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Photoinduced entanglement in a magnonic Floquet topological insulator
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When irradiated via high-frequency circularly polarized light, the stroboscopic dynamics in a Heisenberg
spin system on a honeycomb lattice develops a next-nearest-neighbor (NNN) Dzyaloshinskii-Moriya (DM) type
term, making it a magnonic Floquet topological insulator. We investigate the entanglement generation and its
evolution on such systems, particularly an irradiated ferromagnetic XXZ spin- 1

2 model in a honeycomb lattice as
the system parameters are optically tuned. In the high-frequency limit, we compute the lowest quasienergy state
entanglement in terms of the concurrence between nearest-neighbor (NN) and NNN pair of spins and witness
the entanglement transitions occurring there. For the easy-axis scenario, the unirradiated system forms a product
state but entanglement grows between the NNN spin pairs beyond some cutoff DM strength. Contrarily in the
easy-planar case, NN and NNN spins remain already entangled in the unirradiated limit. It then goes through
an entanglement transition which causes decrease (increase) of the NN (NNN) concurrences down to zero (up
to some higher value) at some critical finite DM interaction strength. For a high frequency of irradiation and
a suitably chosen anisotropy parameter, we can vary the field strength to witness sudden death and revival of
entanglement in the Floquet system. Both exact diagonalization and modified Lanczos techniques are used to
obtain the results up to 24 site lattice. We also calculate the thermal entanglement and obtain estimates for the
threshold temperatures below which nonzero concurrence can be expected in the system.
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I. INTRODUCTION

Recently, there is an upsurge of interest in realizing and
utilizing quantum information aspects of various quantum
many-body systems (QMBS). Built at the interface of quan-
tum information science, condensed matter theory, statistical
physics, and quantum field theory, the study of many-body
entangled states rapidly has become a very active topic of re-
search. In this respect, quantum entanglement plays a crucial
role in the highly efficient quantum computation and quantum
information processing [1,2]. With the rapid development
of the experimental process on quantum control, there is a
rapidly growing interest in entanglement generation. Thus,
the quantification of entanglement has found a key place in
quantum information process applications.

On the other hand, recent study of Dirac and topological
magnons in solid-state magnetic systems [3–7] is expected
to open a challenging avenue towards magnon spintronics
and magnon thermal devices. Since the magnons are charge-
neutral quasiparticles, it is believed that the magnon quantum
computing will offer a favorable pathway for eliminating the
difficulties posed by charged electrons [8,9] and, as such,
the magnonic devices would be more efficient in quantum
memory and information storage [10–13].

In this context, our focus is to study the entanglement
in a magnonic system that is irradiated via a strong peri-
odic circularly polarized light. There are many measures of
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entanglement, such as entanglement entropy, entanglement of
formation, purity or negativity capturing the quantum corre-
lation within an interacting system by different means. Von
Neumann entropy gives a standard measure for entanglement
of pure states. But, for a generic mixed state, an entanglement
entropy can give nonzero values for each of the subsystems
even if there is no entanglement. So, in those cases it is
the entanglement of formation that gives a true measure of
entanglement [14]. For a given purity or mixedness, with
different possible combination of pure states that the state
can collapse into, it is the entanglement of formation that
gives the minimum number of singlets required to create the
mixed density of states. This is a monotonically increasing
function of an argument called concurrence C, with 0 �
C � 1, which by itself can also be regarded as a measure
for entanglement in a mixed state, for example, between
a pair of qubits within a multiqubit large system [14]. In
fact, this is an entanglement monotone which is zero for
separable states and unity for Bell states (four maximally
entangled two-qubit states). For a pair of qubits, concurrences
are well defined as will be described later. Our analysis shows
their tunability in terms of the frequency of irradiation and
provides significant control over the quantum information
processing.

At the very outset, let us reiterate here that recent trends
show plenty of work on optical lattices involving Dirac
plasmons [15], Dirac magnons [7], or photonic topological
insulators [16] that have Dirac-type bosonic spectrum. When
dynamics is studied in such systems in presence of time-
varying fields, a plethora of exotic phenomena such as defect
productions, dynamical freezing, dynamical phase transition,
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or entanglement generation [17–20] can be expected. Particu-
larly for a periodic quench, one can use the Floquet theory
[21] for stroboscopic evolution [22] of the system, which
results in an effective static Hamiltonian out of the originally
dynamical system.

