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Axion insulators are magnetic topological insulators in which the nontrivial Z, index is protected by inversion
symmetry instead of time-reversal symmetry. The naturally gapped surfaces of axion insulators give rise to
a half-quantized surface anomalous Hall conductivity (AHC), but the sign of the surface AHC cannot be
determined from topological arguments. In this paper, we consider topological phenomena at the surface of
an axion insulator. To be explicit, we construct a minimal tight-binding model on the pyrochlore lattice and
investigate the all-in-all-out (AIAO) and ferromagnetic (FM) spin configurations. We also implement a recently
proposed approach for calculating the surface AHC directly, which allows us to explore how the interplay
between surface termination and magnetic ordering determines the sign of the half-quantized surface AHC.
In the case of AIAO ordering, we show that it is possible to construct a topological state with no protected
metallic states on boundaries of any dimension (surfaces, hinges, or corners), although chiral hinge modes do
occur for many surface configurations. In the FM case, rotation of the magnetization by an external field offers
promising means of control of chiral hinge modes, which can also appear on surface steps or where bulk domain

walls emerge at the surface.
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I. INTRODUCTION

Topological insulators are classified according to the rule
that two states belong to the same class if one can be grad-
ually converted into the other without gap closure. Such a
topological classification represents a paradigm shift in the
way we understand phases of matter. One of the most widely
recognized aspects of the theory of topological states is the
“bulk-boundary correspondence,” which refers to the notion
that the boundary between two insulating states with different
topological indices, or between a nontrivial topological state
and the vacuum, must display metallic states at the boundary.
These are robust in the sense that they cannot be removed by
any modification at the boundary or in the bulk, as long as the
bulk topological state remains unchanged. This is the case for
the chiral states on the surface of a Chern insulator, and for
the helical Dirac states on all surfaces of a strong topological
insulator (TI) when time-reversal (7)) symmetry is preserved.

What is not so widely appreciated is that the bulk-boundary
correspondence is not always enforced. In particular, if the
bulk topological classification relies on the presence of some
symmetries, then the bulk-boundary correspondence typically
comes into play only if the surface also respects the same
symmetries. For example, the Z, topology of a strong TI is
protected by T if one breaks 7 symmetry at the surface, as,
for example, by proximity to a ferromagnetic coating material,
the surface states are no longer guaranteed to be present.

In some cases, however, topological behavior can still
be left behind at the boundary. In the case of a strong
TI, an insulating surface resulting from local breaking of
T is guaranteed to exhibit a half-quantized anomalous Hall
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conductivity (AHC) of &2 /2h [1], as was recently verified
experimentally [2—4]. This is connected with the fact that
the axion phase angle 6 characterizing the formal Chern-
Simons magnetoelectric coupling [1,5] takes the values 6 =
7 for strong TIs and 8 =0 otherwise, corresponding to the
“axion Z,” classification. A half-integer surface AHC is then
required at any insulating boundary separating 7 -invariant
phases with different axion Z, indices [1,5].

Moreover, Essin et al. [5] have shown that one does not
have to start with a strong TT and break 7 symmetry to acquire
a half-quantum surface AHC. Indeed, the axion Z, index is
also well defined in the absence of 7T, as long as inversion
symmetry 7 is present. Since inversion is always broken at
the topological boundary, the half-quantized surface AHC
can be observed without the need for any special treatment
of the surface. These magnetic materials, which are usually
referred to as “axion insulators,” are intriguing candidates
for theoretical and experimental exploration. Recently, exper-
iments [4,6] approached the design of axion insulators by
means of heterostructures comprised of magnetically doped
and undoped thin films of TIs. Unfortunately, experimental
attempts to identify bulk axion insulators have yet to be
successful.

In this paper, we explore various topological phenomena
at the surface of an axion insulator, many of which cannot be
obtained from a strong TI with broken 7 on its surface. In
doing so we hope to raise the awareness of the community
regarding this promising class of materials, in the expectation
that they may soon be realized and their unique surface prop-
erties explored. We investigate the conditions under which
the surface magnetic point group forces the surface AHC to
vanish, and when it does not, what factors decide the sign of
the surface AHC. We find that the answers depend on the bulk
and surface symmetry, the specific surface termination, and
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the magnetic configuration of the surface, yielding a plethora
of possibilities to explore and manipulate.

Specifically, we carry out these investigations in the con-
text of a model for the R,Ir,O; pyrochlore iridates (R is
typically a rare earth). Many members of this class exhibit
a low-temperature insulating phase with AIAO antiferromag-
netic order, although some also display FM or other magnetic
orderings [7—11]. The AIAO pyrochlores were proposed early
on by Wan et al. [12] to be in an axion-insulator phase for
some range of values of the on-site Hubbard U. However, they
become trivial insulators for sufficiently large values of U, and
later studies have led to a consensus that these systems are in
fact in the trivial phase (see, e.g., Ref. [13]).

Nevertheless, motivated by the interest in this material
system, we have adopted a minimal tight-binding model of
the magnetic sites in a pyrochlore iridate, but with weakened
magnetic exchange splitting, as a platform for investigating
hypothetical axion-insulator materials. Our model consists
of spinors on the Ir sites; these form a simple pyrochlore
lattice, and therefore may also be relevant to some spinels.
The Hamiltonian includes on-site Zeeman splitting terms
representing the effects of the magnetic order, as well as spin-
dependent and independent nearest-neighbor hoppings. The
phase diagram of our model exhibits a trivial insulator phase
for large Zeeman splitting, and then passes through a Weyl
semimetal phase before entering an axion-insulator phase as
the Zeeman splitting is reduced. We explore the behavior of
the bulk and surface properties of our model primarily in this
axion-insulator region of the phase diagram, focusing mainly
on the case of AIAO magnetic order where the symmetry is
highest, but considering FM and other orderings as well. In
particular, we make use of a recently introduced numerical ap-
proach [14], to derive an expression that allows for an explicit
calculation of the magnitude and sign of the surface AHC. In
turn, this tool is used to demonstrate the half-quantized nature
of the surface AHC and to reveal how the surface structural
and magnetic configuration determines its sign.

