). Our conclusions are
given in Sec. VI.

II. LINEARIZED BOLTZMANN EQUATION

To set the stage, we briefly introduce the BE for a single
band case. The generalization to a two band case is straight-
forward. The semiclassical BE for the distribution function
fp(r, t ) is written as

∂fp

∂t
+ ∂εp

∂p
· ∂fp

∂r
− ∂εp

∂r
· ∂fp

∂p
= −I[fp], (2.1)

3For metals with open Fermi surfaces, such as WP2, “compensa-
tion” can be understood as the equality of volumes of electron and
hole parts of the Fermi surface within the first Brillouin zone [43]

where I is the collision integral which accounts for scattering
processes.

If Eq. (2.1) describes a Fermi liquid (FL), εp on its left-
hand side is to be understood as the nonequilibrium quasi-
particle energy, which is related to fp via the self-consistent
equation of the FL theory [31]. As a result, the left-hand side
of linearized Eq. (2.1) contains two corrections to the equi-
librium distribution function [3,32]. The “bare” one, δnp, is
defined by writing fp as fp = np + δnp, where np ≡ nF (ε(0)

p )
is the equilibrium Fermi function and ε(0)

p is the equilibrium
quasiparticle energy. The time derivative on the left-hand side
of linearized Eq. (2.1) contains δnp. The “renormalized” one,
δn̄p, is related to the bare one via

δn̄p = δnp − ∂np

∂εp

∫
p′

F s (p, p′)δnp′ , (2.2)

where
∫

p is a shorthand for
∫

dDp/(2π )D and F s (p, p′) is the
spin-symmetric part of the Landau interaction function. On
the other hand, the gradient term in linearized Eq. (2.1) and
macroscopic observables contain δn̄p. For example, the charge
current is given by j = e

∫
p vpδn̄p. However, the collision in-

tegral can also be expressed via δn̄p (Refs. [3,32]). Therefore,
if the time dependence can be ignored, δnp does not appear
in the theory, while δn̄p plays the role of a proper distribution
function. As we will be interested only in dc transport, δnp in
the remainder of the paper is to be understood as δn̄p, with bar
suppressed for brevity. In this way, the kinetic equation for a
FL coincides with that for the Fermi gas, the only difference
being that vp = ∂pεp in this equation is to be understood as
the renormalized Fermi velocity.

The collision integral describing electron-electron interac-
tion in a single-band metal can be written as

I[fp] =
∫

k

∫
p′

∫
k′

Wpk→p′k′δ(εp + εk − εp′ − εk′ )

× δ(p + k − p′ − k′)[fpfk(1 − fp′ )(1 − fk′ )

− fp′fk′ (1 − fp)(1 − fk )], (2.3)

where Wpk→p′k′ is the scattering probability of intercarrier
scattering. The collision integral can be linearized by defining

δnp ≡ −T
∂np

∂εp
gp = np(1 − np)gp, (2.4)

which yields [2]

I[gp] =
∫

k

∫
p′

∫
k′

Wpk→p′k′npnk(1 − np′ )(1 − nk′ )

× (gp + gk − gp′ − gk′ )δ(εp + εk − εp′ − εk′ )

× δ(p + k − p′ − k′). (2.5)

III. TRANSPORT COEFFICIENTS IN THE
FORWARD-SCATTERING LIMIT

In this section, we examine the forward-scattering limit
which is relevant, e.g., for the case of a weakly screened
Coulomb interaction, or to scattering by ferromagnetic or
nematic fluctuations near a corresponding quantum phase
transition [15].
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A. Electrical conductivity

In the presence of an external electric field, the two coupled
BEs for the electron and hole bands can be readily obtained as
a generalization of Eq. (2.1),

−eE · v1,p
∂nF

∂ε1,p
= −I12[g1, g2], (3.1a)

−eE · v2,k
∂nF

∂ε2,k
= −I21[g1, g2], (3.1b)

where vj,l is the group velocity of the j th band and g1,2 are
defined as in Eq. (2.4) for each of the two bands. The collision
integrals I12 and I21 describe the Baber-type [18] interband
scattering between electron and holes:

I12[g1, g2]

=
∫

k

∫
p′

∫
k′

W 12
pk→p′k′n1,pn2,k(1 − n1,p′ )(1 − n2,k′ )

× [g1,p + g2,k − g1,p′ − g2,k′ ]

× δ(ε1,p + ε2,k − ε1,p′ − ε2,k′ )δ(p + k − p′ − k′), (3.2)

and I21 is obtained from I12 by interchanging the band
indices. In our model of parabolic bands [cf. Eq. (1.2)],
intraband scattering does not affect the electrical conductivity,
and the corresponding collision integrals have been dropped.

It is convenient to introduce the momentum transfer q
and energy exchange ω, such that p′ = p − q, k′ = k + q,
εj,p′ = εj,p − ω, and εj,k′ = εj,k + ω, where j = 1, 2. In the
FL regime, the scattering probability can be taken as inde-
pendent of ω. If electrons interact via a potential V (q), the
symmetrized scattering probability for a carrier with spin α is
given by

W 12
pk→p′k′ = W 21

pk→p′k′

= 2π
∑
βγ δ

|V (q)δαγ δβδ − V (p − k − q)δαδδβγ |2.

(3.3)

For a long-range interaction, the second (exchange) term
under | . . . | in the equation above can be neglected, in which
case W 12 depends only on momentum transfer q but not on the
initial momenta p and k. In addition, if the system is isotropic,
V (q) = V (q ) and

W 12
pk→p′k′ = W 21

pk→p′k′ ≡ W (q ) = 4π |V (q )|2. (3.4)

After these steps, the collision integral can be rewritten as

I12[g1, g2] =
∫

k

∫
q

∫
dωW 12(q)n1,pn2,k(1 − n1,p−q)

× (1 − n2,k+q)(g1,p + g2,k − g1,p−q − g2,k+q)

×δ(ε1,p − ε1,p−q)δ(ε2,k − ε2,k+q), (3.5)

where it is understood that nj,l±q = nF (εj,l ± ω). In the equa-
tion above, we have also neglected ω in the arguments of the
δ functions which ensure energy conservation. The reason is
that the scaling dimensions of the two energy integrals (over
εk and ω) already give the expected T 2 scaling of the collision
integral; keeping ω in other places would give only subleading
terms.