A Dirac system shows interesting dynamical features upon
light irradiation [23–34]. An irradiated field can lead to
nontrivial Floquet systems like Floquet topological insulators
(FTI) [23], as can be seen, for example, in an irradiated
semiconductor quantum well [24] or a three-dimensional
(3D) topological insulator [25]. We know that a ferromag-
netic Heisenberg spin- 1

2 (FMHS) model with next-nearest-
neighbor (NNN) Dzyaloshinskii-Moriya interaction (DMI) in
a honeycomb lattice, under a linear spin-wave approximation
(LSWA), turns out to be a magnonic equivalent of the Haldane
model, the famous primitive toy model to show topological
transitions [35]. Interestingly, this can also be achieved via
irradiation with high-frequency circularly polarized light [36].
The resulting Floquet Hamiltonian develops easily tunable
synthetic laser-induced NNN DMI in addition to a FMHS
with modified anisotropy. Within LSWA, the model behaves
like a bosonic Haldane model enabling the system to emerge
as topologically nontrivial at intermediate frequencies of the
irradiation.

In this paper, we probe the entanglement characteristics of
such Floquet model, born out of irradiating the spin system,
both in their topologically trivial and nontrivial limits. In the
infinite-frequency limit (which is equivalent to zero DMI),
the resulting lowest quasienergy state is a ferromagnetic
product state and hence unentangled, unless the anisotropy
is of easy-planar type. But, with moderately high frequen-
cies (but not small ones, as discussed in Appendix A for
which other higher-order terms from the high-frequency ex-
pansion of the Floquet Hamiltonian also become relevant),
the system can become entangled due to generation of the
DMI term, as an antisymmetric DM exchange interaction
can excite entanglement and teleportation fidelity [37] in
the system. This is a short-range interacting system and
thus the entanglement transitions do not coincide with the
topological transition that occurs as soon as DMI term is
brought in. However, deep within the topological phase, the
system shows finite entanglement, irrespective of the value of
anisotropy.

While dealing with low-temperature entanglement of these
systems, we not only need information of the lowest-energy
state, but that of low-energy excitations as well. Following
that, a measurement on thermal entanglement is very effective
in this context. We compute thermal concurrences in our
Floquet model and notify its behavior at the various low
temperatures.

For numerical computation, we use diagonalization meth-
ods like exact diagonalization (for small lattices with L = 6
and 12) and a modified Lanczos technique [38] (for L = 18
and 24) and obtain the concurrences there from.

The paper is organized as follows. In Sec. II, we start
with the Hamiltonian formulation of the problem. In Sec. III,
we introduce concurrences in the Floquet model and discuss
briefly how to compute that. Section IV details our results
and the corresponding discussion, and finally in Sec. V, we
conclude our work.

II. HAMILTONIAN FORMULATION

A ferromagnetic spin- 1
2 XXZ model is given as

HJ = −J
∑
〈i,j〉

[
Sz

i S
z
j + �0

2
(S+

i S−
j + H.c.)

]
. (1)

When such system is irradiated with light, the electric field
(E) of the light interacts with the spin moments (μ) yielding
time-periodic Aharonov-Casher phases [39] φij = 1

h̄c2

∫
E ×

μ · dxij between sites i and j in the lattice. This paves the way
for a Floquet analysis resulting in an effective static Hamilto-
nian for the dynamic system. Particularly for high-frequency
circularly polarized irradiation with E = E0(cos ωt, sin ωt ),
a high-frequency expansion can lead us to a Floquet Hamilto-
nian given as
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]

+Dα (ω)
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)

= −J
∑
〈i,j〉

[
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z
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2
(S+
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j + H.c.)

]

+ Dα (ω)

2

∑
〈〈i,k〉〉

νik (iS+
i S−

k + H.c.). (2)

The details of the calculation can be found in Appendix A.
Notice that the spin anisotropy gets altered from �0 to �α =
J0(α)�0 thereby changing the spin anisotropy parameter in
the Floquet model. Here, Jn(α) is the nth-order Bessel’s
function of first kind with α = gμBaE0

h̄c2 (see Appendix A
for definition of the parameters). Furthermore, an additional
NNN DMI term sets in having amplitude Dα (ω) = K (α)/ω
where K (α) = √

3�2
0J

2J1(α)2. So, for very large ω, this is
essentially zero and can only become significant otherwise.
This DMI term acts as a complex NNN hopping term, like
in a spinless Haldane model, and is the reason behind its
topological nontriviality. Here, νik is a prefactor for hopping
between sites i and k and νik = +1 (−1) for i, k ∈ A (B )
sublattice of the system.