The paper is organized as follows. In Sec. II, we establish
the theoretical ideas that will be invoked in this work. Namely,
the connection between the axion coupling and the surface
AHC is discussed in Sec. Il A, while the role of symmetries is
discussed in Sec. I B. In Sec. II C, we derive an expression
for the “partial Chern number,” which will be used later
to calculate the surface AHC. In Sec. III, we motivate and
introduce our tight-binding model for an axion insulator on
the pyrochlore lattice.

Section IV, which presents the results, is divided into two
subsections. In the first we discuss the case of the ATAO spin
configuration in detail, while in the second we briefly consider
the FM configuration. There are subsections devoted to the
bulk energy bands, the phase diagram, the surface states, the
surface AHC, and the Wannier bands.

In Sec. V, we discuss various phenomena on the surfaces of
axion insulators. We first consider an FM axion insulator and
explore what happens as we rotate the magnetization about an
axis perpendicular or parallel to the surface, then investigate
the consequences of the atomic layer sensitivity of the surface
AHC in the AIAO configuration, and end with a consideration
of crystallite geometries in the FM configuration. Section VI
contains a brief summary and conclusions.

II. AXION COUPLING AND SURFACE AHC

One of the unique and exciting aspects of topological
phases of matter is that they can give rise to quantized physical
quantities. For example, the formal polarization P of a 1D
insulator is either O or e/2 when the system has inversion
symmetry, while the isotropic magnetoelectric coupling «ig,
is 0 or e?/2h in 3D systems with either time-reversal or
inversion symmetry. Perhaps surprisingly, these bulk quanti-
ties determine (up to a quantum) certain surface responses of
these material systems. In the following, we explore how the
interplay between topological quantities and symmetries gives
rise to quantized surface responses, in the context of axion
insulators.

A. Berry phase and axion coupling

There is a nice analogy between the Berry phase ¢ in 1D
and the axion coupling 6 in 3D, that reveals their deep connec-
tion. Starting from the integral expression for the first Chern
number in 2D and through a dimensional reduction procedure
[1], one can derive the well known integral expression for the
Berry phase

¢ = dk Tr[A], (1)
BZ
where A4 = A" (k) is the 1D version of the Berry connec-
tion A;f”‘ (K) = (unkliOk, lumk). A physical interpretation for
Eq. (1) came from King-Smith and Vanderbilt [15], who
showed that the Berry phase and polarization in 1D are one
and the same thing,
¢
P=—e 7 2)
Note that ¢ is not quantized and it is only well defined
modulo 27, as it is evident from a gauge transformation of
the cell-periodic Bloch functions |u,) — e #®|u,). The
27 ambiguity explains why the angle variable ¢ is used and
why bulk polarization is well defined modulo e, the quantum
of charge. Finally, King-Smith and Vanderbilt showed that for
a finite 1D insulator there will be a charge accumulation on
the surface given by

O™ = P mod e. 3)

We can follow the same recipe starting from the second
Chern number. This is defined in four dimensions such that
the dimensional reduction procedure returns a 3D expression,
the Chern-Simons axion coupling [1]

1

o= ——
4 BZ

fmwnpﬁ&—ém@&}m)

As in the 1D case, a gauge transformation can cause 6 —
0 + 2mn, n € Z, showing that it is only well defined modulo
2. Now the physical significance of this quantity is that it de-
scribes an isotropic contribution to the magnetoelectric tensor
[5.16] o;; = (0P;/0Bj)g = (0M;/IE)p. That is, an electric
field will induce a parallel magnetization with a constant of
proportionality that is given by

Uiso = 7— 72> (5)
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which shows that aj,, is only well defined modulo €2/ A, the
quantum of conductance. Continuing with our analogy, the
surfaces of a 3D insulator will exhibit a surface AHC given
by [17]
2
ot — —%% mod €2/ h, (6)
as long as the surface is insulating. In fact for a metallic
surface, there is another contribution from the metallic states
at the Fermi energy, so that the total is [18]
. e’ —

ot = —57"’ mod e*/ h. (7
The extra ¢ term is the Berry phase taken along the surface
Fermi loop. The fact that the surface AHC cannot be deter-
mined just from bulk considerations, i.e., from the knowledge
of the axion coupling, can be understood as follows. Consider
a block of a material with some initial js,, which we wrap
with a 2D quantum anomalous Hall insulator with Chern
index C = 1. Aslong as we do this without closing the surface
gap, we are able to increase o {1 by e?/ h without altering the
bulk, and therefore without altering the axion coupling 6.

B. Symmetries

The presence of Z or 7 symmetry can restrict the Berry
phase or the axion coupling in a profound way. For example,
the Berry phase of a 1D insulator can only take the values ¢ =
0 or 7 when 7 is a good symmetry, because ¢ is odd under
7 and only these two values respect this restriction. On the
other hand, ¢ is even under 7, so the presence of 7 enforces
no restriction on ¢. In contrast, either Z or 7 will reverse
the sign of 6, and since 6 is also only well-defined modulo
27, the presence of either operator will quantize 6 to be 0
(trivial) or  (topological). The set of two possible value of
6 corresponds to a topological “axion Z,” classification. Note
that irrespective of the bulk topological state, the presence of
T in the surface region requires o331, to vanish there, although
possibly by forcing the surface to be metallic.

In the usual usage, a “strong TI” is one for which a
nontrivial Z, index is protected by 7. In that case, oj}ﬁfé =0
and 0 =, so Eq. (7) tells us that ¢ = 7 on every surface.
This in turn means that every surface is metallic, with an odd
number of Dirac cones. Material systems in which 7 is absent
and the nontrivial 6 =7 state is protected by Z are referred
to as “axion insulators.” Axion insulators are remarkable in
that their insulating surfaces exhibit a half-quantized surface
AHC. This is easily seen from Eq. (7) by noting that ¢ = 0 for
an insulating surface. Note that Z symmetry is also present
in many strong TIs such as Bi,Ses, but the term “axion
insulator” is not typically applied to such materials unless the
T symmetry is broken in some way, as for example by the
application of an external magnetic field.