The nonequilibrium part of the distribution function can be
parameterized as

gj,l = − e

T
(vj,l · E) ϕj

(
ξj,l

T

)
, (3.6)

where j = 1, 2, ξj,l ≡ εj,l − εF and ϕj (x) is an even func-
tion of its argument. In general, one needs to solve the
system of integral equations for ϕj (x), which is what we
will do in Sec. IV. In the forward-scattering limit, however,
the procedure can be simplified because, in this case, the
energy relaxation is much faster than the momentum one: a
thermally excited carrier first descends to the FS and then
diffuses around the FS via small-angle scattering events. As
a result, the nonequilibrium part of the distribution function
depends primarily on the direction of the momentum, while
the dependence on its magnitude (energy) is much weaker and
can to be taken into account only to leading order that ensures
the symmetry requirements. The simplest choice for ϕj (x) is
just a constant:

ϕj (x) = const ≡ aj . (3.7)

(The same argument was used in Refs. [15,16] to find the
conductivity of an uncompensated two-band system.)

Substituting gj in Eqs. (3.1a) and (3.1b), we obtain a single
equation relating a1 and a2:

a1

m1
+ a2

m2
= 48π2h̄6p3

F

m2
1m

2
2T

2

1∫
dqq2W 12(q )

. (3.8)

Although Eq. (3.8) does not allow one to find a1 and a2

independently, it suffices to determine the total electric cur-
rent density, which is proportional to the same combination
a1/m1 + a2/m2:

j = 2
∑

j

∫
d3pj

(2π )3
(−e)vj (−T n′

j gj ),

= ne2

(
a1

m1
+ a2

m2

)
E. (3.9)

Using Eqs. (3.8) and (3.9), we obtain the electrical resistivity
as

ρ = 1

ne2

m2
1m

2
2T

2

48π2p3
F

∫
dqq2W (q ). (3.10)

A factor of q2 in the integrand is the familiar “transport factor”
that filters out small-angle scattering events. In Sec. IV, we
will show that the exact result for ρ is indeed reduced to
Eq. (3.10) in the forward-scattering limit.

A screened Coulomb interaction is described by the poten-
tial

V (q ) = 4πe2

ε0

1

q2 + �2
, (3.11)

where � is the inverse screening length and ε0 is the dielectric
constant at zero frequency. In this case,

ρ = π2

3

1

ne2

T 2m2
1m

2
2e

4

ε2
0p

3
F �

. (3.12)

The forward-scattering approximation is justified for � � pF ,
which is also a condition for writing V (q ) as in Eq. (3.11).
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Note that if m1 	= m2 the resistivity cannot be cast into a
Drude form, i.e., ρ = m/ne2τ , because m and τ cannot be
defined uniquely.

In 2D, the corresponding average of the scattering proba-
bility ∫

dqq
W (q )

1 − (q/2pF )2
(3.13)

diverges logarithmically at q = 2pF . The denominator in
Eq. (3.13) is obtained as a result of the angular integration
of the two delta- functions in Eq. (3.5):∫

d�pqδ(ε1,p − ε1,p−q)
∫

d�kqδ(ε2,k − ε2,k+q)

∝ 1

q2

1

1 − (q/2pF )2
. (3.14)

Cutting off the divergence at |q − 2pF | ∼ T/vF , we ob-
tain ρ ∝ T 2 ln T . However, the logarithmic factor is just
the first term in the series for the Cooper scattering am-
plitude in the backscattering channel with (p,−p → −p, p)
(Refs. [33,34]). Resumming this series, one obtains

ρ ∝ T 2

ln2 T
. (3.15)

This result is the same as that for the (inverse) shear viscosity
of a single-band 2D FL [35]. Strictly speaking, the forward-
scattering approximation is not valid for large momentum
transfers (q ≈ 2pF ), but the scaling form in Eq. (3.15) re-
mains correct even beyond this approximation.

Note that the 2pF singularity in Eq. (3.13) comes about as a
product of two square-root singularities: 1/

√
1 − (q/2pF,1)2

and 1/
√

1 − (q/2pF,2)2 with pF,1 = pF,2 = pF . If a metal is
not compensated, i.e., pF,1 	= pF,2, each of the square-root
singularities is integrable on its own and there is no loga-
rithmic factor in the result. In this case, however, one needs
to introduce a momentum-relaxing process, e.g., impurity
scattering, to render the resistivity finite. As a result, the
resistivity increases with temperature from its residual value at
the lowest temperatures towards another impurity-controlled
limiting value at the highest temperatures [15,16]. If the
band masses differ substantially, so do the low- and high-
temperature limits of the resistivity, and there is a well-defined
intermediate region in which ρ scales just as T 2 even in 2D,
without an extra logarithmic factor. Also, if a 2D metal is
compensated but has an unequal number of electron and hole
pockets (as it is the case, e.g., for the parent state of iron-based
superconductors [20]), the Fermi momenta of electrons and
holes are different and, as result, the resistivity also scales just
as T 2, without an extra logarithmic factor.

B. Thermal conductivity

The driving term for thermal transport is

− ∂n

∂εp
vp · ∇T

ξp

T
, ξp = εp − εF . (3.16)

The relevant scattering processes in a two-band system in-
clude both intra- and interband scattering. Consequently, the

linearized BEs for the two-band system read

−∂n1,p

∂ξ1,p
v1,p · ∇T

ξ1,p

T
= −I11[g1] − I12[g1, g2], (3.17a)

−∂n2,k

∂ξ2,k
v2,k · ∇T

ξ2,k

T
= −I22[g2] − I21[g1, g2], (3.17b)

where I12 and I21 are given by Eq. (3.5), and the intraband
collision integrals are given by

I ii[gj ] =
∫

k

∫
p′

∫
k′

W
jj

pk→p′knj,pnjk(1 − njp′ )(1 − njk′ )

×[gjp + gjk − gjp′ − gjk′ ]

× δ(εjp + εjk − εjp′ − εjk′ )

× δ(p + k − p′ − k′), j = 1, 2, (3.18)

and W
jj

pk→p′k′ is the probability of intraband scattering. In the
forward-scattering limit, the intraband probability is equal to
the interband one (and also depends only on q). However,
we will keep W 11

pk→p′k′ = W 11(q ) and W 22
pk→p′k′ = W 22(q ) to

be different from each other and also from the interband
scattering probability W (q ) for the sake of generality.