III. CONCURRENCE IN FLOQUET MODEL

In order to compute the concurrence of the ground state
as well as low-energy excitations of a system, we need the
full energy spectrum of the problem and we use numerical
diagonalization of the Hamiltonian matrix to serve that pur-
pose. As we deal with a Floquet model here, we look out for
the Floquet quasienergy spectrum and, particularly, the lowest
quasienergy state and concurrences therein.

We first briefly describe the lattice, its site numbering and
its bond connections, that are necessary to identify different
interaction pairs. A honeycomb lattice [see Fig. 1(a)] can more
conveniently be described using a brick-wall lattice. First, we
use periodic boundary condition (PBC) and the site number-
ing is given accordingly. The example for L = 18 site lattice
can be seen in Fig. 1(b). For computing concurrence between
NN and NNN pairs, we considered the numbered pairs (3,4)
and (3,11), respectively. Please note here that this numbering
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FIG. 1. (a) Honeycomb lattice containing sublattices A and B. Unit vectors e1, e2, and e3 (see Appendix A) are shown as well. Site
numbering, implementing (b) PBC and (c) OBC, in a brick-wall lattice (which is topologically equivalent to a honeycomb lattice) of size
L = 18. The odd (even) numbered sites fall within the sublattice A (B).

is not unique and we only need to ensure that the numbering
and boundary conditions do not break the symmetry of the
lattice and treat each of the hexagonal plaquettes equally. In
order to see the effect on entanglement at the edges, later we
also consider finite systems using open boundary conditions
(OBC) along y directions. As can be seen from Fig. 1(c),
this amounts to a pair of (zigzag) edges parallel to the x

direction while the system effectively extends to infinity along
x following the usual PBC (like in a nanoribbon).

Our paper deals with systems of lattice size L =
6, 12, 18, and 24, respectively. Due to numerical constraints,
we use exact diagonalization only for smaller 6 and 12 site
lattices while for L = 18 and 24, we use a modified Lanczos
technique [38]. This latter method search for the ground state
(a lowest quasienergy state, in this case) starts from a random
state ψ0, with nonzero overlap with the ground state. This is
then acted upon by the Floquet Hamiltonian HF to obtain
the state ψ ′

0 = HF ψ0−〈HF 〉ψ0√
〈H 2

F 〉−〈HF 〉2
, which is orthogonal to ψ0. The

Hamiltonian, in its 2 × 2 representation spanned by the basis
states ψ0 and ψ ′

0, is then diagonalized. The lowest eigenstate
is renamed as ψ0 and iterations are continued until the true
minimum energy state is obtained. See Ref. [38] for details.

Given the state, we can now compute the concurrence
between NN or NNN spins. Let us call the spin-z basis vectors
as |φj 〉’s, in terms of which we can write the eigenstates
of our Hamiltonian as |ψi〉 = cij |φj 〉 and let Ei denote the
ith eigenvalue. The ground-state density matrix will then be
given by ρG = |ψ0〉〈ψ0|. We can also compute the thermal
density matrix which, in the canonical ensemble, is given by
ρT = 1

Z

∑
i e

−βEi |ψi〉〈ψi |, with Z = ∑
i e

−βEi .
As the system is bipartitioned into subsystems a and b, we

can write |φi〉 = |φa
i 〉 ⊗ |φb

i 〉 and the reduced density matrix

in the subsystem a will be given as

ρR
iaja

= 1

Z

∑
k,ib,jb

c	
kickj e

−βEk δφb
i ,φb

j
. (3)

Our subsystem a consists of a pair of spins, especially NN or
NNN pairs, that we consider here. We should mention here
that our work involves bipartite entanglement alone and does
not deal with entangled states (like a GHZ state or a W state)
corresponding to further partitioning of systems.