More generally, we can observe that 6 is quantized to be 0
or w by the presence of any operation in the magnetic point
group that is either (i) a proper rotation (possibly the identity)
composed with time reversal, or (ii) an improper rotation not
composed with time reversal [19]. In case (i), the operation
may be 7 itself or any of the time-reversed n-fold proper
rotations C, (n = 2, 3, 4, or 6 where the prime denotes

composition with 7). Case (ii) pertains to mirror operations,
improper rotations S,, and inversion itself. This observation
follows since 6 is invariant under any proper rotation, and
any of the operations associated with case (i) or (ii) can
be related to 7 or Z respectively by a proper rotation. Any
insulator whose magnetic point group contains at least one of
the above operations has an axion Z, classification, and if it is
topological (6 =) then we can regard it as an axion insulator
in a generalized sense.

In the remainder of the present work, we consider only the
case that 7 itself is a symmetry, so that the system is an axion
insulator in the widely accepted sense. Nevertheless, other
symmetries may be present as well, and may play an important
role in determining certain features of the bulk and surface
band structure and the surface AHC, as will be illustrated in
the context of our tight-binding model system below.

In particular, we shall be concerned with the symmetries
present at a surface facet with unit normal h. The relevant
surface magnetic point group is composed only of operations
that map h onto itself, and whose corresponding space-group
operations do not involve any fractional translation along fi.
That is, screw and glide-mirror operations with fractional
translations normal to the surface are excluded. The surface
AHC transforms like the component of a magnetic field or
magnetization normal to the surface, and therefore it must
vanish if the surface magnetic point group contains: (i) any
mirror operation M, (not 7 -reversed and with mirror plane
normal to the surface) or (ii) any 7 -reversed proper rotation
about i (i.e., C, Cj, Cj, or C¢).

C. Calculation of the surface anomalous Hall conductivity

For the calculation of the surface anomalous Hall conduc-
tivity (AHC), we implement a recently proposed approach
[14] based in part on previous developments [5,20,21] show-
ing that the Chern-Simons (CS) contribution to the AHC can
be expressed as a local, real space property. In this framework,
one defines a local Chern-number density

C(r)= —-2nIm{(r|PrQ x QrP|r) ®)

from which the local CS contribution to the AHC can
be obtained via o“S(r) = (¢?/h)C(r). Here, P and Q
are the projection operators onto the occupied and unoc-
cupied subspaces, respectively. In contrast with the usual
reciprocal-space integral expression, the real space one can
be used to study bounded systems such as finite crystallines
or surface slabs. This is exactly what we need to calculate the
surface AHC and determine its sign.

We apply this theory in the context of a surface slab
geometry. The unit cell is small in the in-plane direction,
with primitive lattice vectors a; and a, and cell area A =
la; x a;|, but it extends through the entire thickness of
the slab in the vertical z direction, including top and bot-
tom surfaces. The Hamiltonian eigenstates in the valence
(v) and conduction (c¢) bands are V.. (r) and Y. (r), re-
spectively, with k = (kx, k,). The valence and conduction
projectors are then P = (1/Ng) > ; |Vuk) (Yol and Q =
(1/Ni) D" op W) (Wek|, where Ny is the number of k points
in the 2D Brillouin zone mesh. Plugging these expressions
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into Eq. (8), we find

C.r) = —Im = Zkamxvcm Vi@, )

w'c
where

(ka |ihvx |1/fck)
Xoek = (Yol X |Yer) = ————— (10)
, k Eck - Evk
and similarly for Y. The second form in Eq. (10) makes use
of the definition of the velocity operator as

i
v=——|r, H], 11
A [r, H] 1D
thereby taming the problematic position operator in the Bloch-
state matrix element. Averaging Eq. (9) over a unit cell of area
A, we find that the contribution of vertical coordinate z to the
Chern number of the slab is

C.(2) = —Im — ZZXMY o k(@) (12)

vv'c

such that the total slab Chern number is C, = f dzC(z). In
this equation,

Povk(2) = (%kl(/A d’r Ir)(r|>liﬁvfk>

= /A d*r Yl () Yuk(r) (13)

is the matrix element in the Bloch representation of the
projector onto the slice through the unit cell at coordinate z.

Because we work here in the tight-binding approximation,
the sum over conduction states in Eq. (9) is a finite one and is
easily carried out. We adopt a diagonal approximation to the
matrix elements of the position operators in the tight-binding
basis, (j|r|j’) = F;8;; (here j labels an orbital located at 7
in the unit cell of the slab), in which case the numerator of
Eq. (10) can be evaluated with the help of

in(jlvclj’) = (% — %) Hjj (14)

(and similarly for v, ), again making use of Eq. (11). Then the
contribution of layer / to the Chern number of the slab follows
the form of Eq. (12), becoming

C:(h) = —Im — ZZXULkYJ,Ck pok).  (15)

vw'c

Now

povk) = Vi DV (j) (16)

jel

is the Bloch representation of the projection onto layer /,
where the sum is over orbitals j belonging to that layer. All
of the ingredients needed to compute Eq. (15) are thus easily
evaluated, and the contribution of that layer to the AHC is just
a(l) = (e*/m)C.(D). .

As explained in Ref. [14], the object Fyyx = (XY T)yyk 1s
the covariant metric-curvature tensor. Because pg (/) is a Her-
mitian matrix, the imaginary part operation in Eq. (15) filters
out only the antihermitian part of Fy, which is —2i times the

covariant Berry curvature tensor €2,,%. Thus, formally, we
have that

2w 1
C.(l)= —— Tr[22 1 17
(D) ANkajr[ wpe(D)] (17)
or, when converted to a Brillouin zone integral,
1
=5 / PR T (D). (18)
T JBZ

While this form is not as convenient for computational pur-
poses as Eq. (15), it is more intuitive. For example, since
>, Povk = 8y, this immediately leads to C, =), C.(I) =
(1/27) [5, Tr[€2%] as it should.

In summary, we use Eq. (15) to compute the contribution
C;(z) of each surface layer to the surface AHC. If these vanish
as z goes into the interior, then we simply sum the surface-
layer contributions and multiply by ¢?/h to get the surface
AHC. If instead the C;(z) oscillate in the bulk, then a coarse-
graining procedure is used to isolate the surface contribution,
as will be described in Sec. IV A 4.

