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Nontrivial topological flat bands in a diamond-octagon lattice geometry
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We present the appearance of nearly flat-band states with nonzero Chern numbers in a two-dimensional
“diamond-octagon” lattice model comprising two kinds of elementary plaquette geometries, diamond and
octagon, respectively. We show that the origin of such nontrivial topological nearly flat bands can be described
by a short-ranged tight-binding Hamiltonian. By considering an additional diagonal hopping parameter in
the diamond plaquettes along with an externally fine-tuned magnetic flux, it leads to the emergence of such
nearly flat-band states with nonzero Chern numbers for our simple lattice model. Such topologically nontrivial
nearly flat bands can be very useful to realize the fractional topological phenomena in lattice models when the
interaction is taken into consideration. In addition, we also show that perfect band flattening for certain energy
bands, leading to compact localized states can be accomplished by fine-tuning the parameters of the Hamiltonian
of the system. We compute the density of states and the wave-function amplitude distribution at different lattice
sites to corroborate the formation of such perfectly flat-band states in the energy spectrum. Considering the
structural homology between a diamond-octagon lattice and a kagome lattice, we strongly believe that one can
experimentally realize a diamond-octagon lattice using ultracold quantum gases in an optical lattice setting. A
possible application of our lattice model could be to design a photonic lattice using single-mode laser-induced
photonic waveguides and study the corresponding photonic flat bands.
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I. INTRODUCTION

The physics of flat-band (FB) systems has drawn a lot of
research attention in recent years [1-15]. One of the main
reasons why such dispersionless flat bands are of great interest
to the physics community is that they give rise to highly
degenerate manifold of single-particle states, which can act
as a good platform to study rich, strongly correlated phenom-
ena. In a two-dimensional electron gas (2DEG) subject to a
strong magnetic field, highly degenerate flat Landau levels
are formed. It is well-known that completely filled Landau
levels exhibit integer quantum Hall effect [16] while partially
filled Landau levels give rise to fractional quantum Hall effect
[17]. Generation of nontrivial flat bands with nonzero Chern
number in 2D tight-binding lattice models may be treated
as the lattice counterpart of the Landau levels appearing in
continuum. Hence, occurrence of nontrivial flat bands in sim-
ple 2D lattice settings can play a pivotal role in investigating
profound topological phenomena in lattice systems.

These macroscopically degenerate flat bands with vanish-
ing bandwidth arise in the band structure of tight-binding
lattice models due to destructive quantum interference of
electron hoppings resulting in formation of highly localized
single-particle states pinned at different atomic sites of the
lattice. Such highly localized states corresponding to the flat-
band energies are often attributed to form compact localized
states (CLS) [7,10], modes where the wave-function ampli-
tudes remain nonzero over a finite number of lattice sites
beyond which they sharply decay to zero. These flat bands
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have been found really useful to investigate diverse intrigu-
ing phenomena in condensed matter physics, viz., ferromag-
netism and antiferromagnetism in Hubbard models [18-20],
superconductivity in 2D Dirac materials [21], superfluidity
[22], and unconventional Anderson localization [23,24] are to
name a few of them.

Because of the emergence of these important features,
flat-band systems have been a constant source of new ideas
to identify novel phenomena involving the interplay be-
tween topology and quantum physics. On top of that, over
the past couple of years some significant experiments fea-
turing flat bands in photonic waveguide networks [25-32],
exciton-polariton condensates [33,34], and ultracold atomic
condensates [35,36] have ushered new light into this research
domain. Spurred by these experimental results, the search
for new models with nontrivial flat-band physics and un-
derstanding their usefulness in different lattice geometries
have taken a new direction in the past few years. In re-
cent times, some important theoretical investigations like the
role of chiral symmetry on flat bands in a series of tight-
binding lattice geometries [13], formation of topological flat
Wannier-Stark bands in presence of an electric field in a
bipartite dice network [14], and the emergence of flat bands
in fractal-like geometries with various interesting band fea-
tures [15] have also enriched the recent literature, revealing
different subtle issues about flat bands in various lattice
geometries.

One of the key challenges in generating FB states is to
keep the hoppings to be short-ranged. One may use the
spectral flattening technique, i.e., adiabatically transform-
ing the original Hamiltonian to a new one with FB states.
However, that may often lead to long-range hoppings to be
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considered in the underlying Hamiltonian [1], which could
be difficult to realize experimentally. Other interesting flat-
band optimization techniques for short-range hopping models
have also been proposed in recent times [37,38]. It is worth
mentioning that one cannot have nontrivial topology, finite-
range hopping, and exactly flat bands simultaneously—only
two of these three criteria can be realized simultaneously
[39,40]. In the present paper, we propose and study a discrete
2D diamond-octagon lattice model with short-ranged hopping
and an external magnetic flux piercing through the diamond
plaquettes. This setting leads to the appearance of nontrivial
nearly flat-band states bearing topological properties. Such a
lattice model has been incorporated in recent times to study
different interesting phenomena, such as topological phase
transition induced by spin-orbit coupling and non-Abelian
gauge fields [41], rich magnetic and metal-insulator phases
with Hubbard interaction [42], and quantum magnetic phase
transition with a competitive effect between the temperature
and the repulsive on-site interaction [43].