Now, let us look at the definition of quantum concurrence.
For a two-qubit system, the pure state |ψ〉 contains a measure
of concurrence C(|ψ〉) = |〈ψ |ψ̃〉|, where |ψ̃〉 is the time-
reversed state of |ψ〉. For a spin system, a time-reversed
state is the spin-flipped state and for a spin- 1

2 (two-qubit)
system it is given by |ψ̃〉 = (σy

1 ⊗ σ
y

2 )|ψ	〉. When we have
a general mixed state, full information of the wave function is
not available and the time-reversed density matrix is obtained
instead, as ρ̃R

12 = (σy

1 ⊗ σ
y

2 )ρR	

12 (σy

1 ⊗ σ
y

2 ), to compute the
concurrence. Here, ρR

12 denotes the reduced density matrix at
the reduced two-qubit level. Concurrence becomes a function
of ρR

12 and can be shown [14] to be given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (4)

where λi’s denote the square root of eigenvalues of R12 =
ρR

12ρ̃
R
12 in descending order.

IV. RESULTS AND DISCUSSION

First, we study the effect of anisotropy or �α at
ω → ∞ limit, i.e., the anisotropic Heisenberg ferromagnetic
spin system alone. Within the lowest quasienergy state, we
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FIG. 2. CNN and CNNN versus �α at ω → ∞ limit for
L = 6, 12, 18, and 24, respectively.

probe the concurrence between nearest-neighbor sites (CNN)
and that between next-nearest-neighbor sites (CNNN) of the
Floquet model. See Fig. 2 for results of C vs �α for lattices
with L = 6, 12, 18, and 24. Physically, variation of �α can
be achieved by varying �0, keeping α fixed. We see that
concurrence becomes nonzero abruptly at �α = 1, signaling
an entanglement transition. This feature remains intact in the
thermodynamic limit as well, as shown via finite-size scaling
in Appendix B. However, the jump/discontinuity reduces as
lattice size is increased.

Next, we consider the situation as the DMI is turned on,
with decrease of ω to finite large values. We see the con-
currence CNNN to appear and then increase gradually beyond
some cutoff Dα (ω) values for �α < 1 whereas CNN always
remains zero. That cutoff remains the same as long as the
Ising anisotropy remains. For �α � 1, the system is already
entangled at Dα (ω) = 0. There is also a cutoff Dα (ω) strength
in this case, beyond which CNN perishes and CNNN shoots up
and keep on increasing to reach a plateau finally. We should
mention here that for a fixed α, Dα (ω) is inversely propor-
tional to ω and as such Dα (ω) can be replaced with ω−1 to
visualize the frequency dependence of the concurrences more
clearly. Accordingly, Fig. 3 shows variation of concurrences
in terms of ω−1 in units of the prefactor K (α).

Now, let us explain the results of concurrence that we get.
At very large frequency, the DMI term becomes negligible
and the XXZ model of the Floquet Hamiltonian shows finite
entanglement as soon as the anisotropy becomes easy planar.
The product state of the easy-axis ferromagnet (FM) turns
into a entangled state with moments oriented in the spin-xy

plane [40]. Finally, for �α → ∞, the ground state still has
no product state form as no direction in the xy plane is
preferred for the spin moments. As a result, the entanglement,
emerging from �α → 1+, gradually saturates to a finite value
for large �. With ω → ∞ [or, Dα (ω) = 0], there is no direct
interaction between NNN spins. The Heisenberg point being
the critical point, spin correlation is at its peak for closest
spins, which then decays as the distance between the spins
is increased. Hence, both NN and NNN spins are very much
correlated as well as entangled at �α = 1. Moreover, as the
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FIG. 3. Concurrence versus 1/ω [in units of K (α)] for (a) L =
12 and (b) L = 18. In (b), results are obtained using modified
Lanczos technique whereas in (a) both exact diagonalization (circles)
and Lanczos (lines) results are shown.

entanglement producing spin-fluctuation terms appears only
between NN spins, we find CNN > CNNN whenever they are
nonzero. We should emphasize here that as spin exchange be-
tween NN pairs entangles them more, we see CNN to increase
steadily with �α beyond the Heisenberg point. This pushes
CNNN for steady decrease possibly due to spin conservation
or the monogamy of entanglement [41]. Let us add here that
the bump in CNNN observed for �α → 1+ at L = 12 is a
finite-size effect which gets wiped off significantly in the
plot corresponding to L = 18 and 24. Notice that it does not
appear for L = 6 as PBC makes this a special case where the
NN and third-NN sites often become identical.