1I1. MINIMAL MODEL ON THE PYROCHLORE LATTICE

In this section, we motivate and introduce a class of tight-
binding models of spinors on the pyrochlore lattice.

A. The pyrochlore lattice: a playground
for topological phenomena

In both the A;B,O; pyrochlore and AB,O4 spinel
crystal structures, the B-site atoms form a simple
inversion-symmetric pyrochlore lattice as shown in Fig. 1(a).
Here we are interested in systems in which the metal atom
on the B is magnetic, while the one on the A site is not. This

— " Cubic crystal
S5d — field _1
_— Jete = 5

tyg

= Spin-orbit
— . . coupling
Legr =1 —
3
Jett = 5

FIG. 1. (a) The pyrochlore lattice, comprised of an fcc lattice
with a four-point basis (denoted by the numbers 1-4), forming a
corner sharing tetrahedral network. (b) All-in-all-out configuration
predicted for pyrochlore iridates. (c) The Ir 5d level splitting in py-
rochlore iridates due to the crystal field and the spin-orbit coupling.
(d) Graphical definition of b; ; and d; j
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means that our considerations will be limited to materials
in which the A-site atom does not have a partially filled f
shell, or if it does, we are above the f-moment ordering
temperature. In the case that a 5d transition metal occupies
the B site, for example, in pyrochlore A,Ir,O7 iridates or
spinel AOs;O4 osmates, the 5d electrons will exhibit strong
spin-orbit coupling that can lead to band inversions. In fact,
these 5d electron systems have drawn a lot of attention
recently, since the interplay between electronic correlation
and that of spin-orbit coupling leads to a variety of topological
and magnetic phases [7-9,11-13,22-30].

In the case of osmium spinels, it was shown [24] that for
a reasonable range of the on-site Coulomb correlation U, the
ground state can be a FM axion insulator. On the other hand,
in the case of pyrochlore iridates it was shown [12,25,26]
that electronic interactions can lead to topological phases with
a noncollinear ATAO spin ordering, as shown in Fig. 1(b).
Even though various experiments [7-9,11] have confirmed
that the ground state exhibits the AIAO phase, it was recently
predicted [13] that pyrochlore iridates are topologically trivial
in this phase.

B. The model

We can arrive at a simple tight-binding description of the
pyrochlore iridates by considering the electronic states close
to the Fermi energy. The oxygen octahedra surround the Ir*+
ions, creating a strong cubic crystal field that splits the Ir
5d orbitals into #,, and e, multiplets. The effective angular
momentum of the 7, levels is Leg = 1, so when the onsite
SOC is “turned on,” it splits the #,, multiplet into an effective
pseudospin Jeir = 1/2 doublet and a corresponding Jeir = 3/2
quadruplet [31], as illustrated in Fig. 1(c). Since Ir** has five
electrons in the 5d shell, the Joi = 3/2 quadruplet is filled,
while the Jeir = 1/2 doublet is half-filled. Finally, the Fermi
energy lies sufficiently far from the J. = 3/2 level so that,
for the purposes of a minimal model, we can safely ignore it
and describe the system in terms of a single spinor degree of
freedom per site.

In the following, we consider only nearest-neighbor inter-
actions, with

Hi=1) clcjs+He (19)
(ij)o
describing the spin-independent hoppings. For the spin-
dependent interactions, we begin by imposing time-reversal
symmetry, in which case the spin-orbit induced hopping be-
tween nearest neighbors takes the form

H}L:)\. Z i\/zcjala,-j ><¢Ai,-j~aaﬂcj5 + H.c. (20)
(ij)ep

Here, 0 = (oy, 0y, 0;) are the Pauli spin matrices, &i_j is the
unit vector connecting site i to site j, and IA)ij is the unit vector
from the center of a tetrahedron to the midpoint of the bond
(ij) [see Fig. 1(d) for a graphical definition] [23,28]. This
structure is imposed by the presence of a mirror symmetry
across the plane containing vectors d; ; and b; j» which ensures
that only the component of o normal to this mirror plane can
appear. The factor of i in front is required by time-reversal

symmetry, which reverses the signs of the Pauli matrices in
addition to applying complex conjugation.

Next, in order to break time-reversal symmetry and model
the magnetic ordering in these systems, we consider an onsite
Zeeman term

Hy=AY i occ, Q21
1

where #1;, i = {1, 2, 3,4} are the vectors on each site de-
scribing the spin configuration.! As mentioned earlier, the
appearance of magnetic moments is a consequence of on-site
Hubbard repulsion in the many-body Hamiltonian [12,25],
and the AIAO long-range order is established by the pattern of
intersite exchange interactions [26]. Here we assume the pres-
ence of the AIAO magnetic order and regard our Hamiltonian
in Eq. (21) as resulting from a mean-field approximation to
the correlated system of interest.

IV. RESULTS

In the following, we first consider in detail the case of
AIAO spin ordering, and then briefly describe how the results
change when considering the FM ordering as a function
of orientation of the magnetization. The calculation of bulk
energy bands, surface states and Wannier bands was done
using the built-in tools provided by the open-source code
package PYTHTB [32]. The PYTHTB scripts used to generate the
results presented here are available in Ref. [33]. In addition,
an extension package of PYTHTB containing a flexible routine
for computing the layer-resolved AHC has been posted to an
open-source repository [34].

A. All-in-all-out spin configuration
1. Bulk energy bands

As we have seen in Sec. III B, the Hamiltonian consists
of three terms H(¢, A, A) = H; + H, + Hx. To get a better
picture of the nature of the interactions, we turn our atten-
tion to the energy bands. First, we turn on only the spin-
independent hoppings, H = H(¢, 0, 0), obtaining the results
shown in Fig. 2(b). Since spin up and down are equivalent,
all bands are doubly degenerate, and the Hamiltonian is easily
diagonalized to obtain the four solutions

EM=_2 ECY=2ul1+/1+A4l (2

where

Ay = cos 2k, cos 2k, + cos 2k, cos 2k, + cos 2k, cos 2k,.
(23)

(The extra degeneracy of the first two bands is a well-known
artifact of this minimal model.) Since we are at half filling, this
Hamiltonian describes a metal with a quadratic band touching
atI'.