The solutions for gj,l may be sought in the following form

gj,l = − 1

T
(vj,l · ∇T )ψj

(
ξj,l

T

)
, (3.19)

where ψj is an odd function of its argument.4

In the forward-scattering approximation, ψj (x) is assumed
to be a slowly varying function of its argument. Since ψj (x)
is odd, the minimal Ansatz consistent with this requirement is
a linear form

ψj (x) = bjx, (3.20)

where bj are the constants to be determined. Substituting
the corresponding expressions gj,l’s into Eqs. (3.17a) and
(3.17b), multiplying Eq. (3.17a) [Eq. (3.17b)] by ξ1pv1,p · ∇T

[ξ2,kv2,k · ∇T ], and integrating over p (k), we arrive at a 2 × 2
system for b1,2, whose solution is

b1 = 20π2/m1T
2

m2
1

∫
dqW 11(q ) + m2

2

∫
dqW (q )

, (3.21a)

b2 = 20π2/m2T
2

m2
2

∫
dqW 22(q ) + m2

1

∫
dqW (q )

. (3.21b)

Once the nonequilibrium distribution functions are ob-
tained, the thermal current can be found as

jq = 2
∑
j=1,2

∫
d3pj

(2π )3
vj,pξj (−T n′

j gj,p),

= π2nT

3

(
b1

m1
+ b2

m2

)
∇T . (3.22)

4Strictly speaking, the even part of ψj is also to be found as it
ensures the boundary condition of no macroscopic current. However,
the even part of ψj leads to a contribution to thermal conductivity
which is smaller by a factor of (T/εF )2 compared to that from the
odd part [2].
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Substituting Eqs. (3.21a) and (3.21b) into Eq. (3.22), we
obtain the thermal conductivity

κ = C
npF

T

[
1

m4
1

∫
dqW 11(q ) + m2

1m
2
2

∫
dqW (q )

+ 1

m4
2

∫
dqW 22(q ) + m2

1m
2
2

∫
dqW (q )

]
(3.23)

with C = 20π4/3.
However, one can check that the higher-order terms in the

Taylor series for ψj (x) modify the result in Eq. (3.23) in
a nonperturbative manner. For example, taking into account
the cubic term in the series modifies the numerical prefactor
to C = (20π4/3)[1 + 7/17π2]. Higher-order terms will bring
additional corrections. Therefore, in contrast to the case of the
electrical conductivity considered in Sec. III A, the forward-
scattering approximation does not produce an asymptotically
exact result for the thermal conductivity. However, the higher-
order corrections happen to be numerically small. For exam-
ple, the cubic term changes the prefactor only by 4%. We
thus see that approximating ψ (x) by a linear function is still a
satisfactory albeit not controllable approximation. In Sec. IV,
we will see why the exact solutions for the electrical and
thermal conductivities differ in the forward-scattering limit.

For the screened Coulomb interaction with � � pF ,
W 11(q ) = W 22(q ) = W (q ) with W (q ) given by Eqs. (3.4)
and (3.11), and Eq. (3.23) is reduced to

κ = C1
npF �3ε2

0

T m2
1m

2
2e

4
, (3.24)

with C1 = 5/12.
In 2D, the corresponding average of the scattering proba-

bility ∫
dq

q

1

1 − (q/2pF )2
W (q ), (3.25)

which follows from a derivation similar to Eq. (3.13), is log-
arithmically divergent both at q = 0 and q = 2pF . However,
the corresponding logarithmic factors come with W (0) and
W (2pF ), respectively. Since W (0) 
 W (2pF ) for the case
of forward scattering, the q = 2pF singularity is subleading
compared to the q = 0 singularity even after resumming the
series for the Cooper channel. Therefore, the 2pF singularity
can be ignored, and the asymptotic form of κ coincides with
that found in Ref. [36]:

κ ∝ 1

T ln T
. (3.26)

IV. EXACT RESULTS FOR THE TRANSPORT
COEFFICIENTS

A. General case

In this section, we obtain exact results for the thermal and
electrical conductivities by solving a system of coupled BEs
for an arbitrary interaction potential. (The word “exact” here
means that the solutions are valid for an arbitrary scattering
probability but still only in the limit T � εF .) We follow
the method of solving the integral BE for a single-band FL
developed by Abrikosov and Khalatnikov [27], Sykes and
Brooker [28,30], and Smith, Jensen and Wilkins [29]. The
same formalism was employed by Maldague and Kukkonen
[37], who found the electrical resistivity of a CM by a
variational solution of the coupled BEs. To the best of our
knowledge, however, the thermal conductivity has not been
calculated, and thus the Lorentz ratio has not been determined.
In what follows, we obtain exact results both for the electrical
and thermal conductivities, and thus for the Lorentz ratio.

Following Refs. [27–30], we rewrite the intra- and inter-
band collision integrals as

Ijj [gj ] = m3
j

8π4

∫
dεk

∫
dωnF (εp)nF (εk )[1 − nF (εp − ω)][1 − nF (εk + ω)]

×
∫

d�

4π

∫ 2π

0

dφk

2π

Wjj (θ, φ)

cos(θ/2)
(gj,p + gj,k − gj,p′ − gj,k′ ), j = 1, 2, (4.1a)

I12[g1, g2] = m1m
2
2

8π4

∫
dεk

∫
dωnF (εp)nF (εk )(1 − nF (εp − ω))(1 − nF (εk + ω))

×
∫

d�

4π

∫ 2π

0

dφk

2π

W (θ, φ)

cos(θ/2)
[g1,p + g2,k − g1,p′ − g2,k′ ], (4.1b)

where the angles are defined as follows (see Fig. 1): θ is the
angle between the initial state momenta p and k, φ is the angle
between the planes formed by p and k, and the final state
momenta, p′ and k′, respectively, φk is the azimuthal angle of
k relative to p, and d� = dθ sin θdφ. As before, Wjj (θ, φ)
with j = 1, 2 and W (θ, φ) are the intra- and interband scat-
tering probabilities, respectively, while I21[g1, g2] is obtained
from I21[g1, g2] by interchanging indices 1 and 2.

We again seek gj,l in the forms of Eqs. (3.6) and (3.19)
for the electrical and thermal conductivities, respectively. This
leads to a system of integral equations for the unknown

energy-dependent functions ϕj (x) and ψj (x), which can be
solved by converting the integral equations into a system
of second-order differential equations for Fourier transforms
of the distribution functions. For brevity, we provide here
only the final results delegating the computational details to
Appendix. First, we introduce some definitions:

τ−1
ρ1 = m1m

2
2T

2

8π4

〈
W (θ, φ)

cos(θ/2)

〉
, (4.2a)

λρ =
〈
W (θ, φ) cos �

cos(θ/2)

〉/〈
W (θ, φ)

cos(θ/2)

〉
, (4.2b)
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FIG. 1. Schematics of a collision process with incoming mo-
menta p, k and outgoing momenta p′, k′.