Now, as the DMI term is turned on, due to decrease of the
frequency of irradiation from very large values, the system
becomes topological. However, it takes some finite Dα (ω)
values to get the Floquet system with easy-axis anisotropy
to become entangled for NNN spin pairs. This is because
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FIG. 4. Variation of CNN (black) and CNNN (red/gray) as a func-
tion of α on a L = 18 size lattice for (a) ω = 10J and �0 = 5 and
(b) ω = 3.5J and �0 = 1.5. The inset shows the variation of �α and
Dα (ω) with α.

the NNN spin-fluctuation terms oppose the FM ordering and
it takes a finite threshold to disrupt that ordering and set in
entanglement. On the other hand, the NN pairs never get
entangled by introduction of this complex NNN hopping term.
The easy-plane ferromagnet, which had finite CNN and CNNN,
shows decrease and increase in entanglement with Dα (ω)
for NN and NNN pairs, respectively. The DMI term is a
precursor of the spin-orbit coupling in the system and it favors
spin canting. As this term acts between NNN pairs, a strong
Dα (ω) indicates a larger correlation among the NNN pairs.
But, it also competes with NN spin exchange term and lets the
correlation between the NN pairs perish gradually. Figure 3(a)
shows the concurrence results for L = 12 where both exact
diagonalization and Lanczos results are shown, which fairly
match for the values of anisotropies considered. For larger
L = 18 site lattice, we use the Lanczos method and obtain
the same qualitative results as shown in Fig. 3(b). Notice that
for the easy-planar case, CNNN shows two smooth branches
connected by a jump/discontinuity in the middle [however,
such high-frequency branch vanishes for very large �α , as
also can be seen in Fig. 4(a) which shows CNNN = 0 for
small α’s]. Using finite-size scaling analysis, we have seen
this to exist even in the thermodynamic limit (see Appendix
B). This is a phase transition in which a redressing of the
spins develops within the spin-xy plane. An easy-planar fer-
romagnet already has entangled NN and NNN spin pairs even
without any DMI term. With finite ω, DMI is brought in which
opposes the existing NNN spin ordering (and that enhances
CNN accordingly due to monogamy of entanglement) resulting
in slight reductions in CNNN with ω. On the other hand,
the low-ω or large-Dα (ω) branch of the plot appear beyond
the cutoff Dα (ω) strength, like in the easy-axis case, and
characterizes the increase in NNN spin correlation (in its
DMI induced new spin ordering) with Dα (ω) or ω−1. Our
results on C-vs-1/ω plots describe variation of concurrences
as the Dα (ω) is varied, keeping α fixed. But, it is also useful
to look at the variation of concurrences with α (see that α

is proportional to the electric field amplitude E0) for fixed
large ω values. In Fig. 4 we can see such variations for two
different sets of (ω,�0). In Fig. 4(a) and within the range of α

shown, easy-planar anisotropy is experienced by the Floquet
system. It shows that a large anisotropy �α can push CNNN

to zero even at the unirradiated limit α = 0. In Fig. 4(b), we
consider a comparatively small ω, yet being large compared to
J and �0J . It shows transition from easy-planar to easy-axis
anisotropy (see the inset). With increase of α, the anisotropy
�α changes from easy-planar to easy-axis type (beyond α =
1.2) and that makes CNN to go to zero for all larger α values,
whereas the behavior of CNNN demonstrates aptly the sudden
death and revival of entanglement [42] as it remains zero only
if the Dα (ω) is less than the cutoff value as mentioned in the
discussion pertaining to Fig. 3.

A. Thermal entanglement

We know that the ground state is realized at zero tempera-
ture and, in practice, low-energy excitations also need to be
taken into account to understand the low-temperature phe-
nomena in a system. Thus, in our case, it is wise to take a look
at the thermal entanglement that corresponds to entanglement
properties at a finite temperature. Figure 5 shows the results of
thermal concurrences CNN and CNNN in a L = 12 size system
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FIG. 5. (Top) Thermal concurrence for L = 12 at �α = 1.5.
Threshold temperature Tth for CNN (bottom left) and CNNN (bottom
right) in the Dα (ω) − �α plane.
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tween the edgeless and edged configurations corresponding to �0 =
1.0, 1.5 , and 2.0 and ω = 5J at L = 18. The inset shows the same
plot zoomed in around f = 1.