Next, we turn on the 7 -invariant intersite spin-orbit cou-
pling term, so that now H = H(t, A,0). Even though the

'Broken time-reversal symmetry also allows an 7;; - acjc_,- term to
appear in the nearest-neighbor hopping, but the modification of the
on-site Zeeman term is much more directly motivated.
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(a) (b) 6
4 vd
gz —</
-
®
r X WK L r
(c)6 (d) 67~_
5 ,// 4\\ ///
22 ) 2 N
D S
Q2 —— R =
r X wk L r r X WK L r

FIG. 2. (a) The first Brillouin zone with the path along which the
bulk energy bands are calculated. (b)—(d) Energy bands for differ-
ent values of the parameters (7, A, A). (b) (1,0,0). (¢) (1,0.1,0).
(d) (1,0.1,0.2).

Hamiltonian contains spin-dependent interactions, the com-
bination of 7 and Z symmetries forces the bands to remain
doubly degenerate everywhere. However, the other degen-
eracies are lifted except at some high-symmetry points, as
shown in Fig. 2(c) for A = 0.1¢, where it is also clear that a
global gap has opened between the valence and conduction
bands. This insulating state cannot be connected adiabatically
to the atomic limit and corresponds to a strong TI [23,28] with
0=m.

Finally, we break 7 by turning on A. For A small enough
that the gap does not close, as in Fig. 2(d), 6 must remain equal
to . Now the topological phase is protected by inversion, and
the system is an axion insulator. The breaking of 7 means that
spin up and down electrons no longer disperse in the same
way, and all eight bands are nondegenerate except at some
symmetry points or lines in the Brillouin zone.

2. Phase diagram

Even though the expression for 8 in Eq. (4) is elegantly
written in its integral form, applying it is computationally
expensive and somewhat problematic [17]. Fortunately, things
are greatly simplified if one has a knowledge of the parities at
the time-reversal invariant momenta (TRIM). As shown by Fu
and Kane [35], a counting of the parities at the TRIM deter-
mines the Z, invariant when 7 and Z are both present. Later it
was shown that either time reversal [1] or inversion [5] alone
can quantize the axion coupling 6, and the parity-counting
rule was generalized to the inversion-only case [36,37]. This
rule states that if the material is insulating and is not a Chern
insulator,2 then 6 = 7 if and only if the total number of
odd-parity states (NOPS) at the TRIM is twice an odd integer.

2In general, a three-dimensional insulator is characterized by three
integer Chern indices; if any of these are nonzero, the system is a
Chern insulator, and it displays a quantized anomalous Hall con-
ductivity. We never encountered such a phase in our model system.
Indeed, the axion phases in our model are adiabatically connected
to a strong TI phase, for which the Chern indices vanish by 7T
symmetry.

@ Axion Insulator
@ Weyl Semimetal
Trivial Insulator

FIG. 3. Phase diagram for r = 1.0 with the distribution of the
total number of odd parity states at the TRIM. The Hamiltonian
remains invariant under A — —A so it is sufficient to consider
positive A. On the other hand, H(—¢, —X, A) = —H (¢, A, A) so for
t = —1.0 the occupied and unoccupied bands are interchanged. The
phase diagram is nevertheless the same, since we assume half filling
and the 8 bands constitute a trivial insulator.

Using this rule, we iterate over the parameters of our model
to acquire the phase diagram shown in Fig. 3, where the
numbers indicate the NOPS. Here we use the topological
definition of an insulator, insisting only on a global direct
gap between the four valence and four conduction bands. The
trivial and nontrivial insulating states are separated by “Weyl
Semimetal” regions that are represented by the red color.

The boundaries in Fig. 3 correspond to crossings of eigen-
values, i.e., band inversions, at the I" and L points. All states
at I' have the same (even) parity, and the parity counts at
the X points never change, so the NOPS is determined by
the parity sum over the four L points. Thus the boundaries
with a discontinuity in the NOPS involve band inversion at L,
while the others are at I', and the Weyl semimetal regions lie
in between.

Our picture, then, is as follows. Choose any path that starts
from the axion phase, enters the Weyl semimetal phase, and
ends in the trivial phase in Fig. 3. If you enter the Weyl region
without changing the total NOPS, i.e., by passing through a
Weyl semimetal region with 10 or 14 total NOPS, then you
find that eight Weyl points are created at I' when crossing the
boundary. These then separate and migrate along the eight
equivalent I' — L lines, and finally meet and annihilate in
pairs at the four L points at the crossing into the trivial
insulator phase. If the path passes through a Weyl region with
12 total NOPS, on the other hand, the ordering of events is
reversed.

3. Surface states

We create slabs that are in the axion-insulator phase and
then use Eq. (15) to find the magnitude and sign of the surface
AHC. Since, the bulk AHC is zero, and the surface AHC is
not defined except for the component normal to the surface,
we simply refer to it as oapc. For the surface AHC to be
half-quantized, however, the surface band structure has to be
gapped. In the axion phase there is no topological protection
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FIG. 4. Surface band structures for [(a) and (b)] (111) and [(c)
and (d)] (001) surfaces. Blue (red) bands are localized on the bottom
(top) surface. [(a) and (c)] Strong TIs, H(t, A, A) = (1, 0.1, 0), with
protected metallic surface states. [(b) and (d)] Axion insulators,
H(t, A, A) = (1,0.1,0.4); note gapped surface states on the (111)
surface.

forcing surface states to cross the gap, but neither is an open
gap guaranteed.

A slab along the (111) direction consists of alternating
kagome and triangular atomic layers, so the 2D Brillouin zone
is hexagonal. Figure 4(a) shows the protected metallic surface
band structure of a strong TI for a slab that terminates on a
triangular layer. When the 7 -breaking A term is turned on,
the surface states become gapped as can be seen in Fig. 4(b).