τ−1
κ1 = m1T

2

8π4

[
m2

1

〈
W 11(θ, φ)

cos(θ/2)

〉
+ m2

2

〈
W (θ, φ)

cos(θ/2)

〉]
, (4.2c)

λκ1 =
m2

1

〈
W 11(θ,φ)(1+2 cos θ )

cos(θ/2)

〉 + m2
2

〈
W (θ,φ) cos �

cos(θ/2)

〉
m2

1

〈
W 11(θ,φ)
cos(θ/2)

〉 + m2
2

〈
W (θ,φ)
cos(θ/2)

〉 , (4.2d)

βκ1 =
m1m2

〈
W (θ,φ)(1+2 cos θ−cos �)

cos(θ/2)

〉
m2

1

〈
W 11(θ,φ)
cos(θ/2)

〉 + m2
2

〈
W (θ,φ)
cos(θ/2)

〉 , (4.2e)

where � is the scattering angle related to the angles θ

and φ via sin(�/2) = sin(θ/2) sin(φ/2) and 〈· · · 〉 denotes∫
d�
4π

· · · . The quantities with index 2, e.g., τρ2, τκ2, etc., are
obtained from τρ1, τκ1, etc. by interchanging indices 1 and 2 in
the right-hand sides of Eqs. (4.2a) to (4.2e). Note that τρj and
τκj can be interpreted as the relaxation times of the electrical
and thermal currents in the j th band, respectively, while λρ is
an average cosine of the scattering angle.

Let the energy-dependent part of the distribution function
in the presence of an electric field be

ϕj (x) = τρj cosh
(x

2

)
�j (x), j = 1, 2. (4.3)

To find the electrical current, one needs to know only the sum
�(x) ≡ �1(x) + �2(x), whose Fourier transform �̃(k) =∫

dxeikx�(x) is given by

�̃(k) = − 2

π

∞∑
l=0

4l + 3

(l + 1)(2l + 1)

P 1
2l+1(tanh πk)

(l + 1)(2l + 1) − 2λρ + 1
,

(4.4)

where P m
l (x) are the associated Legendre polynomials.

Using Eqs. (3.6), (4.3), and (4.4), we find the electrical
resistivity as

ρ = m2
1m

2
2T

2

8π2e2n

〈
W (θ, φ)

cos(θ/2)

〉
P (2(1 − λρ )), (4.5)

where

1

P (x)
=

∞∑
l=0

4l + 3

(l + 1)(2l + 1)

1

(l + 1)(2l + 1) − 1 + x

= 1

2(x − 1)

[
γ + ln 2 + 1

2
D�

(
3

4
+ 1

4

√
9 − 8x

)

+ 1

2
D�

(
3

4
− 1

4

√
9 − 8x

)]
, (4.6)

γ ≈ 0.58 is the Euler constant and D� (x) ≡ d ln �(x)/dx is
the digamma function. Note that the zero of the denominator
at x = 1 in P (x) is compensated by the vanishing of the
numerator. Also, P (x) remains real for x > 9/8, when the
arguments of the square roots become negative.

Likewise, let the energy-dependent part of the distribution
function in the presence of a thermal gradient be

ψj (x) = τκj cosh(x/2)�j (x). (4.7)

To find the thermal current, we need to know �1(x) and �2(x)
individually. Their Fourier transforms are given by

�̃1(k) = −i

∞∑
l=0

(l + 1)(2l + 3) − λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3) − λκ1][(l + 1)(2l + 3) − λκ2] − βκ1βκ2

4l + 5

(l + 1)(2l + 3)
P 1

2l+2(tanh πk), (4.8a)

�̃2(k) = −i

∞∑
l=0

(l + 1)(2l + 3) − λκ1 − βκ2τκ1/τκ2

[(l + 1)(2l + 3) − λκ1][(l + 1)(2l + 3) − λκ2] − βκ1βκ2

4l + 5

(l + 1)(2l + 3)
P 1

2l+2(tanh πk). (4.8b)

The thermal conductivity is also given by an infinite series:

κ = 4π4n/m2
1T

m2
1

〈
W 11(θ, φ)/ cos θ

2

〉 + m2
2

〈
W (θ, φ)/ cos θ

2

〉 ∞∑
l=0

4l + 5

(l + 1)(2l + 3)

× (l + 1)(2l + 3) − λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3) − λκ1][(l + 1)(2l + 3) − λκ2] − βκ1βκ2
+ (m1 → m2). (4.9)

In contrast to the electrical resistivity, the series for κ cannot
be reduced to a more compact form in terms of the digamma
function.

If the interband scattering probability, W (θ, φ), is set to
zero and the band masses are taken to be the same, Eq. (4.9)
is reduced to (twice) the thermal conductivity of a single-band

FL [28,29]. In this case, βκ1 and βκ2 vanish, while λκ1 and λκ2

become identical to λK of Ref. [28] and to α/2 of Ref. [29].

B. Limiting cases

Equations (4.5) and (4.9) are valid for arbitrary forms of the
scattering probabilities W 11(θ, φ), W 22(θ, φ), and W (θ, φ).
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It is instructive, however, to analyze the limiting cases of
forward and isotropic scattering, which are considered in this
section.

1. Forward scattering

In the forward-scattering limit, the parameter λρ in
Eq. (4.2b) can be written as

λρ = 1 − �2

2
, (4.10)

where

�2 ≡
〈
W (θ, φ)�2

cos(θ/2)

〉/〈
W (θ, φ)

cos(θ/2)

〉
� 1 (4.11)

is the average square of the scattering angle. The l = 0 term
in the series for �̃(k) in Eq. (4.4) is singular in the limit of
λρ → 1, while the rest of the terms are regular. Keeping only
the l = 0 term, we find

�̃(k) = − 6

π�2
P 1

1 (tanh πk) = 6

π�2

1

cosh πk
(4.12)

and thus

�(x) =
∫ ∞

−∞

dk

2π
�̃(k) = 3

π2�2

1

cosh x
2

. (4.13)

Recalling relation (4.3), we see that ϕ(x) = ϕ1(x) + ϕ2(x) is
independent of x:

ϕ(x) = (τρ1 + τρ2)
3

π2�2
. (4.14)

This means that the nonequilibrium part of the distribution
function in Eq. (3.6) is indeed almost independent of energy,
in agreement with the argument given in Sec. III A. The
energy dependence of the distribution function results from
the remainder of the series in Eq. (4.4) with l � 1. In all terms
in this remainder, one can safely set λρ = 1. The result is some
function of k, which is parametrically smaller than the l = 0
term by �2 � 1. As result, a correction to Eq. (4.14) is some
(even) function of x, which is O(1) for x ∼ 1.

