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Quantum critical behavior of two-dimensional Fermi systems with quadratic band touching
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We consider two-dimensional Fermi systems with quadratic band touching and C3 symmetry, as realizable in
Bernal-stacked honeycomb bilayers. Within a renormalization-group analysis, we demonstrate the existence of
a quantum critical point at a finite value of the density-density interactions, separating a semimetallic disordered
phase at weak coupling from a gapped ordered phase at strong coupling. The latter may be characterized by,
for instance, antiferromagnetic, quantum anomalous Hall, or charge density wave order. In the semimetallic
phase, each point of quadratic band touching splits into four Dirac cones as a consequence of the nontrivial
interaction-induced self-energy correction, which we compute to the two-loop order. We show that the quantum
critical point is in the (2 + 1)-dimensional Gross-Neveu universality class characterized by emergent Lorentz
invariance and a dynamic critical exponent z = 1. At finite temperatures T > 0, we hence conjecture a crossover
between z = 2 at intermediate T and z = 1 at low T , and we construct the resulting nontrivial phase diagram as
function of coupling strength and temperature.
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I. INTRODUCTION

Interacting electron systems whose Fermi surfaces com-
prise isolated points in momentum space have proven to be a
fertile subject of study, being host to a fascinating interplay of
band topology and interactions. Interest in such Fermi-point
systems was ignited by the discovery of massless Dirac quasi-
particles in monolayer graphene [1]. Upon the inclusion of
weak short-range interactions, the Dirac semimetal state is sta-
ble. At strong coupling, on the other hand, the system under-
goes a quantum phase transition of the (2 + 1)-dimensional
Gross-Neveu universality class towards a massive-fermion
phase, characterized, for instance, by antiferromagnetic, quan-
tum anomalous Hall, or charge density wave order, depending
on the microscopic character of the interactions [2–6]. Fermi-
point systems with quadratic band touching (QBT) have be-
gun to garner much attention as well [7,8]. A paradigmatic
example is given by the nearest-neighbor-hopping model on
the Bernal-stacked bilayer honeycomb lattice, a simple model
for bilayer graphene [9]. The enhanced density of states
as compared to Dirac-point systems makes these systems
more susceptible to the effects of interactions. In particular,
in two spatial dimensions, repulsive short-range interactions
are marginally relevant in the renormalization-group (RG)
sense, implying a runaway flow and spontaneous symmetry
breaking already at infinitesimal values of the microscopic
couplings [7]. An extended stable semimetallic phase, with
a nontrivial quantum phase transition towards a symmetry-
broken state at a finite value of the coupling, has therefore
long been thought to be impossible in systems with QBT.
However, unlike in checkerboard and kagome lattices, the
point of QBT in bilayer honeycomb systems is not protected
by symmetry. This is because the honeycomb lattice has only a
C3 rotational symmetry, which allows in principle a splitting
of the QBT point into four Dirac cones [7]. In fact, this is
precisely what happens when interlayer hopping terms beyond

the shortest range are taken into account (so-called trigonal
warping terms) [9].

In this work, we demonstrate explicitly that even in the case
when the trigonal warping terms are absent in the microscopic
Hamiltonian, the presence of higher-order terms, despite be-
ing irrelevant in the RG sense, generate effective trigonal
warping terms at low energy. This leads to a stable semimetal-
lic phase at weak short-range interactions and a nontrivial
quantum critical point at finite coupling. We establish the
relevant (2 + 1)-dimensional Gross-Neveu universality class
for the transition and map out the pertinent phase diagram in
the plane of temperature T and interaction strength g. This
is depicted in Fig. 1. Simple estimates for the size of the
interactions place suspended bilayer graphene on the ordered
side of the transition. At intermediate temperatures, the two
points of QBT in Bernal-stacked bilayer graphene should split
into eight Dirac cones before the low-temperature instability
develops. The nature of the ordered ground state sensitively
depends on the relative size of the various possible interac-
tions [10]. Candidates for the low-temperature state include
antiferromagnets, quantum anomalous Hall states, nematic
states, and charge density waves [11]. Most experiments point
to an insulating state with a full gap in the spectrum [12–18]
(see, however, Ref. [19]). Our work suggests that bilayer
graphene may show vestiges of the quantum critical scaling in
the regime above the transition temperature Tc. These should
be observable in various transport quantities, such as the Hall
coefficient RH(T ). We predict a crossover from RH ∝ T −1 in
the QBT regime for T � Tc to RH ∝ T −2 in the Dirac regime
for T � Tc, before eventually the gap opens up and RH will
follow an exponential law for T < Tc.

Our result confirms the schematic RG picture previously
purported by Pujari et al. [20] in the context of quantum
Monte Carlo simulations of the Hubbard model on the bi-
layer honeycomb lattice. In the absence of trigonal warping,
the numerics pointed to an extended gapless phase at weak
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FIG. 1. Schematic phase diagram of QBT systems with C3 sym-
metry as a function of temperature T and short-range interaction
g. Dashed curves denote crossovers, the solid curve denotes the
finite-temperature phase transition for the case of discrete symmetry
breaking. The dashed green horizontal line separates the universal
regime at intermediate and low temperatures from the nonuniversal
high-temperature regime. At intermediate temperatures, the fermion
spectrum is effectively quadratic, characterized by dynamic exponent
z = 2 (QBT). At temperatures below the blue dashed curve, the
flow enters the Dirac regime with z = 1 (DSM). The black dashed
lines emerging from the critical point at gc denote the quantum
critical regime, characterized by a continuum of excitations. The
transition towards the ordered phase occurs at finite temperature
in the case of discrete spontaneous symmetry breaking (SSB). The
critical temperature Tc ∝ (g − gc )ν is shown as solid red curve,
together with its concomitant classical critical regime (gray shaded).
Details are discussed in Sec. V.

coupling and a quantum critical point to a gapped ordered
phase at a finite Hubbard interaction. The measured values for
the dynamic critical exponent z = 0.9(2) and the correlation-
length exponent ν = 1.0(2) were broadly consistent with
the (2 + 1)-dimensional Gross-Neveu universality class, the
particular type of which, however, had not been possible to
establish unambiguously. As proposed already in Ref. [20]
(see also Ref. [21]), the crucial ingredients for this mecha-
nism are the interaction-induced corrections to the fermion
self-energy. However, at the one-loop order, which has been
thoroughly investigated in previous works [7,10,22–28], the
self-energy correction happens to vanish as a consequence
of the interaction being local. (The one-loop correction is
finite, however, if long-range interactions are present [29].) A
field-theoretic understanding of the quantum critical behavior
seen in the numerics therefore requires to go beyond the
one-loop order, which is a daunting task due to the absence of
relativistic and continuous rotational symmetries. As a result,
a proper RG analysis of this physics has, to the best of our
knowledge, thus far been lacking in the literature. It is one of
our main technical advances to demonstrate that the two-loop
self-energy corrections can be computed in an analytical way
by employing a suitably adapted regularization scheme in
position space. We construct a minimal continuum low-energy
field theory that captures the salient physics of interacting
C3-symmetric QBTs. We then evaluate all loop corrections
to the leading nonvanishing order. This, most importantly,
includes the crucial two-loop self-energy diagrams and it
allows us to derive improved RG flow equations. This leads
us to construct the corresponding quantum phase diagram

and to reveal the pertinent universality class and its critical
exponents. We also compare with mean-field solutions, which
are controlled in a certain large-N limit, and discuss the
behavior at finite trigonal warping on the microscopic level.

The body of this paper is organized as follows: Section II
introduces the minimal effective field theory starting from the
tight-binding model on a Bernal-stacked bilayer honeycomb
lattice. Mean-field solutions are studied in Sec. III. In Sec. IV,
we then proceed to evaluating the leading loop corrections
and investigate the phase diagram arising from the RG flow
equations. Critical exponents and the finite-temperature phase
diagram are discussed in Sec. V. The paper closes with a
conclusion and an outlook in Sec. VI. Technical details are
deferred to two appendices.

II. FROM LATTICE TO LOW-ENERGY FIELD THEORY

In this section, we wish to motivate a minimal continuum
field theory that shall be the main object of study in this paper.
For concreteness, we start with a specific microscopic model
on a lattice with C3 symmetry and derive thence a Euclidean
action serving as an effective low-energy description. The
pure QBT theory with z = 2 on the one hand and the
relativistic Gross-Neveu theory with z = 1 on the other hand
are recovered from this continuum field theory in two opposite
limiting cases. We would like to emphasize, however, that the
physics we are investigating is independent of the particular
lattice model and quite generally applies to any interacting
two-dimensional Fermi system with QBT and C3 rotational
symmetry.