Along (001) the slab consists of tetragonal layers rotated
90° with respect to each other, so the 2D Brillouin zone is
tetragonal. As before, we choose the top and bottom layers
to have the same orientation, so that the slab as a whole
has inversion symmetry. In contrast with the (111) case, the
surface states do not become gapped in the axion phase,
as shown in Fig. 4(d). However, we have found that we
can obtain an insulating surface by artificially increasing the
strength of the Zeeman term on the surface atoms only, and
this modified Hamiltonian will be used for some of the results
presented below.

4. Surface anomalous Hall conductivity

We apply Eq. (15) for the slabs constructed along (111)
and (001) directions and find the partial Chern numbers C, (/)
of each layer, which we now denote just as C (/) for brevity.
The results are shown in Fig. 5(a) for slabs consisting of 20
layers and using a 40 x 40 k-mesh sampling. In both cases,
the contribution to the AHC comes from the first few layers,
and as one goes deeper in the bulk, the partial Chern number
oscillates around zero. Note that the kagome layers contain
three times as many atoms as the triangular layers Fig. 5(c),
which may explain why the second layer along the (111)
direction has approximately three times the partial Chern
number of the first layer. In Fig. 5(b), we integrate the partial
Chern number and show that oapc is quantized to half the
quantum of conductance. To tame the oscillatory behavior of

(a) —e— [001] (b) 0553
0.3 —— [111] 0.50
~\
~02 5 0.45
= £ 0.40
o R
0.1 S 035
0.30 —e— [001]
—e— [111]

Y=o x

FIG. 5. (a) Layer-resolved partial Chern number C (/) of Eq. (15)
as a function of layer depth / for slabs along (111) and (001)
directions. For both slabs the bulk parameters are (f,A,A)=
(1.0, 0.1, 0.4) corresponding to the axion phase. In the case of the
(001) direction, the surface Zeeman term is modified to Ag,r = 0.8
in order to gap the surface states. (b) Integral of C(/) over a surface
region extending to depth n as computed from Eq. (24). [(c) and
(d)] Sketches of (001) and (111) slab orientations respectively for
the AIAO spin configuration.

the bulk layers we carry out the sum to a depth n according to
n—1

Cin(n) =Y _ Crig1, (24)
1=0

where C; ;1 is the coarse-grained average of two neighbor-
ing layers: C_‘,,,H = [C()+ C( + 1)]/2 with the exception
Co.1 = C(1)/2. In this way, each layer is counted once except
for the layer at depth n, which is counted with weight 1/2.
This can be regarded as an application of the sliding win-
dow averaging method as described, e.g., in Appendix C of
Ref. [38]. Since these pairwise layer averages decay to zero in
the bulk, the sum converges rapidly with depth 7.

In both slabs, we see that each time we add or remove
a layer, the sign of oaygc flips. For the (001) slab, we can
understand this as follows. Adding a layer is equivalent to a
90° rotation around [001] and a half-lattice-constant transla-
tion along [001] followed by 7, as is evident from Fig. 5(c).
Neither the rotation nor the translation affects oagc, but 7 will
flip its sign. Now for the (111) slab, things are less obvious
since triangular and kagome terminations are inequivalent.
Nevertheless, we can heuristically understand the sign flip by
the expectation that the sign of the surface AHC tracks the
sign of the surface magnetization, which reverses every time
we add or remove a layer [see Fig. 5(c)].

5. Wannier bands

An analysis based on Wannier functions (WFs) offers an
alternative description of the ground state of a periodic crystal.
Namely, one carries out a unitary transformation from the
Bloch functions |,i) = €*|u,x) to a set of localized WFs

|W,(R)) = / dk e R{yr) (25)
BZ

@n)
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FIG. 6. WCCs for an axion insulator along the 4 projected TRIM
for Wannierization directions (111) [(a) and (b)] and (001) [(c),(d)].
(a) and (c) correspond to a region in the phase diagram with 10 odd
parity states at the TRIMs, where (b) and (d) correspond to 14 odd
parity states.

labeled by a cell index R and a bandlike index n, such that
WFs at different R are translational images of one another.
More generally, one adopts the freedom to apply an arbitrary
k-dependent unitary transformation to the occupied Bloch
states at each K, |IZ/nk) = Zm U (K)|¥x) before applying
Eq. (25), so the WFs are strongly nonunique.

In one dimension, however, there is a unique gauge that
minimizes the spread functional of the WFs [39,40]. Follow-
ing Refs. [41-43], we take advantage of this fact by construct-
ing hybrid WFs that are Wannier-like in one of the dimensions
and Bloch-like in the remaining ones. For example, in 3D,
these take the form

1 T .
Wor k) = o= [ ke . 26
27 J_,
where we have chosen Z as the Wannierization direction. One
can plot the Wannier charge centers (WCC) in the home unit

cell R, = 0:

Znlky, ky) = (Wiol2[Who), 27)

and examine how the WCCs “flow,” in the sense of connect-
edness along the Wannierization direction.

This kind of analysis of the flow of the hybrid WCCs,
otherwise known as Wilson loop eigenvalues, has been used
extensively to study the topological properties of crystals
[43—47]. For example, Taherinejad er al. [43] demonstrated
how the Wannier bands of a strong TI must exhibit flow, no
matter which direction is chosen for the Wannierization.

One may wonder, is the same is true of an axion insulator?
Both axion insulators and strong TIs have the same nontrivial
axion index, but axion insulators have broken 7" symmetry. It
turns out that the answer is no: a nontrivial axion index does
not require flow.

To demonstrate this, in Fig. 6, we plot the WCCs along
paths connecting the four projected TRIM. We do this for two
different Wannierization directions and two different param-
eter sets that describe an axion insulator. Figures 6(b) and

Band energy

FIG. 7. Gapped surface states in the FM axion-insulator phase.
Slabs along (a) (111) and (b) (001) directions. In both cases, the
magnetization is perpendicular to the surface.

6(c) show axion insulators that do not exhibit Wannier flow.
Whether there is flow or not depends on how the number of
odd parity states is distributed at the four projected TRIM.
The nature of the Wannier bands in centrosymmetric crystals,
and a discussion of how the axion Z, invariant can often be
deduced by an inspection of this Wannier structure, will be
presented in a forthcoming publication.