Substituting λρ into Eq. (4.5), we find the electrical resis-
tivity as

ρ = m2
1m

2
2T

2

24π2e2n

〈
W (θ, φ)

cos(θ/2)
�2

〉
, (4.15)

where we have used that P (x) ≈ x/3 for x � 1. For a generic
value of the angle θ between the initial momenta k and p, a
small value of � can only be achieved if the angle φ between
the planes formed by the initial and final momenta is small.
Then � ≈ sin(θ/2)φ. If W depends only on � or, which is the
same, on the momentum transfer q = 2pF sin �/2 ≈ pF �,
the average in Eq. (4.15) can be written as〈

W (θ, φ)�2

cos(θ/2)

〉
= 1

2p3
F

∫
dqq2W (q ). (4.16)

Substituting the last result into Eq. (4.15), we see that it indeed
coincides with Eq. (3.10) for ρ obtained in Sec. III A.

We now turn to the thermal conductivity. In the forward-
scattering limit, W 11(θ, φ), W 22(θ, φ) and W (θ, φ) are equal

because the exchange term can be neglected. Then the param-
eters entering Eqs. (4.8a) and (4.8b) can be simplified as

λκ1 ≈ 1 + 2m2
1

m2
1 + m2

2

cos θ, λκ2 ≈ 1 + 2m2
2

m2
1 + m2

2

cos θ,

βκ1 = βκ2 ≈ 2m1m2

m2
1 + m2

2

cos θ,
τκ2

τκ1
≈ m1

m2
, (4.17)

where

cos θ ≡
〈
W (θ, φ) cos θ

cos(θ/2)

〉/〈
W (θ, φ)

cos(θ/2)

〉
. (4.18)

However, because generic values of these parameters are of
order one, the series in Eqs. (4.8a) and (4.8b) cannot be
simplified any further. This implies that the energy-dependent
part of the distribution functions in the presence of a thermal
gradient, ψj (x), are some odd functions of x which, gener-
ally speaking, cannot be approximated by a linear form of
Eq. (3.20).

However, substituting Eq. (4.17) into the series for the
thermal conductivity in Eq. (4.9), we find that all physical
parameters drop out, and the series is reduced to a simple
number:

∞∑
l=0

4l + 5

(l + 1)(2l + 3)

1

(l + 1)(2l + 3) − 1
= 1. (4.19)

Hence the thermal conductivity in the forward-scattering limit
is given by

κ = 4π4n

m2
1m

2
2T

1

〈W (θ, φ)/ cos(θ/2)〉 . (4.20)

With 〈W (θ, φ)/ cos(θ/2)〉 = (1/2pF )
∫

dqW (q ), the last re-
sult can be rewritten as

κ = 8π4npF

m2
1m

2
2T

1∫
dqW (q )

. (4.21)

For W 11(q ) = W 22(q ) = W (q ), the approximate result for κ

in Eq. (3.23) is reduced to the same form as that in Eq. (4.21)
but with a numerical prefactor C = 20π4/3, which differs
from the exact prefactor of 8π4 in Eq. (4.21) by 17%. Keeping
the cubic term in ψ1,2(x) reduces the disagreement to 13%,
etc. Therefore, an approximate method of Sec. III B gives
a reasonably accurate albeit not asymptotically exact result
for κ .

In case of the screened Coulomb interaction, the result for
ρ remains the same as that in Eq. (3.12), while κ is given by

κ = npF �3ε2
0

2T m2
1m

2
2e

4
. (4.22)

2. Isotropic scattering

Another limiting case is isotropic scattering, which cor-
responds to a short-range (Hubbard-like) interaction. In this
case, the intra- and interband scattering probabilities reduce to
three constants: W 11, W 22, and W , respectively. The angular
averages of the scattering probability can then be readily per-
formed, and we find βκ1 = βκ2 = 0, λκ1 = λκ2 = λρ = 1/3.
Substituting the above parameters into Eqs. (4.5) and (4.9),
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we find

ρ = 0.0050
m2

1m
2
2T

2

e2n
W, (4.23a)

κ = 303.9
n

T m2
1m

2
2W

⎛
⎝ 1

m2
1

m2
2

W 11

W
+1

+ 1
m2

2

m2
1

W 22

W
+1

⎞
⎠. (4.23b)

(The odd-looking numerical prefactors in these equations
result from numerical summation of the corresponding se-
ries.) If W 11 = W 22 = W , the result for κ is reduced
to κ = 303.9n/T m2

1m
2
2W . If W � W 11, W 22, κ is re-

duced to the sum of two single-band conductivities: κ ≈
(303.9n/T )

∑
j=1,2 1/(m4

jW
jj ).

V. LORENTZ RATIO

A. Forward scattering

For clarity, we again assume that W 11(θ, φ) =
W 22(θ, φ) = W (θ, φ). Using Eqs. (4.15) and (4.20), we
find a simple result for the Lorentz ratio

L

L0
= �2

2
, (5.1)

where L0 is the Sommerfeld constant given by Eq. (1.1).
Note that this result does not depend on the mass ratio. By
assumption of forward scattering, �2 � 1 and hence L/L0, in
principle, can be arbitrarily small. For the screened Coulomb
potential in Eq. (3.11), Eq. (5.1) is reduced to

L

L0
= �2

2p2
F

. (5.2)

B. Isotropic scattering

Using Eqs. (4.23a) and (4.23b), we find the Lorentz ratio
for the isotropic-scattering case

L

L0
= 0.46

⎛
⎝ 1

m2
1

m2
2

W11
W

+ 1
+ 1

m2
2

m2
1

W22
W

+ 1

⎞
⎠. (5.3)

If W 11 = W 22 = W , the Lorentz ratio assumes a universal
value of L/L0 = 0.46, which does not depend on the mass
ratio. If W � W 11,W 22, the Lorentz ratio is reduced in
proportion to the ratios of the inter- and intraband scattering
probabilities:

L

L0
= 0.46

(
W

W 11

m2
2

m2
1

+ W

W 22

m2
1

m2
2

)
� 1. (5.4)

C. Exact result

One can also calculate the Lorentz ratio without assuming
either forward or isotropic scattering for a given interaction
potential. To be specific, we use again the screened Coulomb
potential in Eq. (3.11), but now assume that �/pF can be
arbitrary. Although Eq. (3.11) is not, strictly speaking, valid
for � � pF , one can still view this equation as a model with an
adjustable parameter (�/pF ), which allows one to interpolate
between the limits of forward and isotropic scattering. For

0.2 0.4 0.6 0.8 1.0
pF

0.1

0.2

0.3

0.4

0.5
L L0

m1
m2

1
2

m1
m2

1

2

2 pF2

1 2 3 4
pF

0.1

0.2

0.3

0.4

L L0

m1
m2

1
2

m1
m2

1

FIG. 2. The Lorentz ratio in units of the Sommerfeld constant as
a function of �/pF , where � is the inverse screening length defined
by Eq. (3.11).

a generic interaction potential, one needs to restore the ex-
change term in the scattering amplitude, as given by Eq. (3.3).
To minimize the number of free parameters, however, we
assume that the distance between the centers of the electron
and hole FSs [p0 in Eq. (1.2)] is much larger than �, so that
the exchange term in the interband scattering amplitude can
still be neglected, but take into account the exchange term
in the intraband amplitude. We then calculate the parameters
in Eqs. (4.2a)–(4.2e) and use the exact results for ρ and κ ,
Eqs. (4.5) and (4.9), respectively.