A. Fermions on Bernal-stacked honeycomb bilayer

Consider a model of spinless fermions on the Bernal-
stacked bilayer honeycomb lattice at half-filling, defined by
the tight-binding Hamiltonian [1]

H0 = −t
∑
〈ij〉

2∑
m=1

a
†
imbjm − t⊥

∑
i

a
†
i1bi2

−tw
∑
〈ij〉

a
†
i1bj2 + H.c. (1)

The operators aim (bim) annihilate a fermion in layer m and
sublattice A (B) at position Ri of the Bravais lattice. The
parameter t corresponds to hopping processes between nearest
neighbors 〈ij 〉 within the same honeycomb layer, while t⊥
corresponds to hopping between sites that are located on top
of each other and belong to different layers and different
sublattices. The third term in H0 parametrized by tw denotes
the trigonal warping term allowed by C3 symmmetry and
corresponds to next-nearest-neighbor interlayer hopping pro-
cesses. We denote the primitive Bravais lattice vectors as a1 =
(1/2,

√
3/2) and a2 = (1/2,−√

3/2), where we have set the
lattice constant a = 1 for notational simplicity. Proper units
of a will be restored below whenever needed. In reciprocal
space and upon collecting the Fourier-transformed fermion
operators into a vector c†(k) = (a†

1(k), b†2(k), a†
2(k), b†1(k)),

the tight-binding Hamiltonian can be written in matrix
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notation as

H0 =
∫

k∈BZ

d2k
(2π )2

c†(k)H0(k) c(k), (2)

where the k integration is over the Brillouin zone (BZ). The
Hermitian 4 × 4 matrix H0 in block notation reads as

H0(k) =
(
H11(k) H12(k)

H†
12(k) H22(k)

)
, (3)

with the 2 × 2 blocks having nonvanishing entries only on the
off diagonal,

H11(k) = −tw

(
0 f ∗(k)

f (k) 0

)
, (4)

H12(k) = −t

(
0 f (k)

f ∗(k) 0

)
, (5)

H22(k) = −t⊥

(
0 1
1 0

)
. (6)

Here, f (k) = ∑
δ eik·δ is the nearest-neighbor form fac-

tor of the honeycomb lattice, with δ ∈ {(1, 0), a1, a2} the
three nearest-neighbor displacement vectors. The spectrum of
H0(k) consists of four bands with dispersion ±ε±(k), given
by

ε2
±(k) = 1

2

[
t2
⊥ + (

2t2 + t2
w

)|f |2 ± {
t4
⊥ + t2

w

(
4t2 + t2

w

)|f |4

+ 2t⊥|f |2(2t2t⊥ − t⊥t2
w + 4t2tw Re f

)}1/2]
. (7)

Here, we have suppressed the momentum dependence of
the form factor f ≡ f (k) for notational brevity. The above
spectrum exhibits particle-hole symmetry, which we shall
assume throughout from hereon in. We note that it will be
broken upon inclusion of longer-ranged terms in the tight-
binding Hamiltonian (1), such as next-nearest-neighbor in-
tralayer hopping [30]. The additional physics due to broken
particle-hole symmetry is interesting in its own right and will
be left for future work.

At half-filling and low temperatures, only the two bands
at ±ε−(k) contribute to physical observables. The general
properties of the spectrum now depend crucially on whether

the trigonal warping tw is finite or vanishes, so we discuss
these two cases separately in the following.

First, when the trigonal warping is tuned to zero, tw → 0,
the two low-energy bands touch at k = ±K , where K =
(4π/3, 0) denotes the high-symmetry K point at one of the
corners of the hexagonal Brillouin zone. To see that these
two band crossings are indeed quadratic, we expand the form
factor around ±K as

f (±K+ p) = ∓
√

3

2
| p|e∓iϕ+1

8
| p|2e±2iϕ + O(| p|3), (8)

where ϕ = arg(px + ipy ) denotes the polar angle of the local
momentum p = k ∓ K . Upon subsequent expansion of the
low-energy spectrum to next-to-leading order in | p|, one finds

ε2
−(±K + p) = 9t4

16t2
⊥

| p|4
(

1 ∓ | p|√
3

cos 3ϕ

)
+ O(| p|6),

(9)
valid for | p|  t⊥/t . This demonstrates the existence of two
twofold-degenerate QBT points located at the two inequiva-
lent K points in the Brillouin zone and at energy ε−(±K )=0.
By inspection of the full band structure given by Eq. (7),
one readily finds that there are no further bands crossing the
zero-energy level [see Fig. 2(a)]. In the half-filled case, the
Fermi level is therefore fixed precisely at the two QBT points.
We note that the leading-order term ∝| p|4 in Eq. (9) exhibits
a continuous O(2) rotational symmetry in momentum space.
The next-to-leading-order term ∝| p|5 cos 3ϕ, by contrast,
breaks this symmetry explicitly down to C3, reflecting the
lattice symmetry of the honeycomb model. At the level of the
free theory, the O(2) rotational symmetry therefore emerges
dynamically if one restricts the window of observation to
sufficiently low energies. However, we shall demonstrate that
this is no longer true once interactions are taken into account.

We now switch on a small finite tw > 0. We again expand
the spectrum to next-to-leading order in local momentum, but
now we keep the leading tw correction in each power of | p|.
The low-energy spectrum then takes the form

ε2
−(±K + p) = 3t2

w

4
| p|2

(
1 ±

√
3t2

t⊥tw
| p| cos 3ϕ

)
+ O(| p|4).

(10)

K M Γ
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FIG. 2. Tight-binding dispersion along the high-symmetry line �–K–M–� from Eq. (7) for t/t⊥ = 0.25. The insets show the dispersion
of the low-energy conduction band in the first Brillouin zone (color plot) and the path used in the main panels (red line). In (a), there is no
trigonal warping, tw/t⊥ = 0, and only the two QBTs at k = ±K touch the Fermi level at ε = 0. For nonzero tw/t⊥ = 0.1 (b), the two QBTs
split into two central Dirac cones at k = ±K and six “satellite” Dirac cones at incommensurate wave vectors between � and K .
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Note the lower exponent of the leading-order term as com-
pared to Eq. (9). Consequently, the local dispersion near ±K
is no longer quadratic, but linear, and the spectrum exhibits
Dirac cones at k = ±K . In addition, for each Dirac cone at
one of the high-symmetry K points, there are three “satellite”
Dirac cones located at incommensurable wave vectors k =
±K + p with

| p| = 4t⊥tw√
3t2

and ϕ = (4n + 1 ± 1)
π

6
, (11)

where n = 0, 1, 2 and we have assumed t⊥ > 0 and tw > 0 for
concreteness. The full dispersion in the presence of trigonal
warping is illustrated in Fig. 2(b). The splitting of each QBT
point into four Dirac cones upon switching on a small finite
tw can be understood on more general grounds [7]: a QBT
carries Berry flux ±2π , while a Dirac cone has Berry flux
±π . Let us take the QBT at k = +K , whose Berry flux is
+2π . Due to flux conservation, the QBT can be either split
into two Dirac cones carrying +π flux, or one −π Dirac cone
and three +π Dirac cones (as long as no more Dirac cones
are involved). On the honeycomb lattice, the realization that is
compatible with the C3 symmetry is the splitting of the QBT
at k = +K into one −π Dirac cone at k = +K and three
Dirac cones shifted along the lines through K and the centers
� of the three neighboring Brillouin zones, in agreement with
Eq. (11). Hence, the total number of Dirac cones per QBT
and their location in the Brillouin zone is a consequence of
the conservation of Berry flux combined with the symmetry of
the honeycomb lattice. Finally, the fact that the satellite Dirac
cones lie at the same energy as the ones at the K points is a
consequence of particle-hole symmetry.

This concludes the discussion at the noninteracting level.
In particular, the fermiologies in the QBT and Dirac cases
are distinct, and going from the former to the latter requires
“switching on” a parameter like tw by hand, as done above.
In the presence of fermion-fermion interactions, however,
this occurs dynamically. To elucidate this further, we now
construct a pertinent low-energy continuum field theory.

B. Continuum limit

For the noninteracting part, we begin by writing the Hamil-
tonian for QBT in the case of tw = 0. In a 4 × 4 representa-
tion, it can be written as [7,24,31]

H(2)
0 ( p) = da ( p) (σa ⊗ 12), a = 1, 2 (12)

where we have assumed the summation convention over
repeated indices. In the above equation, the diagonal factor
12 can be understood to act on the valley index. The 2 × 2
matrices σa anticommute with each other and square to one,
and may be represented by the usual Pauli matrices σ 1 ≡ σx

and σ 2 ≡ σy . The time-reversal operator can then be defined
as T = (σx ⊗ σx )K, where K denotes complex conjugation.
The functions da ( p) are p2 times the real spherical harmon-
ics of angular momentum � = 2, which in two dimensions
simply become d1( p) = p2

x − p2
y = p2 cos 2ϕ and d2( p) =

2pxpy = p2 sin 2ϕ.

Under O(2) spatial rotations with angle θ ,

pa �→ (Rθ )ab pb, Rθ =
(

cos θ − sin θ

sin θ cos θ

)
∈ O(2), (13)

the da and σa transform, respectively, as

da ( p) �→ (R2θ ) b
a db( p), σ a �→ (R2θ )ab σ b. (14)

While the former equation follows from direct computation,
the latter is to be understood in the sense that the σa transform
as components of the second-rank tensor [31](

σ 1 σ 2

σ 2 −σ 1

)
�→ R�

θ

(
σ 1 σ 2

σ 2 −σ 1

)
Rθ . (15)

This shows that H(2)
0 is invariant under O(2) rotations. With

the above definitions, it is straightforward to verify that the
product σ 1σ 2 is also invariant under rotations. Consequently,
the two remaining matrices σ 0 ≡ 12 and σ 3 = −iσ 1σ 2 that
together with σ 1 and σ 2 span the space of 2 × 2 matrices,
are rotationally invariant. At the quadratic order O(| p|2),
therefore, the only possible term in the Hamiltonian that is
compatible with the C3 symmetry and diagonal in valley space
is the O(2) invariant one present in the above H(2)

0 . The upshot
is that any free 2D Fermi system with QBT and Cn symmetry
with n ≥ 3 has emergent O(2) symmetry at low energies.