B. Ferromagnetic spin configuration

It has been theoretically argued [24] that the ground state
of osmium spinels, which share the same crystal structure as
pyrochlores, is an FM axion insulator. From a topological
point of view the FM and the AIAO spin configurations
behave in a similar way, since both respect inversion symme-
try. States that were in the strong TI phase for A =0 will
become axion insulators when the ferromagnetism is turned
on, up to a critical Zeeman field of A, at which the bulk gap
closes. Eventually, for A >> ¢ and X, the system is a strongly
spin-polarized insulator, with a gap separating spin-up from
spin-down states, so that a second critical field Ay > Ay
must exist where the gap reopens. As in the AIAO case, we
find that the surface states can be gapped in the FM axion-
insulator phase, at least when the magnetization is normal to
the surface, as shown in Fig. 7.

V. SURFACE PHENOMENA

In the previous sections, we have constructed a model for
an axion insulator and introduced a computational tool that
enables us to calculate the surface AHC. In a sense, then, we
have in hand a kind of virtual laboratory that we can use to
explore the various phenomena that can occur on the surface
of an axion insulator.

A. Surface AHC and magnetization direction

One interesting aspect of the FM configuration is that we
can examine the behavior of oapc as we rotate the magneti-
zation. For example, we know that the surface AHC wants to
align with the magnetization, so when we rotate M from [111]
to [111] we should see a sign flip of oayc. Of course, as M is
rotated, oayc has to vanish for some critical angle ., and one
would naively expect ¥, = 7 /2. This is not the generic case,
however; nothing forces oagc to vanish for ¥ = 7/2, as can
be seen for example in Fig. 8(a), where we find that ¥, ~ 85°.
Furthermore, when M is parallel to the surface, as in Fig. 8(b),
oanc vanishes only for specific directions.
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FIG. 8. Surface AHC for a (111) slab as the magnetization is
rotated: (a) in a plane perpendicular to the surface; (b) in the plane of
the surface. The polar angle ? =0 corresponds to the [111] direction
while the azimuthal angle ¢ =0 corresponds to the [011] direction
([011] is perpendicular to one of the mirror planes).

To understand Fig. 8(b), we turn our attention to the
symmetries characterizing the slab. Neglecting 7 for the
moment, we can obtain the “slab point group” by considering
the subset of the bulk point group that maps the slab onto
itself without interchanging the top and bottom surfaces [43],
i.e., preserving the (111) direction in the present case. Note
that the pyrochlore point group contains three mirror planes
containing the (111) axis, which therefore constitute good
symmetries of the slab. To understand the role of M, we turn
our attention to the magnetic point group. M and o are odd
under 7 and even under Z, so the mirror plane remains a good
symmetry only if M is perpendicular to that mirror plane. In
that case, a nonzero oayc is inconsistent with the symmetry,
and therefore has to vanish. On the other hand, if M lies in
one of the mirror planes, then the induced symmetry is mirror
composed with 7 instead of a simple mirror, and this does
not reverse oapgc. Thus a nonzero oagc is allowed in this
case, as well as for generic M directions for which all mirror
symmetries are broken.

B. Termination-dependent surface AHC
in the AIAO configuration

The surface AHC response of an axion insulator in the
AIAO spin configuration is fascinating because it is at the
same time robust, in the sense that it is half-quantized, and
sensitive, since adding or removing a layer flips the sign of
the surface AHC.

Figure 9(a) shows an axion insulator slab where a step
has been created by removing a layer (or in general, an
odd number of layers) over half the surface. The step is the
boundary between two regions with opposite surface AHC,
resulting in a chiral boundary mode with conductance e*/h
located at this step. We adopt the convention of coloring
the insulating surfaces red or blue according to the sign of
the outward-directed surface AHC in this and subsequent
figures. This provides easy visual guidance to the location and
direction of edge channels, which circulate clockwise around
blue facets, i.e., those with positive surface AHC.

The same chiral channel could also be obtained at the
intersection of the surface with an antiferromagnetic domain
wall (AFM DW), as was first discussed by Mong et al. [48].
In Fig. 9(b), an AFM DW separates two regions with ATAO
and all-out-all-in (AOAI) spin configurations. Since the AOAI
configuration is related to the AIAO by 7 symmetry, the

(c) (d)

FIG. 9. Illustration of possible surface AHC configurations for
an AIAO insulator in the axion phase with (001)-type surface termi-
nations. Blue and red colors represent positive and negative surface
AHC respectively as defined in an outward-directed convention.
(a) Removal of one atomic layer creates a chiral step channel. (b)
Intersection of a domain wall and a chiral step channel results in a
junction with two incoming and two outgoing chiral channels. (c)
Intersection of facets with different signs of surface AHC gener-
ates chiral channels along the hinges. (d) Manipulation of surface
terminations by addition or removal of layers can eliminate edge
channels and lead to a configuration displaying the topological
magnetoelectric effect (see text).

resulting surfaces will have opposite AHC. An intersection
of an AFM DW channel and a step channel results in a
junction with two incoming and two outgoing channels, as
in Fig. 9(b). A scattering matrix 7 should describe how
the outgoing amplitudes depend on the incoming ones, with
conservation of charge guaranteeing that 7 is unitary. An
STM tip or other object in close proximity with the junction
would cause a modification of the unitary scattering matrix,
providing possibilities for the construction of a novel quantum
switch or sensor.

Another interesting scenario comes into play when we
think of macroscopic crystallites. At the edges (or “hinges”)
where facets meet, the facets can have either the same or op-
posite signs of surface AHC. This is illustrated for the case of
a cubic crystallite in Figs. 9(c) and 9(d). If one could somehow
control the terminating layer at each of the six surfaces, then
one could achieve the topological magnetoelectric effect by
preparing all the surfaces with the same sign (i.e., color). A
crystallite of volume V would then exhibit the full quantized
magnetoelectric polarizability of ¢V /2h, and would be free
of edge channels. In this case we have a rare example of a 3D
bulk topological state with no bulk-boundary correspondence
at all — on 2D surfaces, 1D edges, or 0D corners. In the
language of “higher-order TIs,” this is like saying that the
order is higher than the dimension of the bulk.