obtained for various β (= 1
kBT

) values, and for �α = 1.5. Our
thermal entanglement results show that temperature causes the
entanglement measure in the system to wear off and, with
high temperature, the thermal fluctuation leads the system
towards complete unentanglement. As further quantification,
we compute the threshold temperature Tth above which there
is no concurrence possible in the Floquet states. In bottom
panel of Fig. 5, we show the variation of Tth for CNN and CNNN

in a Dα (ω) − �α plane. It shows that a large �α (i.e., much
larger than unity) keeps the NN spins entangled up to some
appreciably large-Tth values, if the irradiation born Dα (ω)
term is not very strong. On the other hand, a large Dα (ω)
makes the NNN spins entangled with appreciably large-Tth

values when easy planar �α is not very large.

B. Results for finite geometries with edges

As the presence of the DMI term brings in topological
nontriviality to the Floquet problem, we need to pay special
attention to the edges. Hence, we consider finite-size clusters
with PBC along x and OBC along y so as to produce nanorib-
bon geometries with zigzag edges at the top and bottom along
the x direction and try to quantify the edge correlations in the
system. First, we calculate the fidelity f (i.e., wave-function
overlap) between the lowest quasienergy states of an edgeless
(with PBC along x and y) and edged (with PBC along x,
OBC along y) system (for L = 18) as HF is optically tuned
keeping ω fixed. A few results are shown in Fig. 6 for
isotropic as well as easy-planar configurations. The oscillating
behavior appears due to the presence of Bessel’s functions
within the Hamiltonian parameters. At Heisenberg point, we
witness f = 1 in the unirradiated limit, implying identical
states for the edged and edgeless configurations. Hence, like
any property, entanglement measures also do not change by
merely bringing in such edges. But, larger anisotropies (like
�0 = 1.5, 2.0, as shown in Fig. 6) causes states to differ
even in the unirradiated limit and we get different measures
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FIG. 7. CNN (black) and CNNN (red/gray) versus α at the edges
(solid lines) and within the bulk (dashed lines) of a L = 18 size
lattice with PBC along x and OBC along y for ω = 5J and for
(a) �0 = 1.5 and (b) �0 = 2.0, respectively.

for concurrences for edge spin pairs and bulk spin pairs (see
Fig. 7). Particularly, if we look at the variation of CNN and
CNNN with DMI strength Dα (ω) for fixed �α values (see
Fig. 8), we find larger estimates for concurrences for edge spin
pairs as compared to that for a bulk pair, even though the qual-
itative features of the two cases do not show any discernible
difference. We identify this as an edge effect and suspect
that the reduction of coordination numbers for the spins at
edges can amount to further entangling of the edge pairs
as a result of monogamy of entanglement [41]. We reiterate
here that our fidelity calculation can only indicate identical or
nonidentical lowest quasienergy state entanglement behaviors
depending on whether f = 1 or f 
= 1. For α 
= 0, we obtain
f 
= 1 in general and different entanglement measures can be
expected for the edged configuration. As long as �α = 1, our
results show full fidelity (see Fig. 6 and the corresponding
entanglement match in Fig. 7). We can say that for those
cases, edge states are not present in the lowest quasienergy
states of the FTI. Other than those points, we witness both
CNN and CNNN to reach larger values at edges as compared
to that in bulk, in the nanoribbon geometry considered (see
Figs. 7 and 8). A fractional fidelity implies that the wave
functions at the edges are more likely to differ from that of
an edgeless configuration. This leaves room for the possibility
of the lowest quasienergy state to contribute to the conducting
edge modes, which indicates gaplessness of the spectrum.
We know that the entanglement entropy of a short-ranged
gapped system shows areal law behavior for the ground-state
entanglement [43], whereas for a gapless system a logarithmic
correction is added to that with prefactor proportional to the
central charge of the corresponding conformal field theory
at the critical point [44]. This makes entanglement at the
gapless point to be higher than that of a gapped regime. We
find that the entanglement measure of two-qubit concurrence,
that we calculate here, also demonstrates similar behavior and
produces larger concurrences at the edges than within the
bulk.
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FIG. 8. (Top) CNN and (bottom) CNNN versus Dα (ω), for fixed
�α values, within the bulk (black lines) and at the edges (red lines)
on a L = 18 size lattice with PBC along x and OBC along y.