At the linear order O(| p|), however, a C3-invariant term
that breaks O(2) is perfectly possible. For instance, the term

H(1)
0 ( p) = pa (σa ⊗ σ 3) (16)

with p ≡ (pa ) = (px,−py )� transforms under rotations as
H(1)

0 ( p) �→ pa (R3θ )abσ
b and is therefore only symmetric un-

der the C3 symmetry, but not continuous O(2) rotations.
At the cubic order O(| p|3), an analogous term is C3

symmetry allowed,

H(3)
0 ( p) = p2 pa (σa ⊗ σ 3), (17)

which manifestly has the same symmetry properties as H(1)
0 .

A general noninteracting low-energy Hamiltonian consis-
tent with C3 rotational symmetry can therefore be written in
terms of three parameters f1, f2, and f3 as

H0( p) = σa ⊗ [f1paσ
3 + f2da ( p)12 − f3 p2paσ

3]

+ O(| p|4), (18)

where the signs of f1, f2, and f3 have been chosen for later
convenience. The spectrum of H0( p) is given by

ε2( p) = f 2
1 | p|2 + 2f1f2| p|3 cos 3ϕ + (

f 2
2 − 2f1f3

)| p|4

− 2f2f3| p|5 cos 3ϕ + O(| p|6), (19)

and hence reproduces the tight-binding dispersion near the K

point at k = +K [Eqs. (9) and (10)] for

f1 =
√

3twa

2
, f2 = 3t2a2

4t⊥
, f3 = a3

2
√

3

3t2

4t⊥
, (20)

and the same equations hold, up to a suitable change of the
local momentum basis p �→ p, near the second K point at
k = −K as well. Here, we have reinstated the lattice constant
a in order to make the physical units more readily apparent.
In the following, we shall in particular be interested in the
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situation in which f1 is tuned to zero at the microscopic level
(which corresponds to tw = 0 in the tight-binding Hamilto-
nian) describing a system whose bare spectrum has a QBT
(referred to henceforth as “the QBT limit”), and study the
dynamical generation of f1 due to interactions.

The Lagrangian is constructed from Eq. (18) in canonical
fashion, namely,

L0 = ψ
†
i [∂τ + H0(−i∇)]ψi, (21)

where τ denotes imaginary time and ψi , ψ
†
i are four-

component complex spinors with “flavor” index i =
1, . . . , Nf. On the honeycomb bilayer and in the limit of van-
ishing trigonal warping tw  t2/t⊥, for which the spectrum
has a QBT, the flavor number Nf can be understood as the
real-spin degeneracy of each band. Hence, Nf = 1 for spinless
fermions. For the sake of generality, however, we shall keep
the flavor number Nf arbitrary in our calculations. This also
allows us to make contact with the limiting cases Nf → ∞,
which represent the mean-field limit, and Nf = 1

2 , which can
be understood as a Fermi system with a single point of QBT in
the Brillouin zone, as realizable for spinless fermions on the
kagome and checkerboard lattices [7]. Note, however, that for
the latter systems, the linear and cubic terms in Eqs. (16) and
(17) are forbidden by time-reversal symmetry and the QBT is
therefore protected for Nf = 1

2 .
We emphasize that the above Hamiltonian H0, with the

correct interpretation, is sufficient to capture the behavior at
substantial trigonal warping as well. In this limit, Eq. (18)
describes massless Dirac fermions subject to a quadratic
perturbation ∝f2, with the spectrum given by Eq. (10). Some
care is needed when it comes to the flavor content of the
low-energy Dirac theory. Since a separate fermion flavor has
to be introduced for each Fermi point, one requires four Dirac
points for every valley in the QBT theory. Flavor symmetry
between the “satellite” and the central Dirac point can be
restored by a suitable rescaling of the local momentum, viable
in the low-energy limit.

In conclusion, therefore, the Lagrangian (21) constitutes
two different continuum field theories describing two opposite
limits of the low-energy physics of fermions on the bilayer
honeycomb lattice: On the one hand, the QBT limit for van-
ishing or infinitesimally small trigonal warping tw  t2/t⊥ is
described by Eq. (21) with flavor number Nf = N/2, where
N is the number of valleys in the QBT limit. On the other
hand, the Dirac limit for tw � t2/t⊥ is described by the
same Eq. (21) in the low-energy limit with, however, now
Nf = 2N (Dirac) fermion flavors. Hence, the number of four-
component fermion flavors in the low-energy description is

Nf =
{
N/2 for f1/f2  1/a,

2N for f1/f2 � 1/a.
(22)

As noted above, the concrete lattice realization of spinless
fermions on a honeycomb bilayer corresponds to N = 2.

C. Interactions

A generic four-fermion interaction can be written in the
form

1

2
grs

(
ψ

†
i A

ij
r ψj

)(
ψ

†
kA

kl
s ψl

)
(23)

with coupling parameters grs , where r, s = 1, . . . , 16 [32,33].
The smallest subspace closed under the RG flow for N ≥ 2
consists of three independent (i.e., Fierz irreducible) cou-
plings [24]. The nature of the concrete state that emerges upon
spontaneous symmetry breaking is sensitive to the form of in-
teractions present microscopically in the system. Our primary
interest, however, is in the question whether spontaneous sym-
metry breaking takes place at all for small couplings, rather
than the competition (or cooperation) between the different
possible orders. For this purpose, it is sufficient to restrict
ourselves to a single interaction channel. For definiteness, we
choose A

ij
r = A

ij
s = (σ 3 ⊗ σ 3)δij , corresponding to

Lint = − 1
2g[ψ†

i (σ 3 ⊗ σ 3)ψi]2, (24)

where we have adopted a sign convention that leads to a
stabilization of the ordered state for positive values of g.
This particular choice of Lint is natural and appropriate for
the following reasons: First, note that σ 3 ⊗ σ 3 anticommutes
with H0. A finite bilinear condensate in the above inter-
action channel, i.e., 〈ψ†

i (σ 3 ⊗ σ 3)ψi〉 �= 0, would therefore
correspond to a state with a full mass gap in the spectrum,
which is typically energetically favored within mean-field
treatments [7,8,31]. The state is characterized by an imbalance
of the number of particles on layer 1 compared to layer
2 and thus breaks inversion symmetry between the layers.
Time reversal, by contrast, remains intact and the new ground
state thus represents a topologically trivial interaction-induced
insulator. In fact, precisely this interaction channel has been
found as the dominant ordering tendency in the t-V model of
spinless fermions on the Bernal-stacked honeycomb bilayer
subject to a repulsive nearest-neighbor interaction V within a
multichannel RG analysis [24]. Second, this channel is readily
identified with the simplest possible Lorentz scalar [ψ†

i (σ 3 ⊗
σ 3)ψi]2 ≡ (ψiψ

i )2, where ψi = ψ
†
i (σ 3 ⊗ σ 3) is the Dirac

conjugate. This is the familiar Gross-Neveu-Ising interaction,
which in the Dirac limit tw � t2/t⊥ has a well-understood
quantum critical point at finite g [34–44]. Furthermore, to
leading order in 1/N , it turns out that the above interaction
channel is closed under RG in the sense that no further interac-
tions are generated upon integrating out high-energy modes if
absent on the microscopic level. We also note that for N = 1,
in which case there are in total only two spinor components
in the QBT limit, any finite four-fermion interaction must
be proportional to ψ†σ 3ψ . The single-channel approximation
is therefore exact not only for N → ∞, but also at N = 1.
Although bilayer graphene with N = 2 falls in neither class,
we expect our major conclusions, concerning in particular
the existence of a quantum critical point at finite coupling
in the QBT limit, to hold also in this case. We shall briefly
comment on the effect of other interactions when we discuss
the universality class of the transition (see Sec. V).

The full action describing both the situations with and
without a finite trigonal warping term is hence given by

S =
∫

dτ d2x(L0 + Lint ). (25)

We conclude this section by reading off the mass dimensions
of the quantities appearing in the theory. In the QBT limit,
we wish to renormalize the fields such that the coefficient
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f2 in front of the QBT term remains fixed during the RG.
Then, in the noninteracting limit, the dynamical critical ex-
ponent z = 2. Consequently, the linear coefficient has mass
dimension [f1] = 1 and is RG relevant, while the cubic co-
efficient is RG irrelevant with [f3] = −1. The four-fermion
coupling becomes dimensionless, [g] = 0, i.e., the interaction
is marginal at tree level. In the opposite Dirac limit, the
renormalization scheme should fix the coefficient f1 of the
linear term. Hence, in this case z = 1, [f2] = −1, [f3] = −2,
and the four-fermion coupling becomes irrelevant, [g] = −1.

III. MEAN-FIELD THEORY

We start by discussing the large-N limit, which can be
solved exactly in the framework of mean-field theory. To
distinguish the ordered from the disordered phase, it is useful
to think in terms of the composite field φ ∝ ψ

†
i (σ 3 ⊗ σ 3)ψi .