C. Higher-order topological classification
of an FM axion insulators

As we have seen above, the half-quantized surface AHC
of an axion insulator may lead to chiral channels flowing
along boundaries on its surface [48,49]. For example, a macro-
scopic crystallite will have hinge states at the intersection
of two facets with opposite sign of the surface AHC, as
was illustrated above. A similar discussion about higher-order
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states in an inversion-symmetric T was recently presented in
Ref. [50]. Here we emphasize how these hinge-state config-
urations can be regarded as distinct topological phases, such
that passing from one to the other, one has to pass through a
metallic intermediate phase. In particular, some facets have to
become metallic at such critical points. We will also illustrate
how the surface phase diagram can be deduced for such a
higher-order topological phase. For this purpose it is most
convenient to focus on the case of the FM spin ordering, since
this presents the opportunity for easy control via an externally
applied magnetic field.

We start with an octahedral crystallite in the FM axion-
insulator phase and imagine changing the direction of the
magnetization. It is tempting to assume that as long as M is
not parallel to a facet, the perpendicular component of M will
open the surface state gap, with the sign of the half-quantized
surface AHC determined by the outward-normal component
of M. By the same token, one may guess that if M is parallel
to a facet, oagc = 0 and the facet will be metallic. While our
results are broadly consistent with this picture, we have found
that oapc does not necessarily pass through zero exactly at the
expected 90° critical angle between M and the surface normal,
a fact that we shall return to shortly. For now, however, we
adopt the broad picture in which the direction of M determines
the sign of the surface AHC on each facet in the expected
way.

In what follows, we argue that the surface of an axion
insulator exhibits multiple higher-order topological phases,
and the surface phase diagram is described by a polyhedron
embedded in the magnetization sphere, which serves as the
parameter space. For example, the surface phase diagram
of an octahedral crystallite in real space is described by a
cuboctahedron in M space, as shown in Figs. 10(a) and 10(b),
respectively, while that of a cubic crystallite is described by

(a)
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FIG. 10. Higher-order topological states at the surface of an FM
axion insulator. (a) Octahedral crystallite with facets perpendicular to
the (111) and equivalent directions. (b) Higher-order phase diagram.
A given magnetization vector intersects the cuboctahedron at a par-
ticular face, with each face corresponding to a different arrangement
of signs of the surface AHC on the crystallite. [(c)—(e)] Examples of
surface configurations resulting from different magnetization direc-
tions. Color scheme follows that of Fig. 9.

an octahedron in M space. In the former case, it is only when
M intersects an edge of this cuboctahedron that it becomes
parallel to one of the crystallite facets, and the surface gap
of that facet closes. On the other hand, when M intersects a
face of the cuboctahedron, there is a nonzero perpendicular
component of M on every crystallite facet, resulting in a
particular coloring of all facets. When M is as shown in
Fig. 10(b), for example, the corresponding coloring is that of
Fig. 10(e).

This shows that each face of the cuboctahedron corre-
sponds to a different topological phase of the crystallite,
characterized by a particular chiral loop configuration flowing
on the edges of the crystallite. The edges of the cuboctahe-
dron then correspond to boundaries between two topological
phases.

Realization of such a device would enable control of
conducting channels using magnetic fields. For example, one
can imagine attaching wires to the top, bottom, left, and right
corners of the octahedron in Figs. 10(c)-10(e). Rotating M
from [100] to [001] will then switch the system between
configurations in which the horizontal or vertical wires are
connected. Rotating M to [111] would instead connect all four
wires. Here we have the potential for yet another kind of novel
quantum switch.

We now return to a point mentioned earlier and recall that
the picture presented above needs a slight modification. That
is, when tilting the magnetic field orientation, the closure of
the surface gap may occur when the magnetic field is near,
but not at, the condition of being parallel to the facet, unless
this is enforced by some symmetry. An example was shown
in Fig. 8(a), where the critical angle is around 85° instead of
90°, while Fig. 8(b) illustrates the role of symmetry. Taking
this effect into account would cause the phase boundaries
in Fig. 10(b) to become slightly distorted, with the edges of
the cuboctahedron no longer being perfectly straight (i.e., no
longer perfect great circles in M orientation space). Never-
theless, these distortions must respect the crystal symmetries,
and have no effect on the qualitative aspects of the discussion
given above.

VI. SUMMARY AND CONCLUSIONS

In this work, we have constructed a minimal tight-binding
model of an axion insulator and explored its behavior using
a newly developed computational tool that allows for a direct
calculations of the surface AHC. This provides us with a vir-
tual laboratory that enables us to answer questions regarding
the sign of the surface AHC that could not previously be
addressed. We have found that the sign of the surface AHC is
extremely sensitive to the surface magnetic configuration, and
have shown how the surface AHC is forced to vanish when
certain surface symmetries are present.

Our observations distinguish intrinsic axion insulators
from magnetically doped strong TIs, which have drawn much
attention in recent years. While the former remain relatively
unexplored, they have the advantage of providing exciting op-
portunities for the control of macroscopic behavior by the ma-
nipulation of surface structural and magnetic configurations.
In our pyrochlore model, for example, the pattern of signs of
the surface AHC on the crystal facets can be manipulated by a
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single-atomic-layer surface modification in the AIAO case, or
by rotation of a weak external magnetic field in the FM case.
In this way, it may be possible to controllably switch between
different configurations of chiral edge and step channels on
the surface, or to eliminate such channels altogether in order
to achieve the topological magnetoelectric effect. Such a state
is an extreme limit of a higher-order TI in which no protected
boundary modes are present.

We nevertheless emphasize that our tight-binding model,
though physically motivated, does not describe real insulating
pyrochlore iridates with AIAO magnetic order, which instead

are believed to lie in the trivial insulator portion of our phase
diagram in Fig. 3. In fact, we are unaware of any experimental
demonstration to date of a bulk intrinsic axion insulator. The
search for representatives of this intriguing phase of matter
presents a pressing challenge for both the theoretical and
experimental condensed-matter communities.
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