The result of this calculation is shown in the top panel
of Fig. 2 for 0 � �/pF � 1 and in the bottom panel for
0 � �/pF � 4. The dashed and dashed-and-dotted lines in
both panels correspond to exact solutions for m1/m2 = 1/2
and m1/m2 = 1, respectively. The solid line in the top panel
depicts the forward-scattering limit given by Eq. (5.2). We see
that the exact result matches the approximate one for �/pF �
0.2 but goes below the approximate one for larger �/pF . The
dependence of the exact result on the mass ratio, which is
absent in the forward-scattering limit, remains very weak for
arbitrary �/pF . For larger values of �/pF , the Lorentz ratio
shows a clear tendency to saturation. This agrees with the
analytic result in the isotropic-scattering limit [cf. Eq. (5.3)]
because our current model corresponds to W 11 = W 22 = W .
The value at saturation is also quite close to the analytic result
of L/L0 = 0.46.

Lorentz ratio of WP2

The Lorentz ratio measures the relative rates of relaxation
of electrical and thermal currents, with L = L0 indicating
that the two rates are same. Recent experiments on a CM
WP2[14] found a very low Lorentz ratio (L/L0 ≈ 0.2), which
indicates that the electrical current is relaxed much slower
than the thermal one. This low Lorentz ratio was observed
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in the temperature range where both ρ and T/κ scale as
T 2, which suggests that the dominant scattering mechanism
is electron-electron interaction. According to the discussion
in the previous two sections, a low Lorentz ratio can occur
if either the interaction is of a long-range type, or if the
interaction is of a short-range type but intraband scattering is
much stronger than interband one.

In the first scenario, the Lorentz ratio is parameterized by
the average square of the scattering angle [See Eq. (5.1)]
which, for the screened Coulomb potential translates into
Eq. (5.2). In a multiband system,

�2 = 4e2

πε0

∑
j

mjpF,j , (5.5)

where mj and pF,j are the effective mass and Fermi momen-
tum of the j th band, respectively. WP2 has two electron pock-
ets with masses mγ = 0.87 m0 and mδ = 0.99 m0, and two
hole pockets with masses mα = 1.67 m0 and mβ = 0.89 m0

(Ref. [13]).5 The total number density of electrons (equal to
that of holes) is n ≈ 2.5 × 1021cm−3. According to the exact
solution of the BEs (dashed and dashed-and-dotted lines in
Fig. 2), the Lorentz ratio reaches the observed value of 0.2 al-
ready at �/pF ≈ 1. With material parameters indicated above,
we have �/pF ≈ √

30.8/ε0, and the forward-scattering sce-
nario can explain the experiment only if ε0 is quite large:
ε0 � 30. Interestingly, this may be the case for WP2. Indeed,
although we are not aware of optical measurements on this
material, an anomalously large value of ε∞ (from 75 to 91,
depending on orientation) has recently been reported for a
cousin material WTe2 (Ref. [38]), which is also a type-II Weyl
semimetal. Since ε0 � ε∞, the condition ε0 � 30 is then satis-
fied within a good margin. Alternatively, a small Lorentz ratio
can result from strong intraband scattering with short-range
interaction. With comparable masses of electron and hole
bands, the observed value of L/L0 can be already achieved
if W/W 11 = W/W 22 ≈ 0.4, which is not unrealistic. Optical
data for ε∞ in WP2 are obviously needed to discriminate
between the forward- and isotropic-scattering scenarios.

VI. CONCLUSIONS

In this paper, we calculated electrical and thermal conduc-
tivities of a clean compensated two-band metal with intercar-
rier interaction as the dominant scattering mechanism. From
the theoretical standpoint, it is an attractive toy model which
allows one to study both electrical and thermal transport prop-
erties, without invoking additional mechanisms of momentum
relaxation. However, this model is also relevant to a large class
of materials, i.e., metals and semimetals with an even number
of electrons per unit cell, which include many elemental
metals, group V semimetals, graphite, parent states of iron-

based superconductors, type-II Weyl semimetals, etc. To find
the electrical and thermal conductivities, we solved exactly the
system of coupled BEs, describing both inter- and intraband
scattering, and analyzed the limiting cases of forward and
isotropic scattering. We showed that the forward-scattering
limit of the electrical conductivity can be obtained without
knowing the exact solution: By assuming from the very begin-
ning that the nonequilibrium part of the distribution function
depends primarily on the directions of carriers’ momenta but
not on their energies. For the thermal conductivity, the same
procedure leads to a reasonable albeit not asymptotically exact
approximation. We obtained the exact result for the Lorentz
ratio and showed that it takes a particularly simple form,
parameterized by the average square of the scattering angle,
in the forward-scattering limit [cf. Eq. (5.1)]. We analyzed the
Lorentz ratio of a type-II Weyl semimetal WP2 and showed
that a strong downward violation of the WFL observed in this
material [14] can be explained within the forward-scattering
model, provided that the high-frequency value of the dielectric
constant in this material is sufficiently large.
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APPENDIX: EXACT SOLUTION OF THE COUPLED
BOLTZMANN EQUATIONS

In the Appendix, we provide detailed derivations of the
exact results for the electric resistivity and the thermal con-
ductivity. To reiterate, “exact” here means that the results
are valid for an arbitrary scattering probability but only for
T � εF .