Then, the symmetric phase corresponds to 〈φ〉 = 0, while
long-range order is characterized by φ developing a finite vac-
uum expectation value via spontaneous symmetry breaking. A
finite 〈φ〉 �= 0 acts as an effective mass term and opens up a
full gap in the fermion spectrum. For the present interaction
channel, the new ground state spontaneously breaks inversion
symmetry between the layers. We rewrite the action solely in
terms of φ by performing a Hubbard-Stratonovich transforma-
tion and then carrying out the integral over the fermion fields.
This results in an effective action

Seff[φ] =
∫

dτ d2x 1
2φ2 − Tr ln[∂τ + H0(−i∇)

− √
gφ(σ 3 ⊗ σ 3)], (26)

where the trace Tr( · ) is taken over spinor and flavor indices
as well as coordinate space. A meaningful large-N limit
is obtained by fixing gNf = const and φ2/Nf = const. We
reiterate that the fermion flavor number Nf is equivalent to
the number of QBT points N/2 in the limit of vanishing
trigonal warping, while Nf = 2N when each QBT point splits
into four Dirac cones. From the trace over the flavor indices,
the action (26) for φ attains an overall factor of Nf. In the
large-N limit, the path integral over φ is then dominated by the
extremum of Seff[φ]. We assume constant field configurations
φ(x) ≡ φ = const, leading to the effective potential Veff(φ) =
V Seff[φ]|φ(x)=φ , where V is the space-time volume. The mean-
field analysis then boils down to minimizing Veff(φ). It proves
to be technically more convenient to evaluate V ′

eff(φ) by
differentiating (26) once with respect to φ and performing the
trace over the spinor and flavor indices, yielding in momentum
space

V ′
eff(φ) = φ − 4Nf

∫
dωd2 p
(2π )3

gφ

ω2 + H0( p)2 + gφ2
. (27)

The divergence occurring for large frequency ω and large
momentum p is handled by introducing a finite ultraviolet
cutoff �. In the QBT case, we implement this as the restriction
|ω| ≤ f2�

2 and | p| ≤ �, in agreement with the dynamic
scaling exponent z = 2 for f1 = 0. By contrast, in the Dirac
limit for finite f1, the integral is regularized as

√
ω2 + f 2

1 p2 ≤
|f1| �, respecting the different dynamic exponent z = 1 for
f2 = f3 = 0.

Let us first recapitulate the case of pure QBT with Nf =
N/2 and f1 = f3 = 0 [7]. Then, H0( p)2 = f 2

2 p4 and the
integral is soluble in terms of standard functions. Expanding
around � → ∞ and rescaling φ/(

√
f2�

2) �→ φ and g/f2 �→
g, one finds

V ′
eff(φ) ∝ φ

[
1 + gN

8π
ln

(
1

4
gφ2

)]
. (28)

Thus, the minimum for all g > 0 is located not at φ = 0, but
at the new minimum

φ0 = 2g−1/2e−4π/(gN ). (29)

Hence, infinitesimal g leads to spontaneous symmetry break-
ing for a rotationally invariant QBT, in agreement with the
various previous works on the subject [7,10,22–28]. We next
investigate the stability of the symmetry-broken phase un-
der perturbation by an infinitesimal Dirac term, realized by
switching on small nonvanishing f1. To this end, we consider
the curvature of the effective potential around φ0 and expand
it in powers of |f1/(f2�)|  φ0, yielding

V ′′
eff(φ0) ∝ gN

4π
[1 − e8π/(gN )(f1/4f2)4], (30)

where we have rescaled f1/(f2 �) �→ f1/f2. The ordered
phase is stable (or at least metastable) as long as V ′′

eff(φ0) > 0.
For a given fixed and small f1, this condition holds if and only
if g > gc, with the critical coupling

gc(f1/f2) � 2π

N

(
− ln

∣∣∣∣f1/f2

4

∣∣∣∣
)−1

(31)

valid for |f1/f2|  1. The inclusion of f3 is possible as well
by numerical means. However, within mean-field theory, this
does not lead to qualitatively new physics since the crucial
self-energy corrections, which are prerequisite to obtaining
a finite gc in the QBT limit f1/f2 = 0, are suppressed for
large N (as we shall show explicitly later). At the mean-field
level, therefore, spontaneous symmetry breaking occurs for
g > gc ≥ 0 with gc → 0 for f1/f2 → 0.

We now turn to the opposite limit of Nf = 2N Dirac flavors
perturbed by a small f2 term. We investigate an instability
towards the symmetry-broken state by studying the curvature
V ′′

eff(0) at the origin φ = 0. Since g now has mass dimension
[g] = z − 2 = −1, we rescale g�/f1 �→ g, φ/(

√
f1�

3/2) �→
φ, and f1/(f2�) �→ f1/f2. To the leading nonvanishing order
in (f1/f2)−1, the curvature is

V ′′
eff(0) ∝ 1 − 4gN

π2

[
1 + 8

63

(
f1

f2

)−2
]
. (32)

The phase boundary occurs when the curvature of the effective
potential at the origin vanishes, yielding

gc(f1/f2) � π2

4N

[
1 − 8

63

(
f1

f2

)−2
]
, (33)

valid for |f1/f2| � 1. We note that, within our continuum
field theory, the two limiting cases f1/f2 → ∞ and f1/f2 →
−∞ are in fact equivalent, as they are related by momen-
tum inversion p �→ − p. Equation (33) in this limit pre-
cisely agrees with the known large-N critical coupling in
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FIG. 3. Mean-field phase diagram for f3 = 0 using Eqs. (31) and
(33), showing the Dirac semimetal (DSM) phase for small g < gc

and finite f1/f2 and the spontaneous-symmetry-broken (SSB) phase
for g > gc. At the origin, (f1/f2, g) = (0, 0), the fermion spectrum
exhibits a quadratic band touching (QBT). The dashed curve at
intermediate |f1/f2| � 1 is given as a guide to the eye.

the relativistic Gross-Neveu theory with 2N four-component
Dirac flavors in 2 + 1 dimensions [34,39]. The perturbation
∝(f1/f2)−2 is new and represents the influence of the
quadratic term in the dispersion ε( p). It decreases the critical
coupling, which is consistent with the general expectation that
an increase in the density of states tends to destabilize the dis-
ordered semimetallic state. The combined mean-field phase
diagram, showing the phase boundaries both for |f1/f2|  1
in the QBT regime as well as for |f1/f2| � 1 in the Dirac
regime, is depicted in Fig. 3.

IV. RENORMALIZATION-GROUP ANALYSIS

A. Flow equations

To go beyond the mean-field level, we now turn to an RG
analysis. Since two-loop corrections constitute an essential
part of the physics we are interested in, we perform field-
theoretic renormalization. In our gapless model, the loop inte-
grals will not only have the usual ultraviolet divergences, but
also infrared divergences. We regularize these by introducing
both an ultraviolet cutoff � as well as an infrared cutoff λ,
with λ  �. For the RG flow, we demand the invariance of
the one-particle irreducible effective action � under the RG
step λ → λ/b while holding � fixed, to wit:

∂t� = 0, (34)

where ∂t ≡ ∂/(∂ ln b) with the RG “time” t ≡ ln b ∈ [0,∞).
We expand the functional integral within perturbation theory
in the coupling g. The condition (34) allows us to compute
β functions, which characterize the scale dependence of g

and the parameters f1, f2, and f3 within the effective low-
energy description. At tree level, � = S, so that one obtains
the canonical scaling dimensions determined at the end of
Sec. II B. For quantum corrections, we work to the lead-
ing nonvanishing loop order. The self-energy and four-point
vertex correction diagrams are shown in Fig. 4. Possible
diagrams of the same order that are not shown vanish in the the
present single-channel approximation. Note that the one-loop

(a) (b)

FIG. 4. Feynman diagrams representing the first nonvanishing
loop corrections to self-energy and the four-fermion vertex.

self-energy diagram is absent due to kinematics: it is inde-
pendent of the external momentum and hence can at most
generate a mass term, which is forbidden by symmetry.

We briefly sketch the general strategy regarding the eval-
uation of the loop corrections, beginning with the (evidently
more challenging) two-loop self-energy correction shown in
Fig. 4(a). The diagram has the so-called sunset topology.
For translationally invariant systems, the evaluation of such
diagrams turns out to be particularly efficient when carried out
in position space [45]. This way, the evaluation of the diagram
ultimately leads to a single position-space integral, which is a
considerable technical simplification over the corresponding
momentum-space version. In particular, the two-loop contri-
bution to the self-energy simply becomes

�(ω, p) ∝
∫

dτ d2x e−i(ωτ+ p·x)

× (σ 3 ⊗ σ 3)G0(τ, x)(σ 3 ⊗ σ 3)

× G0(−τ,−x)(σ 3 ⊗ σ 3)G0(τ, x)(σ 3 ⊗ σ 3),

(35)

where G0(τ, x) = [∂τ + H0(−i∇)]−1 is the tree-level propa-
gator and we have suppressed coupling constants, numerical
prefactors, and contraction over spinor indices for brevity.
Similarly, the contribution to the four-fermion vertex can be
written in position space as

δ�(4) ∝
∫

dτ d2x G0(τ, x)(σ 3 ⊗ σ 3)

× G0(−τ,−x)(σ 3 ⊗ σ 3), (36)

where we have also set external coordinates to zero. All
position-space integrals are regularized by short-wavelength
� ∝ 1/� � a and long-wavelength L ∝ 1/λ cutoffs. In the
QBT regime, we restrict the domain of integration as
π/(2�)≤|x|≤π/(2λ) with unrestricted integration over τ .
In the Dirac regime, we choose π/(2�) ≤ √

τ 2 + x2 ≤
π/(2λ). This regularization prescription not only respects the
different symmetries in the strict QBT and Dirac limits, but
also allows us to perform the loop integrations analytically.
The a priori arbitrary constant π/2 in the definition of the
position-space cutoffs � = π/(2�) and L = π/(2λ) has been
chosen such that the resulting large-N critical coupling gc in
the Dirac limit |f1/f2| → ∞ matches the mean-field result
(33). Evidently, a major part of the difficulty of evaluating
the loop corrections now resides in computing the position
space propagator G0(τ, x), additional information pertaining
to which is given in Appendix A.