V. CONCLUSION

In this work, we have studied spin-spin entanglement in a
Floquet system arising out of a FMHS model in a honeycomb
lattice irradiated via circularly polarized light. Although this
work can be termed as a simple study of entanglement for a
spin- 1

2 XXZ model with NNN DMI on a honeycomb lattice,
the easy synthetic tunability of the Floquet system makes this
work stand out firmly of the rest for we have the freedom to
adjust the parameters of the Hamiltonian. We find that just
by varying the amplitude and frequency of irradiation, and
not directly modifying the anisotropy or DMI strengths as
such, can lead to a plethora of interesting findings, in two-spin
ground state as well as thermal concurrences. First, when ω is
very large (as compared to J and �0J ), the DMI contribution
is negligible and increasing the field strength reduces the
spin anisotropy �α . For the easy-planar scenario, reduction
of �α comes with decrease (increase) of CNN (CNNN). This
occurs as �α quantify interactions between NN spin pairs
as well as due to the monogamy of entanglement. Across

the Heisenberg point corresponding to the Floquet model, a
transition develops from entangled to unentangled NN and
NNN spin pairs. If the original spin anisotropy �0 is barely
above unity, high-frequency irradiation can make the system
unentangled, producing separable product states in the lowest-
energy eigenfunctions.

Now, as the frequency becomes intermediate so as to
make Dα (ω) appreciable, the system becomes topological.
We see no coincidence between topological and entanglement
transitions occurring there. In fact, this is not surprising as our
working model obtained from the Floquet theory comprises
of short-range interaction/spin fluctuations alone and, hence,
unlike in long-range entangled fractional Hall systems [45],
we do not see any immediate entangling or disentangling
as the DMI term is turned on. However, we notice inter-
esting nontrivial entanglement features in presence of the
DM term. The easy-axis Floquet FMHS system produces
nonzero CNNN beyond a cutoff D value, as the DM term
competes with the NN spin-flip term of the Hamiltonian.
For the easy-planar case, both CNN and CNNN are nonzero
without a DM term. Here, also CNNN shoots up to a higher
value beyond a cutoff Dα (ω) while CNN reduces down to
zero. When we vary the field strength (which is propor-
tional to α), we find that we can choose to have conve-
nient parameters so that sudden death and revival/rebirth of
entanglement can be observed. Thus, smooth optical tuning
(i.e., altering α and hence the field strength) can result in
interesting abrupt changes in the entanglement as easy-axis
and easy-planar Floquet system shows different entanglement
behavior.

Other than the bulk, we also study a zigzag edged config-
uration and probe the effect of high-frequency irradiation on
that. We find that the lowest quasienergy state differs due to
the development of edges in the easy-planar Floquet system
and causes the concurrence measures to be higher at the edges
as compared to that within the bulk.

Ours is an important piece of work as the concurrence
patterns obtained can be useful in extracting quantum infor-
mation from various QMBS. For example, controlled creation
or destruction of entanglement via tuning concurrence of the
Floquet states has already been shown for periodically driven
coupled flux qubits [46]. Structures of entanglement for both
surface and bulk states are examined in the topological insula-
tor Bi2Te3 [47] or the full density matrix of two-qubit systems
have been measured experimentally and the corresponding
concurrence and fidelity computed [48].

We also study thermal concurrence in our Floquet system
and demonstrate how the system entanglement steadily de-
creases with the temperature. Our thermal concurrence results
also add important insight to the low-temperature entangle-
ment behavior in QMBS. Down the line, one can also explore
the effect of transverse (normal to easy direction) magnetic
field on the spins that sometimes witness enhancement of
thermal entanglement with temperature [49] (which is not
the usual behavior). Besides, it will also be interesting to
quantify the quantum coherence [50] or perform the Bell-state
measurement [51] on the entangled Floquet states. In short, we
believe that this study may trigger various further analytic as
well as experimental researches with possible connection to
spintronics and topological computations. Our work contains
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important results of a condensed matter system (a magnonic
FTI) visualized in the context of quantum information, which
is pretty new and promising to the condensed matter com-
munity. Lastly, we should mention here that experimentally,
quantification of concurrence is possible using different pro-
tocols for both pure states [52,53] and mixed states [52] and
it will be interesting if that can be pursued for our Floquet
system and compared with our numerical results.
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APPENDIX A: FLOQUET HAMILTONIAN

In a honeycomb lattice, there are two sublattices desig-
nated by A and B. Each of those sublattices can be defined
using three unit vectors e1 = (0, a), e2 = (−

√
3

2 a,− a
2 ), e3 =

(
√

3
2 a,− a

2 ). Let us consider a, the length of the NN bonds to
be unity. Figure 1(a) shows the same.