1. Electrical resistivity

To find the electrical resistivity of a two-band CM, we
start with the system of coupled BEs, Eqs. (3.1a) and (3.1b).
The nonequilibrium parts of the distribution functions are
parameterized by Eq. (3.6). Defining dimensionless variables
xj = ξj /T and y = ω/T , where ω is the energy transfer in
the scattering processes, we rewrite Eqs. (3.1a) and (3.1b) in
the notations of Ref. [27] as

1

m1
nF (x1)[1 − nF (x1)] = m1m

2
2T

2

8π4

∫
d�

4π

W (θ, φ)

cos(θ/2)

∫
dx2 dy Q(x1, x2, y)

×
[
ϕ1(x1)

m1
− ϕ2(x2)

m2
cos θ − ϕ1(x1 − y)

m1
cos � + ϕ2(x2 + y)

m2
cos θk′p

]
, (A1a)

5Although our model has only two pockets, additional pockets can be incorporated by replacing m1 and m2 by properly averaged masses.
Since the masses cancel out in L/L0, a particular way of averaging does not matter.
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1

m2
nF (x2)[1 − nF (x2)] = m2m

2
1T

2

8π4

∫
d�

4π

W (θ, φ)

cos(θ/2)

∫
dx1 dy Q(x1, x2, y)

×
[
ϕ2(x2)

m2
− ϕ1(x1)

m1
cos θ − ϕ2(x2 + y)

m2
cos � + ϕ1(x1 − y)

m1
cos θp′k

]
. (A1b)

As in the main text, θ is the angle between the initial state momenta, p and k, � is the scattering angle, φ is the angle between
the planes formed by the initial and final momenta, respectively, W (θ, φ) is the scattering probability, and cos θk′p = cos θp′k =
1 + cos θ − cos �, where θmn is the angle between vectors n and m. Furthermore, Q represents the product of Fermi functions

Q(x1, x2, y) = nF (x1)nF (x2)[1 − nF (x1 − y)][1 − nF (x2 + y)], nF (x) = 1/(ex + 1). (A2)

Equations (A1a) and (A1b) can be further reduced to two coupled integral equations:

1 = τ−1
ρ1

π2 + x2
1

2
ϕ1(x1) − λρτ

−1
ρ1

∫
duF (x1, u)ϕ1(u) + (1 − λρ )τ−1

ρ2

∫
duF (x1, u)ϕ2(u), (A3a)

1 = τ−1
ρ2

π2 + x2

2
ϕ2(x2) − λρτ

−1
ρ2

∫
duF (x2, u)ϕ2(u) + (1 − λρ )τ−1

ρ1

∫
duF (x2, u)ϕ1(u), (A3b)

where τρ1,2 are given by Eq. (4.2a) and its analog with 1 ↔ 2, λρ is defined by Eq. (4.2b), and the kernel in the integrand reads

F (x, u) = cosh(x/2)

cosh(u/2)
G(x − u), (A4a)

G(x) = x

2 sinh(x/2)
. (A4b)

To derive Eq. (A3a) and (A3b), we have used that∫
dx2

∫
dyQ(x1, x2, y)ϕj (x2) = −nF (x1)[1 − nF (x1)]

∫
duF (x1, u)ϕj (u), (A5a)∫

dx2

∫
dyQ(x1, x2, y)ϕj (x1 − y) = nF (x1)[1 − nF (x1)]

∫
duF (x1, u)ϕj (u), (A5b)∫

dx2

∫
dyQ(x1, x2, y)ϕj (x2 + y) = nF (x1)[1 − nF (x1)]

∫
duF (x1, u)ϕj (u), (A5c)

with j = 1, 2.
Defining �j (x) = ϕj (x)/(τρ,j cosh x

2 ), we arrive at

2

cosh(x1/2)
= (

π2 + x2
1

)
�1(x1) − 2

∫
duG(x1 − u)[λρ�1(u) − (1 − λρ )�2(u)], (A6a)

2

cosh(x2/2)
= (

π2 + x2
2

)
�2(x2) − 2

∫
duG(x2 − u)[λρ�2(u) − (1 − λρ )�1(u)]. (A6b)

The integral equations can be reduced to the differential ones for Fourier transforms �̃j (k) = ∫
dx �j (x)eikx :

d2�̃1(k)

dk2
+ π2

[
2λρ

cosh2(πk)
− 1

]
�̃1(k) − π2 2(1 − λρ )

cosh2(πk)
�̃2(k) = − 4π

cosh(πk)
, (A7a)

d2�̃2(k)

dk2
+ π2

[
2λρ

cosh2(πk)
− 1

]
�̃2(k) − π2 2(1 − λρ )

cosh2(πk)
�̃1(k) = − 4π

cosh(πk)
. (A7b)

Adding up the two equations above and introducing a variable ζ = tanh(πk), we obtain an equation for �̃(k) = �̃1(k) +
�̃2(k):

L�̃(ζ ) + 2(2λρ − 1)�̃(ζ ) = − 8

π
√

1 − ζ 2
, (A8)

where the linear differential operator L is given by

L = d

dζ

[
(1 − ζ 2)

d

dζ

]
− 1

1 − ζ 2
. (A9)
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The eigenfunctions of L are associated Legendre polynomials, P 1
l (ζ ): LP 1

l (ζ ) = −l(l + 1)P 1
l (ζ ), l = 1, 2, 3 . . . Expanding

�̃(ζ ) in series over P 1
l (ζ )

�̃(ζ ) =
∑

l

clP
1
l (ζ ), (A10)

and using the orthogonality relation ∫ 1

−1
dζP 1

l (ζ )P 1
m(ζ ) = 2l(l + 1)

2l + 1
δlm, (A11)

and an identity ∫ 1

−1
dζ

P 1
l (ζ )√

1 − ζ 2
=

{−2, if l is odd;
0, if l is even,

(A12)

we obtain Eq. (4.4) of the main text.
The electrical resistivity is given by

ρ = 1

ne2

⎡
⎣ ∑

j=1,2

τρ,j

mj

∫
dx

�j (x)

4 cosh(x/2)

⎤
⎦

−1

= 1

ne2

⎡
⎣ ∑

j=1,2

τρ,j

mj

∫
dk

�̃j (k)

4 cosh(πk)

⎤
⎦

−1

= 1

ne2

m2
1m

2
2T

2

2π4

〈
W (θ, φ)

cos(θ/2)

〉[∫
dk

�̃(k)

cosh(πk)

]−1

= 1

ne2

m2
1m

2
2T

2

2π4

〈
W (θ, φ)

cos(θ/2)

〉[
1

π

∫ 1

−1
dζ

�̃(ζ )√
1 − ζ 2

]−1

= 1

ne2

m2
1m

2
2T

2

8π2

〈
W (θ, φ)

cos(θ/2)

〉[ ∞∑
l=0

4l + 3

(l + 1)(2l + 1)

1

(l + 1)(2l + 1) − (2λρ − 1)

]−1

, (A13)

which reproduces the result in Eq. (4.5).