The fact that the location and shape of the Fermi surface
changes when a QBT point splits into four Dirac cones
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requires us to start with separate discussions of the two cases
|f1/f2|  1 and |f1/f2| � 1. To obtain the full RG flow also
for finite values of |f1/f2| ∼ 1, we shall eventually interpolate
between the respective limits by means of a suitable Padé
approximation.

Let us start by discussing the QBT limit, to which an in-
finitesimal |f1/f2|  1 has been added. Keeping the quadratic
coefficient f2 fixed, the β function β(g) ≡ ∂tg ≡ ∂g/(∂ ln b)
for the dimensionless short-range interaction g becomes

β(g) = g2(N − 1)

2π

[
1 − 7 − 4 ln 2

240

π2

4

(
f1

f2

)2

+ 1

2

(
f1

f2

)(
f3

f2

)
+ 32

π2

(
f3

f2

)2
]
, (37)

where we have rescaled f1/(f2�) �→ f1/f2, f3�/f2 �→
f3/f2, and g/f2 �→ g as in the mean-field theory. We note that
the above equation is valid only for N > 1. For N = 1, there
is an additional Fierz identity which leads to a finite β function
for g in this case as well. The self-energy diagram in Fig. 4(a)
leads to a nontrivial flow of the small parameters f1 and f3.
We find, to the leading order in f1/f2 and f3/f2,

β

(
f1

f2

)
=

(
1 − g2(2N − 1)

144π2

)(
f1

f2

)

+ 11g2(2N − 1)

54π4

(
f3

f2

)
(38)

and

β

(
f3

f2

)
= −

(
1 + 59g2(2N − 1)

3456π2

)(
f3

f2

)

+ g2(2N − 1)

576

(
f1

f2

)
. (39)

The anomalous field dimension ηψ in this limit reads as

ηψ = g2(2N − 1)

4π2

[
1

18
− 25 − 36 ln 4

3

2880

π2

4

(
f1

f2

)2

−
(

3

2
ln

4

3
− 179

432

)(
f1

f2

)(
f3

f2

)
+ 871

243π2

(
f3

f2

)2
]

(40)

and the dynamic critical exponent z becomes

z = 2 − g2(2N − 1)

4π2

[
9 ln 4

3 − 2

72

+ 49 − 30 ln 2 − 9 ln 3

5760

π2

4

(
f1

f2

)2

− 1593 ln 4
3 − 422

216

(
f1

f2

)(
f3

f2

)

+ 1850 − 4860 ln 4
3

243π2

(
f3

f2

)2
]
. (41)

Note that the contribution ∝(f1/f2)2 to z is negative, tending
to decrease the dynamic exponent from z = 2 towards the
Dirac value of z = 1 for large enough |f1/f2|.

In the Dirac limit with a quadratic perturbation ∝f2 added
to the Hamiltonian, the effects of the strongly irrelevant cubic
coefficient f3 can be safely neglected as noted above. We find,
for |f1/f2| � 1, f3 = 0, and Nf = 2N Dirac flavors, for the
flow of the short-range interaction

β(g) = −g + g2(4N − 1)

π2

[
1 + 4128

35π2

(
f2

f1

)2
]
, (42)

where we now have rescaled g�/f1 �→ g and f2�/f1 �→
f2/f1. The small parameter f2/f1 is irrelevant in the Dirac
limit. Its flow reads as

β

(
f2

f1

)
= −

[
1 + 29

420

g2(8N − 1)

π4

](
f2

f1

)
. (43)

The anomalous dimension ηψ and the dynamic critical expo-
nent z become in this limit

ηψ = g2(8N − 1)

π4

[
1

12
+ 1312

105π2

(
f2

f1

)2
]
, (44)

z = 1 − 8g2(8N − 1)

π6

(
f2

f1

)2

. (45)

B. Basic flow properties

Before solving the full set of flow equations to construct
phase diagrams, we first extract some general characteristics
by analytical means. We begin with the Dirac case, which in
the limit |f1/f2| → ∞ boils down to the (2 + 1)-dimensional
relativistic Gross-Neveu theory. Apart from the fully attractive
noninteracting Dirac fixed point

D : (f1/f2, g)∗ = (±∞, 0), (46)

the only interacting fixed point for |f1/f2| � 1 is at

GN3 : (f1/f2, g)∗ =
(

±∞,
π2

4N − 1

)
. (47)

The fixed point GN3 is characterized by a dynamic critical
exponent z = 1 and an anomalous dimension

ηψ = 8N − 1

12(4N − 1)2
. (48)

For N = 2, this yields ηψ = 0.026. Within our approxima-
tion, the correlation-length exponent ν = 1, but there will be
N -dependent corrections once higher-loop orders are taken
into account. GN3 has a unique RG relevant direction along
the g axis, as f2/f1 is irrelevant in its vicinity. We also note
that other short-range interactions, such as flavor-symmetry-
breaking operators, are irrelevant at this fixed point [46].
GN3 describes a transition from the semimetallic Dirac phase
for g < g∗ to an ordered phase for g > g∗, in which the
fermions acquire a dynamical mass gap as a consequence of
spontaneous symmetry breaking. Hence, GN3 is an incarna-
tion of the celebrated relativistic Gross-Neveu critical point
in 2 + 1 dimensions [34–44]. In our interaction channel, the
ordered state is characterized by 〈ψ†(σ 3 ⊗ σ 3)ψ〉 �= 0, which
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spontaneously breaks inversion symmetry between the layers
[24]. In the large-N limit, the Gross-Neveu fixed-point value
is g∗ = π2/(4N ) + O(1/N2), in agreement with the result
we found in the mean-field theory, Eq. (33). Note that values
of couplings are in principle nonuniversal and depend on the
regularization scheme. Here, we have adapted our position-
space regularization to match the mean-field result for the
critical coupling. However, we emphasize that this agreement
may not carry over in the case of other nonuniversal quan-
tities. For instance, this is the case for the separatrix that
defines the phase boundary between the Dirac semimetal and
the interaction-induced insulator for |f1/f2| � 1, which is
obtained from the RG flow as

gc(f1/f2) � π2

4N − 1

[
1 − 4128

35π2

(
f1

f2

)−2
]
, (49)

which is in qualitative, but not quantitative, agreement with
the mean-field result (33). We reiterate that this discrepancy
is a consequence of the difference in regularization schemes
and has no effect on universal observable quantities such as
critical exponents, mass ratios, etc., which are regularization
independent.

We now proceed to the QBT limit for 0 ≤ |f1/f2|  1. In
this regime, there is only the Gaussian fixed point at

Q : (f1/f2, g)∗ = (0, 0), (50)

describing a noninteracting Fermi system with a quadratic
dispersion. Q has a marginal direction along the g axis, while
f1 is power-counting relevant.

Let us first review the O(2)-invariant case for f1 = f3 = 0
and g > 0 in order to connect with the previous work [7]. In
this case, β(g) is positive and finite for all g > 0, implying an
instability of the system towards the infrared. More precisely,
integrating the RG flow equation for g, Eq. (37), we find, for
f1 = f3 = 0,

g(t ) = 1

1/g0 − t (N − 1)/(2π )
for t ≤ tSSB, (51)

with initial value g0 ≡ g(t = 0). Patently, the evolution of
g exhibits a pole at a finite RG time tSSB = 2π/[g0(N −
1)]. Informed by the mean-field analysis, we can trace
back this runaway flow to an instability of the semimetallic
state towards the interaction-induced insulator. The latter is
characterized by inversion-symmetry breaking and a finite
vacuum expectation value of the fermion bilinear 〈φ〉 ∝
〈ψ†

i (σ 3 ⊗ σ 3)ψi〉 �= 0. Identifying the corresponding energy
scale λ2

SSB � �2 e−2tSSB , at which the instability occurs, allows
us to estimate the effective amplitude of the condensate,
yielding

〈φ〉 ∝ λ2
SSB ∝ e−4π/[g0(N−1)], (52)

where we have used the order parameter’s scaling dimension
[φ] = (z + 2)/2 = 2. It is conceptually satisfying to note that
the exponential factor in the above estimate in the limit N →
∞ agrees precisely with the mean-field result. (29). This
furnishes a nontrivial consistency check.