A ferromagnetic XXZ spin- 1
2 model is given by the Hamil-

tonian

H = −
∑
〈α,β〉

[
JSz

αSz
β + J⊥

2
(S+

α S−
β + H.c.)

]
.

Under a Holstein-Primakoff transformation, this takes the
form H = ∑

k ψ
†
kHkψk with ψk = (ak, bk )T and Hk =

3JS[σ0 − �(σ+γk + H.c.)]. Here, � = J⊥/J, σ+ = (σx +
iσy )/2 and γk = 1

3

∑
j e−ik.ej . ak, bk denote the magnon

annihilation operators and σi’s are Pauli matrices to de-
scribe the pseudospins. The energy dispersion becomes εk =
3J s(1 ± �|γk|) that gives degeneracy at the Dirac points
K± = (± 4π

3
√

3
, 0). Also notice that the Dirac nodes appear with

nonzero energy 3JS.
Upon irradiation via circularly polarized light with E =

E0(τ cos(ωt ), sin(ωt )) (with τ = ±1), an additional phase is
added, due to Aharonov-Casher effect, to the amplitude of the
spin-fluctuation term involving sites i and j :

φi j = 1
h̄c2

∫ r j

r i

E × μ · dl, (A1)

where spin moment μ = gμBẑ (g and μB are gyromagnetic
ratio and Bohr magneton, respectively). This brings in the
time dependence as

H (t ) = −J
∑
〈i,j〉

[
Sz

i S
z
j + �

2

(
eiφij S+

i S−
j + H.c.

)]
. (A2)

For studying dynamics using Floquet theory, first the
Fourier components of the Hamiltonian are obtained and they
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FIG. 9. Finite-size scaling results: Asymptotic values of CNN

and CNNN at ω → ∞ limit.

are given as

H (n) = 1

T

∫ T

0
dt e−inωtH (t )

= −J
∑
〈i,j〉

[
δn,0S

z
i S

z
j + e−inθij

2
(CnS

+
i S−

j + C−nS
+
j S−

i )

]
,

(A3)

where Cn = Jn(α)� and θij denotes the angular orientation
of the (i, j ) bond.

For large ω, we utilize a high-frequency expansion
which gives an effective stationary Hamiltonian to the
problem: Heff = ∑

i H
(i)
eff /ω

i . For the present case, we ob-
tain H

(0)
eff = H (0) =−J

∑
〈i,j〉[S

z
i S

z
j + C0

2 (S+
i S−

j + H.c.)] and

H
(1)
eff = ∑∞

n=1
1
n

[H (n),H (−n)]. This first-order correction turns

out to be H
(1)
eff /ω = DF

∑
ij pairs νijSk · (Si × Sj ). Here, νij =

+1 (−1) for i, j ∈ A (B ) sublattice and DF = √
3J 2C2

1/ω.
Thus, as long as DF is not negligible, compared to unity or
C0/2 (i.e., the strength of the two terms of H (0)), we should
consider this first-order correction to the Floquet Hamiltonian.
Similar calculations can be seen in Refs. [21,36] as well.
Lastly, we want to add here that the second-order correction is
proportional to ω−2 and if we were to use Eq. (2) for HF , we
must be careful not to choose ω small enough that this term
also becomes non-negligible.

APPENDIX B: FINITE-SIZE SCALING

We did a finite-size scaling analysis for concurrences at
ω → ∞ limit involving L = 12, 18, and 24 size lattices
which shows that the basic feature remains the same other
than reducing the absolute values of CNN and CNNN to nonzero
smaller values (see Fig. 9). It is not possible to do such
analysis in presence of DMI, as Dα (ω) itself shows some size
dependence. But, we can do finite-size scaling analysis for the
discontinuous jumps observed in Fig. 3 and our calculations
show its values to be 0.012 and 0.020 for �α = 1.5 and 2.0,
respectively. This shows that such jump indeed exists in the
asymptotic limit.
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