2. Thermal conductivity

In the same parametrization as in the previous section, Eqs. (3.17a) and (3.17b) in the presence of a thermal gradient read

1

m1
x1 nF (x1)[1 − nF (x1)] = m3

1T
2

8π4

∫
d�

4π

W 11(θ, φ)

cos(θ/2)

∫
dx2 dy Q(x1, x2, y)

× 1

m1
[ψ1(x1) + ψ1(x2) cos θ − ψ1(x1 − y) cos � − ψ1(x2 + y) cos θk′p]

+ m1m
2
2T

2

8π4

∫
d�

4π

W (θ, φ)

cos(θ/2)

∫
dx2 dy Q(x1, x2, y)

×
[
ψ1(x1)

m1
− ψ2(x2)

m2
cos θ − ψ1(x1 − y)

m1
cos � + ψ2(x2 + y)

m2
cos θk′p

]
, (A14a)

1

m2
x2 nF (x2)[1 − nF (x2)] = m3

2T
2

16π4

∫
d�

4π

W 22(θ, φ)

cos(θ/2)

∫
dx1 dy Q(x1, x2, y)

× 1

m2
[ψ2(x2) + ψ2(x1) cos θ − ψ2(x2 + y) cos � − ψ2(x1 − y) cos θp′k]

+ m2m
2
1T

2

16π4

∫
d�

4π

W (θ, φ)

cos(θ/2)

∫
dx1 dy Q(x1, x2, y)

×
[
ψ2(x2)

m2
− ψ1(x1)

m1
cos θ − ψ2(x2 + y)

m2
cos � + ψ1(x1 − y)

m1
cos θp′k

]
. (A14b)

Eqs. (A14a) and (A14b) can be further reduced to two coupled integral equations,

τκ1 x1 = π2 + x2
1

2
ψ1(x1) − λκ1

∫
duF (x1, u)ψ1(u) + βκ1

∫
duF (x1, u)ψ2(u), (A15a)

τκ2 x2 = π2 + x2

2
ψ2(x2) − λκ2

∫
duF (x2, u)ψ2(u) + βκ2

∫
duF (x2, u)ψ1(u), (A15b)
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where parameters τκ1,2, λκ1,2, and βκ1,2 are given by Eqs. (4.2c), (4.2d), and (4.2e), respectively, and their analogs with 1 ↔ 2,
and kernels F (x, u) and G(x) are defined by Eqs. (A4a) and (A4b), respectively. Defining �j (x) = ψj (x)/(τκ,j cosh x

2 ), we
arrive at

2x1

cosh(x1/2)
= (

π2 + x2
1

)
�1(x1) − 2

∫
duG(x1 − u)

[
λκ1�1(u) − βκ1τκ2

τκ1
�2(u)

]
, (A16a)

2x2

cosh(x2/2)
= (

π2 + x2
2

)
�2(x2) − 2

∫
duG(x2 − u)

[
λκ2�2(u) − βκ2τκ1

τκ2
�1(u)

]
. (A16b)

After a Fourier transformation, �̃j (k) = ∫
dx �j (x)eikx , Eqs. (A16a) and (A16b) become

L�̃1(ζ ) + 2λκ1�̃1(ζ ) − 2
βκ1τκ2

τκ1
�̃2(ζ ) = −i

4ζ√
1 − ζ 2

, (A17a)

L�̃2(ζ ) + 2λκ2�̃2(ζ ) − 2
βκ2τκ1

τκ2
�̃1(ζ ) = −i

4ζ√
1 − ζ 2

. (A17b)

Expanding �̃κ1(ζ ) and �̃κ2(ζ ) in series of the associated Legendre polynomial P 1
l (ζ ),

�̃1(ζ ) = i
∑

n

alP
1
l (ζ ), �̃2(ζ ) = i

∑
l

blP
1
l (ζ ), (A18)

we then obtain

[l(l + 1) − 2λκ1]al + 2βκ1τκ2

τκ1
bl = 2(2l + 1)

l(l + 1)

∫ 1

−1
dζ

ζP 1
l (ζ )√

1 − ζ 2
, (A19a)

2βκ2τκ1

τκ2
al + [l(l + 1) − 2λκ2]bl = 2(2l + 1)

l(l + 1)

∫ 1

−1
dζ

ζP 1
l (ζ )√

1 − ζ 2
. (A19b)

Solving for al and bl , we find

al = − l(l + 1) − 2λκ2 − 2βκ1τκ2/τκ1

[l(l + 1) − 2λκ1][l(l + 1) − 2λκ2] − 4βκ1βκ2

4(2l + 1)

l(l + 1)
, (A20a)

bl = − l(l + 1) − 2λκ1 − 2βκ2τκ1/τκ2

[l(l + 1) − 2λκ1][l(l + 1) − 2λκ2] − 4βκ1βκ2

4(2l + 1)

l(l + 1)
, (A20b)

where we have again used Eq. (A11) and another identity∫ 1

−1
dζ

ζP 1
l (ζ )√

1 − ζ 2
=

{−2, if l is even;
0, if l is odd.

(A21)

Substituting al and bl into Eq. (A18), we reproduce Eqs. (4.8a) and (4.8b) of the main text.
The thermal conductivity is found as

κ = nT

⎡
⎣ ∑

j=1,2

τκ,j

mj

∫
dx

x

4 cosh(x/2)
�j (x)

⎤
⎦ = −iπnT

⎡
⎣ ∑

j=1,2

τκ,j

mj

∫
dk

sinh(πk)

4 cosh2(πk)
�̃j (k)

⎤
⎦

= −i
nT

4

⎡
⎣ ∑

j=1,2

τκ,j

mj

∫ 1

−1
dζ

ζ �̃j (ζ )√
1 − ζ 2

⎤
⎦ = 4π4n

m2
1T

1

m2
1

〈
W 11(θ, φ)/ cos θ

2

〉 + m2
2

〈
W (θ, φ)/ cos θ

2

〉

×
∞∑
l=0

4l + 5

(l + 1)(2l + 3)

(l + 1)(2l + 3) − λκ2 − βκ1τκ2/τκ1

[(l + 1)(2l + 3) − λκ1][(l + 1)(2l + 3) − λκ2] − βκ1βκ2

+ 4π4n

m2
2T

1

m2
2

〈
W 22(θ, φ)/ cos θ

2

〉 + m2
1

〈
W (θ, φ)/ cos θ

2

〉
×

∞∑
l=0

4l + 5

(l + 1)(2l + 3)

(l + 1)(2l + 3) − λκ1 − βκ2τκ1/τκ2

[(l + 1)(2l + 3) − λκ1][(l + 1)(2l + 3) − λκ2] − βκ1βκ2
, (A22)

which reproduces Eq. (4.9) in the main text.
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