The RG flow equations also permit to compute the form
of the phase boundary at finite 0 < |f1/f2|  1. To this

end, we consider trajectories in parameter space starting in-
finitesimally close to the noninteracting QBT fixed point Q.
In this regime, f1/f2 flows according to its canonical scal-
ing dimension (f1/f2)(t ) = (f1/f2)0 e−t , where (f1/f2)0 ≡
(f1/f2)(t = 0), whereas the RG evolution of g is given by
Eq. (51) above. Eliminating the RG time t , one finds the RG
trajectories near the fixed point Q as

g(f1/f2) = 2π

N − 1

1

ln C − ln |f1/f2| (53)

with a positive constant C = e2π/[g0(N−1)]|f1/f2|0 that is de-
termined by the initial values ((f1/f2)0, g0) of the flow for
t = 0. Each member of the family of RG trajectories defined
by Eq. (53) and parametrized by C can now be continued
“backwards” in RG flow for t → −∞ and will eventually ap-
proach the noninteracting QBT fixed point Q. In the opposite
RG time direction t → ∞, one member of the family must
be the separatrix that precisely flows into the critical Gross-
Neveu fixed point GN3 in the Dirac limit for |f1/f2| � 1.
In the mean-field theory, this happens for C = ln 4, for which
the large-N limit of Eq. (53) agrees with Eq. (31). Without
the mean-field input, the perturbative RG analysis around Q
for |f1/f2|  1 alone has nothing to say on which of the
trajectories is the separatrix; we shall discuss in the following
subsection how to circumvent this problem by making use of
the flow near the Gross-Neveu fixed point in the opposite limit
|f1/f2| � 1. In this section, we suffice ourselves by noting
that a separatrix that connects Q with GN3 exists for all N

and has the form as given in Eq. (53).
Let us now discuss the situation for f3 �= 0, which induces

nontrivial self-energy corrections that go beyond the mean-
field result. To see this, consider the trajectories starting on
the f1 = 0 line. Inspecting the flow equations, one finds the
slope of all trajectories with g > 0 as

d(f1/f2)

dg
= β(f1/f2)

β(g)

= 11

27π3

2N − 1

N − 1

f3

f2

1

1 + 32
π2 (f3/f2)2

+ O(f1/f2).

(54)

Importantly, the slope is finite for all g > 0, implying that
every RG trajectory (except the one that connects the free the-
ories Q and D at fixed g = 0) crosses the line f1 = 0 at a finite
g when f3 �= 0. In particular, this is true for the separatrix
that connects Q with GN3. There must, therefore, be a critical
coupling strength gc > 0, below which the system flows to a
Dirac semimetal phase. This hence provides a rigorous RG
demonstration of the phenomenology found numerically in
Ref. [20]. It is also consistent with the result obtained recently
within a random phase approximation [21].

We close by answering why the mean-field theory is un-
aware of this behavior, the reason for which is more trans-
parent when the above is expressed in terms of the ’t Hooft
coupling g′ ≡ gN , which remains finite at the Gross-Neveu
fixed point GN3. In (f1/f2, g

′) space, the same slope is

d(f1/f2)

dg′ = 22

27π3N

f3

f2
+ O(f1/f2, 1/N2), (55)

245128-9



SHOURYYA RAY, MATTHIAS VOJTA, AND LUKAS JANSSEN PHYSICAL REVIEW B 98, 245128 (2018)

and is therefore subleading when sending N → ∞ while
keeping g′ = const. In other words, self-energy effects are
suppressed in the large-N limit.

C. Phase diagrams

We proceed to construct the RG phase diagram in the
full (f1/f2, g) coupling space. As the configuration of the
Fermi surface changes from the QBT limit for |f1/f2|  1
to the Dirac limit for |f1/f2| � 1, the standard regularization
scheme in momentum space, as well as our position-space
regularization scheme, required us to a priori treat these
different regimes separately. This approach led us to the
flow equations (37)–(39) in the former limit as well as (42)
and (43) in the latter. These equations should be understood
as asymptotic expansions in the two different regimes of
an unknown set of flow equations valid for all f1/f2. A
useful approximation to the full equations can be obtained
by employing suitable Padé approximants which interpolate
between the known limits. The [m/n] Padé approximant is
defined as a degree m/degree n rational function, where the
coefficients in the polynomial numerator and denominator
are chosen such that the approximant reproduces the correct
expansions for |f1/f2|  1 (QBT regime) and |f1/f2| � 1
(Dirac regime). For the flow equations of f1/f2 and f3/f2 we
use [3/2] and [2/2] Padé approximants,

β(f1/f2) = a0 + a1(f1/f2) + a2(f1/f2)2 + (f1/f2)3

1 + b1(f1/f2) + b2(f1/f2)2
, (56)

β(f3/f2) = c0 + c1(f1/f2) + c2(f1/f2)2

1 + (f1/f2)2
, (57)

which corresponds to the minimal degree necessary to match
Eqs. (38), (39), and (43). Other choices are in principle
possible as well, and the above approximants have been
selected under the demand that they be of minimal degree
needed to faithfully reproduce the asymptotic expansions for
f1/f2 → 0 and f2/f1 → 0, respectively, and do not introduce
any unphysical poles in the resulting Padé-approximated flow
equations. For the flow equation of g, it proved advantageous
to perform the interpolation separately for the even and odd

parts in f1/f2, explicitly:

β(g) = d0 + d2(f1/f2)2 + d4(f1/f2)4

1 + e2(f1/f2)2 + (f1/f2)4
+ d1(f1/f2)

1 + (f1/f2)4
.

(58)

Note that the coefficients ai , bi , ci , di , and ei are independent
of f1/f2, but depend on g and f3/f2. Their explicit values are
given in Appendix B.

The resulting RG flow diagram for N = 2, relevant for
the honeycomb bilayer, is depicted in Fig. 5(a). The diagram
shows a cut through parameter space at a fixed f3/f2 =
(2

√
3)−1 in the QBT regime, chosen to match the microscopic

tight-binding value in the honeycomb bilayer, Eq. (20). For
simplicity, we have identified here the ultraviolet cutoff �

with the inverse of the lattice constant. Apart from the non-
interacting fixed points Q at f1/f2 = 0 and D at |f1/f2| = ∞,
the critical Gross-Neveu fixed point GN3 at |f1/f2| = ∞ is
the only interacting fixed point. We reiterate that the two
vertical axes at f1/f2 = +∞ and f1/f2 = −∞ should be
identified with each other, as they are related by inversion
symmetry p �→ − p emerging for f2 = f3 = 0. All RG tra-
jectories for g > 0 cross the QBT axis at f1/f2 = 0 with a
finite slope. The separatrix connecting Q with GN3 in the
regime f1/f2 ≥ 0 therefore crosses this line at a finite value
of the coupling. The critical coupling gc at which this happens
for N = 2 and fixed f3/f2 = (2

√
3)−1 in the QBT regime is

found to be gc ≈ 0.35. We have checked numerically that the
inclusion of the running of f3/f2 in the QBT regime does
not change the qualitative characteristics of the flow diagram,
and only moderately modifies its quantitative features. In
particular, we find that the improved critical coupling that
includes the running of f3/f2 is gc ≈ 0.40 for the initial value
(f3/f2)(t = 0) = (2

√
3)−1.

This should be contrasted with the situation for N → ∞,
depicted in Fig. 5(b). In this limit, the flow diagram becomes
symmetric with respect to f1/f2 �→ −f1/f2, and the separatri-
ces no longer cross the QBT axis for strict N = ∞. Inclusion
of a finite f3/f2 has qualitatively no influence. In the QBT
limit, the critical coupling gc, below which the semimetallic
phase is stable, vanishes for large N , implying spontaneous
symmetry breaking for all finite values of g > 0. As an aside,

1.5

1.0

0.5

0.0

GN3
GN3

D Q D

−∞ −103 −1 −10−3 0 10−3 1 103 ∞
f1/f2

g

(a)

1.5

1.0

0.5

0.0
D Q D

−∞ −103 −1 −10−3 0 10−3 103 ∞
f1/f2

g
N

/2

GN3

1

GN3

(b)
gc

Q

FIG. 5. RG flow diagram in the plane spanned by (f1/f2 ) and g for constant f3 = (2
√

3)−1 for (a) N = 2 and (b) in the limit N → ∞.
The Gaussian fixed points corresponding to the noninteracting Dirac and QBT systems are denoted D and Q, respectively, while GN3 is the
(2 + 1)-dimensional Gross-Neveu fixed point. The separatrices connecting the different fixed points are shown in dark red.
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DSM SSB DSM SSB

g0 gc1 gc2 gc3

(c)

DSM SSB

g0 gc

(b)

QBT

C3, tw = 0

C3, 0 < tw � t2/t⊥

SSB

g0

(a)

QBT

O(2)

FIG. 6. Schematic low-temperature phase diagram of QBT sys-
tems with (a) full rotational O(2) symmetry, (b) C3 symmetry with-
out trigonal warping tw = 0, and (c) sufficiently small trigonal warp-
ing 0 < tw  t2/t⊥ on the microscopic level, as a function of the
short-range interaction g. The insets indicate the low-energy fermion
spectra in the quadratic band touching (QBT), Dirac semimetal
(DSM), and spontaneous-symmetry-broken (SSB) phases.

we note the qualitative agreement between Figs. 5(b) and 3,
which is reassuring.

The low-temperature physics conveyed by the RG flow can
be summarized as follows:

(a) For initial couplings f1 = f3 = 0, which correspond
to the QBT with the full rotational O(2) symmetry, there is an
instability already at infinitesimal coupling [see Fig. 6(a)], in
agreement with the previous works [7,10,22–28].

(b) For the QBT systems with C3 symmetry only and
trigonal warping tuned to zero, f1 = 0 and f3 �= 0, there is
a stable semimetallic phase for g < gc with a finite critical
coupling gc > 0 [see Fig. 6(b)]. The instability occurs only
for g > gc, in agreement with the numerics of Ref. [20]. The
critical coupling vanishes in the large-N limit, as well as
when all O(2)-breaking microscopic perturbations, such as f3,
vanish.

(c) When the QBT point is split into the four symmetry-
allowed Dirac points by a sufficiently small positive trig-
onal warping, a more complex scenario emerges. For ini-
tial (microscopic) parameters 0 < f1/f2  1, lines of con-
stant f1/f2 cross a separatrix connecting Q and GN3 three
times. This leads to a rich phase diagram as a function
of the short-range coupling g, including three quantum
phase transitions at gci , i = 1, 2, 3, between semimetallic
and symmetry-broken phases [see Fig. 6(c)]. In the limit
f1/f2 ↘ 0, both gc1 and gc2 go to zero, and we recover the
standard phase diagram comprising a single critical coupling
gc ≡ gc3. This scenario is directly testable in current numeri-
cal setups [20,26].

V. DISCUSSION

Let us discuss the critical behavior that should be expected
for the continuous semimetal-insulator transitions that we
have established in the QBT systems with C3 symmetry. We
first note that all RG fixed points that we have found by
interpolating between the QBT and Dirac regimes are located
in the strict limits f1/f2 = 0 and |f1/f2| → ∞, respectively.
That this must be so, at least on the level of perturbation
theory, can be inferred from the following indirect argument.
Assume that a fixed point at finite 0 < |f1/f2| < ∞ exists.
Such a fixed point would describe a scale-invariant Dirac
system in which the coefficient f2/f1 of the quadratic term in
the dispersion does not flow. This, however, is in contradiction
with the fact that f2/f1 is power-counting irrelevant. Hence,
the only possible path in parameter space for the separa-
trix emanating from the fixed point GN3 when continuing
backwards in RG time is through the QBT axis f1/f2 = 0
(crossing this axis, as we have seen above, at a finite an-
gle), eventually approaching the fixed point Q. This general
argument is in agreement with our explicit findings (see
Fig. 5).

The quantum critical transitions shown in Figs. 6(b)
and 6(c) are therefore described by the fully relativistic
Gross-Neveu universality class with dynamic exponent z=1,
comparatively large correlation-length exponent ν = 1 +
O(1/N ), and large order-parameter anomalous dimension
ηφ = 1 + O(1/N ). The O(1/N ) corrections to these ex-
ponents depend on the symmetry of the order parameter
and the number of fermion flavors, as we discuss in the
following.

For the case of spinless fermions on the honeycomb bi-
layer, natural instabilities are towards an inversion-symmetry-
broken state [24], a charge density wave [27], or a quantum
anomalous Hall phase [7,47–49], all of which spontaneously
break Ising Z2 symmetries. The critical exponents of the
corresponding Gross-Neveu-Ising universality class are well
established [34–44]. Within the 1/N expansion, they read as
[5,35,36]

1/ν = 1 − 4

3π2N
+ 632 + 27π2

27π4N2
+ O(1/N3)

≈ 1.018(85) for N = 2, (59)

ηφ = 1 − 8

3π2N
+ 304 − 27π2

27π4N2
+ O(1/N3)

≈ 0.868(4) for N = 2. (60)

Here, we have estimated the numerical uncertainty for the
N = 2 case from the size of the O(1/N2) correction. Note
that N in our notation corresponds to the number of QBT
points in the microscopic theory, each of which splits into four
Dirac points with two-component (pseudo)spinors (equivalent
to two four-component Dirac flavors per QBT valley), in
the case without a physical spin. The values of the other
exponents α, β, γ , and δ can be obtained from ν and ηφ

by means of the usual hyperscaling relations [50]. For the
fermion anomalous dimension, even the O(1/N3) correction
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is known:

ηψ = 1

3π2N
+ 28

27π4N2

− 501 + 2268ζ (3) − π2(94 + 216 ln 2)

1296π6N3
+ O(1/N4)

≈ 0.0195(1) for N = 2. (61)

Although the precise determination of the exponents has not
been the focus of our work, it is satisfying to note broad
agreement of the above results with our RG calculations,
which led to the estimates ν ≈ 1 and ηψ ≈ 0.026 for N = 2,
as noted earlier.

For the spin- 1
2 case, the number of fermion flavors is

doubled, i.e., N = 4 for the case of the honeycomb bilayer.
An instability towards a charge density wave phase is pos-
sible in this case as well upon tuning the nearest-neighbor
repulsion [27]. Such a transition would be described by the
Gross-Neveu-Ising universality class with the above equa-
tions evaluated for N = 4, leading to 1/ν ≈ 0.988(21), ηφ ≈
0.933(1), and ηψ = 0.00910(1). The most natural instability,
however, which occurs upon tuning the onsite Hubbard re-
pulsion, is towards the Néel antiferromagnet [20,26], sponta-
neously breaking the Heisenberg SU(2) spin symmetry. The
critical behavior of the continuous transition is described by
the corresponding Gross-Neveu-Heisenberg universality class
[5,6,42,51–53]. In the 1/N expansion, the exponents are [53]

1/ν = 1 − 4

π2N
+ 104 + 9π2

3π4N2
+ O(1/N3)

≈ 0.940(41) for N = 4, (62)

ηφ = 1 + 16 + 3π2

3π4N2
+ O(1/N3)

≈ 1.010(10) for N = 4, (63)

and

ηψ = 1

π2N
+ 4

3π4N2

− 332 − 378ζ (3) + 9π2(5 + 4 ln 2)

72π6N3
+ O(1/N4)

≈ 0.0261(1) for N = 4, (64)

with z = 1. We note that the rough estimates ν = 1.0(2) and
z = 0.9(2) obtained in the simulations of spin- 1

2 fermions on
the honeycomb bilayer [20] are consistent with the above
values for N = 4 (corresponding to eight flavors of four-
component Dirac spinors).

Let us append a discussion on the expected finite-
temperature phase diagram, assuming a QBT system with-
out trigonal warping tw = 0 on the microscopic level. The
qualitative finite-temperature behavior can be obtained from
the RG by noting that temperature sets a scale at which the
flow is effectively cut off. For weak interactions g  gc, the
RG scale at which the flow escapes the regime of fixed point
Q is exponentially suppressed, leading to a large regime of
temperature values at which the dynamic critical exponent
is effectively z = 2 (see Fig. 1). Signatures of the splitting
into Dirac cones will only be observable at low temperatures

T � (T∗/N2) exp(− 4π
gN

), where T∗ = O(t2/t⊥) denotes the
absolute energy scale in the honeycomb bilayer system and
the factor 1/N2 accounts for the fact that self-energy effects
are suppressed in the large-N limit [cf. Eq. (55)]. In the
quantum critical regime at g � gc, there is a continuum of
excitations and the specific heat CV , for instance, will scale as

CV ∝ T d/z �
⎧⎨
⎩

T for T � T∗
N2 exp

(− 4π
gcN

)
,

T 2 for T � T∗
N2 exp

(− 4π
gcN

)
.

(65)

At stronger couplings g > gc, there will be a finite-
temperature phase transition towards an ordered state, assum-
ing that the latter does not break a continuous symmetry.
This is, for instance, the case for the inversion-symmetry-
broken, charge density wave, or quantum anomalous Hall
states discussed earlier. The critical temperature scales as Tc ∝
(g − gc)νz with z = 1 and ν as in Eq. (59) near the (2 + 1)D
Gross-Neveu-Ising quantum critical point. The classical criti-
cal regime in the vicinity of the finite-temperature transition in
this case is then described by the classical 2D Ising universal-
ity class, e.g., ν = 1 and ηφ = 1

4 . It shrinks upon approaching
g → gc from above. Note that in the case of continuous
symmetry breaking in the ordered ground state, such as in
the spin- 1

2 Hubbard model on the honeycomb bilayer for large
onsite repulsion, there will be no genuine finite-temperature
transition as a consequence of the Mermin-Wagner theorem.
Nevertheless, the finite-temperature crossovers depicted in
Fig. 1 will persist.

VI. CONCLUSIONS AND OUTLOOK

We have presented a theoretical analysis of 2D Fermi
systems with quadratic band touching on lattices with C3 sym-
metry. A natural physical realization is given by the problem
of interacting fermions on Bernal-stacked bilayer honeycomb
lattices, such as in bilayer graphene. We have derived an
effective low-energy continuum field theory that accounts for
the explicit breaking of the continuous rotational symmetry
characteristic for tricoordinate lattices and have shown, within
a consistent perturbative RG calculation, that density-density
interactions at two loops drive a splitting of each QBT point
into four Dirac cones. In contrast to the QBT systems with
full rotational symmetry, in the systems with C3 symmetry
only, the semimetallic state is stable within a finite range
of interactions 0 < g < gc. At the critical coupling gc, the
system undergoes a continuous quantum phase transition that
has no classical analog due to the presence of gapless fermion
degrees of freedom at criticality. This result is in agreement
with previous quantum Monte Carlo [20] and random phase
approximation studies [21].

The RG flow demonstrates that the quantum critical be-
havior near gc is described by the celebrated Gross-Neveu-
Ising (Gross-Neveu-Heisenberg) universality class for the
case of Ising (Heisenberg) symmetry breaking, and we have
given estimates for the universal critical exponents by em-
ploying known large-N calculations [5,35,36,53]. Our RG
results have also uncovered the complex phenomenology at
finite temperature, revealing crossovers between QBT, Dirac,
and quantum critical regimes. Furthermore, at small positive
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trigonal warping 0 < tw  t2/t⊥, we have predicted an inter-
esting sequence of three Gross-Neveu quantum phase transi-
tions as a function of the short-range interaction. All these
predictions are directly testable using current numerical se-
tups [20,26].

Bernal-stacked bilayer graphene exhibits an ordered
ground state below Tc ≈ 5 K with a zero-temperature gap
�(0) ∼ 3 meV [17]. The general scaling argument suggests
Tc ∼ T∗ exp(− 4π

gN
), with the effective energy scale T∗, which

may be estimated from the coefficient of the quadratic term in
the dispersion [Eq. (9)] as kBT∗ ∼ t2/t⊥ ∼ 20 eV [54]. From
this, we estimate g ∼ 0.6, which appears to be only slightly
larger than our result for the critical coupling gc ≈ 0.4 (see
Sec. IV C). This suggests that Bernal-stacked bilayer graphene
may be not too far from the Gross-Neveu quantum critical
point and that vestiges of the quantum critical scaling may
be observable in a regime above the transition temperature
T � Tc. This applies, for instance, to transport properties such
as the Hall coefficient RH, which in the disordered phase
scales as RH(T ) ∝ T −2/z for T > Tc. The dynamic exponent
z should then exhibit a crossover from z � 2 for T � Tc

to z � 1 for T � Tc. Below the transition temperature T <

Tc, the Hall coefficient will show an exponential behavior
RH(T ) ∝ exp[�(T )

kBT
].

Setups that allow one to tune the interaction strength exper-
imentally should be able to reveal the quantum critical regime
directly. It would be interesting to investigate this scenario,
e.g., using cold atoms in an optical lattice [55].

A worthwhile theoretical issue that we have neglected here,
but may be relevant for bilayer graphene, is the effect of
the long-range tail of the Coulomb repulsion. In the QBT
limit, with vanishing trigonal warping, the density of states is
finite and a long-range interaction is expected to be screened
at low energy. When the QBT points split into Dirac cones
due to the self-energy corrections, by contrast, screening

is effectively suppressed. This might lead to a nontrivial
interplay between the long- and short-range components of
the Coulomb interaction, potentially with similarities to the
intriguing higher-dimensional case [8,31,56–60]. It may also
be useful to study the self-energy effects in the context of
the competing-order problem occurring in realistic models
for Bernal-stacked bilayer graphene [10]. To this end, one
would need to extend the present single-channel analysis by
employing a suitable Fierz-complete basis of four-fermion
interactions [24,32,33] and studying the resulting interplay
between these channels. This could lead to even richer physics
at low and intermediate temperatures.

Throughout this work, we have assumed particle-hole sym-
metry. In real bilayer graphene, this will be broken due to
the presence of longer-ranged hopping terms. In that case, the
Dirac cones generated dynamically from self-energy effects
will form electron and hole pockets. This might lead to further
instabilites at the lowest temperatures and potentially new uni-
versality classes beyond the relativistic Gross-Neveu-Yukawa
family.
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APPENDIX A: POSITION-SPACE PROPAGATOR

We consider here the position-space propagator G0(x),
since it is the elementary building block as far as the eval-
uation of Feynman diagrams in real space is concerned. It
satisfies the relation [∂τ + H0(−i∇)]G0(τ, x) = δ(3)(τ, x).
Translational invariance behooves us to solve it in Fourier
space, to wit:

G0(τ, x) =
∫

dω d2 p
(2π )3

ei(ωτ+ p·x)G̃0(ω, p), (A1)

with G̃0(ω, p) = [iω + H0( p)]−1. The basic strategy now is to perform the Fourier integral in cylindrical coordinates

p = (ρ cos ϕ, ρ sin ϕ); x = (r cos ϑ, r sin ϑ ); p · x = rρ cos(ϕ − ϑ ).

For reasons of analytical tractability, we expanded the expression as a multilinear form in powers of rotational symmetry breaking
(f1, f3 for the QBT theory and f2 for the Dirac theory), keeping up to second-order corrections, since that is the order to which
we intend to evaluate all Feynman diagrams subsequently. Let us first consider the QBT limit |f1/f2|  1. We parametrize the
expanded propagator as

G̃0(ω, p) =
∑
μnm

σμ ⊗ (σ 3)n
[
P̃ c

μnm(ω, ρ) cos(mϕ) + P̃ s
μnm(ω, ρ) sin(mϕ)

] (f1 + ρ2f3)n

(ω2 + ρ4)1+n
, (A2)

where μ ∈ {0, 1, 2}, k,m, n ∈ N≥0, and (σμ) = (12, σx, σy ). We have also set f2 = 1 in the present QBT limit for convenience.
We wish to expand to second order of rotational symmetry breaking, i.e., n + m ≤ 2. The nonvanishing terms in G̃0(ω, p) are
then found to be

P̃ c
000(ω, ρ) = −iω, P̃ c

102(ω, ρ) = ρ2 = P̃ s
102(ω, ρ), P̃ c

013(ω, ρ) = 2iωρ3, P̃ c
111(ω, ρ) = ω2ρ = −P̃ s

111(ω, ρ),

P̃ c
115(ω, ρ) = −ρ5 = P̃ s

115(ω, ρ), P̃ c
020(ω, ρ) = i(ω3ρ2 − ωρ6), P̃ c

026(ω, ρ) = −2iωρ6,

P̃ c
122(ω, ρ) = −2ω2ρ4 = P̃ s

122(ω, ρ), P̃ c
124(ω, ρ) = −ω2ρ4 = −P̃ c

124(ω, ρ), P̃ c
128(ω, ρ) = ρ8 = P̃ s

128(ω, ρ). (A3)
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In the opposite Dirac limit, a similar expansion can be found in powers of f2 (now setting f1 = 1). The momentum-space
propagator is then parametrized as

G̃0(ω, p) =
∑
μnm

σμ ⊗ (σ 3)1+n
[
Q̃c

μnm(ω, ρ) cos(mϕ) + Q̃s
μnm(ω, ρ) sin(mϕ)

] f n
2

(ω2 + ρ2)1+n
, (A4)

where the Q̃ c,s
μnm(ω, ρ) again are bivariate polynomials, the nonvanishing ones among which are given by

Q̃c
000(ω, ρ) = −iω, Q̃c

101(ω, ρ) = ρ = −Q̃s
201(ω, ρ), Q̃c

013(ω, ρ) = ωρ3,

Q̃c
112(ω, ρ) = ω2ρ2 = Q̃s

212(ω, ρ), Q̃c
114(ω, ρ) = −ρ4 = −Q̃s

212(ω, ρ), Q̃c
020(ω, ρ) = i(ω3ρ4 − ωρ6),

Q̃c
026(ω, ρ) = −2iωρ6, Q̃c

121(ω, ρ) = −2ω2ρ5 = −Q̃s
221(ω, ρ),

Q̃c
125(ω, ρ) = −ω2ρ5 = Q̃s

225(ω, ρ), Q̃c
127(ω, ρ) = ρ7 = −Q̃s

227(ω, ρ). (A5)

In both cases, the Fourier integral with respect to ω is elementary. For the subsequent integral over ϕ, we employ the Jacobi-
Anger expansion [61] in the form

eikρ cos(ϕ−ϑ ) = J0(kρ) + 2
∞∑

m=0

imJm(kρ)[cos(mϕ) cos(mϑ ) + sin(mϕ) sin(mϑ )], (A6)

where Jm is the Bessel function of the first kind and order m, followed by the orthogonality relations of cos and sin in L2([0, 2π ]).
The remaining integral over ρ turns out to be in fact expressible in terms of elementary functions, hence one obtains explicit
expressions for the tree-level propagator in position space. We abstain from quoting them here in their full splendor due to their
extraordinary length, and because they are not particularly enlightening.

APPENDIX B: PADÉ COEFFICIENTS

Let us write the coefficient of mth order in (f1/f2) in the β function of a quantity X with X ∈ {g, (f1/f2), (f3/f2)} as β
(±,m)
X

defined by

β(X) �
{∑

m≥0 β
(+,m)
X (f1/f2)m for f1/f2 → 0,∑

m≥0 β
(−,m)
X (f1/f2)−m for f1/f2 → ∞.

(B1)

Equations (37)–(39) allow to read off β
(+,m)
X , while the dual coefficients β

(−,m)
X can be read off from Eqs. (42) and (43).

The Padé coefficients defined in Eqs. (56)–(58) are then given by

a0 = β
(+,0)
f1/f2

, a1 = β
(+,1)
f1/f2

+
(
β

(+,0)
f1/f2

)2

(
β

(−,1)
f1/f2

)2 − β
(+,1)
f1/f2

β
(−,1)
f1/f2

, a2 = β
(+,0)
f1/f2

β
(−,1)
f1/f2

− β
(+,1)
f1/f2

,

b1 = β
(+,0)
f1/f2(

β
(−,1)
f1/f2

)2 − β
(+,1)
f1/f2

β
(−,1)
f1/f2

, b2 = 1

β
(−,1)
f1/f2

, c0 = β
(+,0)
f3/f2

, c1 = β
(+,1)
f3/f2

, c2 = β
(−,0)
f3/f2

,

d0 = β (+,0)
g , d1 = β (−,1)

g , d2 = β (+,2)
g + β (+,0)

g

β (−,2)
g − β (+,2)

g

β
(+,0)
g − β

(−,0)
g

, d4 = β (−,0)
g , e2 = β (−,2)

g − β (+,2)
g

β
(+,0)
g − β

(−,0)
g

. (B2)
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