In this work we analyze the band spectrum of diamond-
octagon lattice in a single-particle picture. This lattice geom-
etry realizes a four-band model in the momentum space. Each
diamond-shaped loop is pierced by a uniform external mag-
netic flux which breaks the time-reversal symmetry appending
an Aharonov-Bohm phase [44] to the hopping parameter
along the arms of each diamond plaquette. This leads to
gapping out of the band spectrum with bands having nonzero
Chern numbers. We furthermore show that one can fine-tune
the hopping parameters along with a suitable value of the
magnetic flux to achieve the optimal band flatness for the
bands having the nontrivial topological index in the form of
nonzero Chern number. It has been argued previously by other
groups that perfect flatness for a band in real materials is not
a stringent requirement provided that the bandwidth remains
much smaller than the band gap [1-3]. These nearly flat bands
having strong resemblance with the Landau levels appearing
in a continuum 2DEG model set up a good foundation to
explore new strongly correlated topological states of matter.
We note that such tight-binding lattice models with a variety
of lattice geometries, such as Lieb [45,46], kagome [47],
honeycomb [48], square [49], etc., have been proposed to be
realized using ultracold fermionic or bosonic atoms in optical
lattices.

In what follows, we give an illustration of our model
and present the important findings. In Sec. II, we introduce
our lattice model and discuss the short-ranged tight-binding
Hamiltonian describing the spinless particles moving on the
lattice. In Sec. III, we discuss the condition for generating
the nearly flat bands in the band spectrum, and present the
results for the Berry curvature and the Chern numbers cor-
responding to the nontrivial topological flat bands. This is
followed by Sec. IV, where we describe how to create perfect
flat bands in the band structure by tuning the combination of
hopping parameters and the magnetic flux. We also compute
the average density of states and the wave-function amplitude
distribution on different lattice sites corresponding to such
perfect flat-band states. In Sec. V, we depict the scope of
a possible experimental set up using single-mode photonic
waveguide structure to realize our lattice model in an actual
experiment. Finally, in Sec. VI, we draw our conclusion with

FIG. 1. Schematic diagram of a 2D diamond-octagon lattice
model. The unit cells are marked by dotted lines and consist of four
atomic sites. The hopping parameter along the arms of the diamond
and the octagon plaquettes is denoted by ¢, and the diagonal hopping
integral inside each diamond plaquette is represented by A. Each
diamond plaquette is threaded by a uniform external magnetic flux
®. The arrowheads in the counterclockwise direction indicate the
direction of the forward hopping in presence of ®.

a summary of our results and their utility with the scope of
future study in this direction.

II. THE MODEL AND THE MATHEMATICAL
FRAMEWORK

We consider a diamond-octagon lattice model on a two-
dimensional plane comprising two elementary plaquette ge-
ometries, viz., diamond and octagon, respectively, as shown in
Fig. 1. The building block of the lattice structure is a diamond-
shaped loop consisting of four atomic sites. This basic unit
cell is repeated periodically over a two-dimensional plane to
form the whole lattice structure. Each diamond plaquette is
pierced by a uniform magnetic flux perpendicular to the plane
of lattice which introduces an Aharonov-Bohm phase to the
hopping parameter when an electron hops along the boundary
of a diamond loop. The tight-binding Hamiltonian of this
model in Wannier basis can be written as

H:Z |:Z G[Cjn’”’ic,n’n,,':|+ Zﬁjcjn_nyicm,n,j + H.c. s
m,n i

i
6]

where the first summation runs over the unit cell index (m, n)
as shown in Fig. 1. cimj (¢ n.i) 18 the creation (annihilation)
operator for an electron at site i in the (m, n)th unit cell and
€; is the onsite potential for the ith atomic site. 7;; is the
hopping parameter between the ith and the jth sites, and it
can take two possible values depending on the position of
the sites i and j. 7;; =t for an electron hopping along the
boundary of a diamond plaquette or along the line in between
two consecutive diamond loops, and 7;; = A for an electron
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hopping along the diagonals inside a diamond plaquette. Each
diamond plaquette is pierced by an external magnetic flux
® which incorporates an Aharonov-Bohm phase factor to
hopping parameter t — ¢ exp (£i®), when the electron hops
around the closed loop in a diamond plaquette. Here, ® =
2r® /4Dy, Py = hc/e being the fundamental flux quantum,
and the sign + in the exponent indicates the direction of the
forward and the backward hoppings.

By adopting a momentum (k) space description using a
discrete Fourier transform, the Hamiltonian in Eq. (1) can be
recast as

H =Y W Hk)Y, )
k
where \Il}; = (C]txykqu C]L,ky‘g C/L,ky,c Cltx,ky,D)’ and
‘H(k) is given by
0 te'® te’® 4 A te”®
HK) te™i® 0 tet® te ke 4 )
e te”i® 0 te'®
te'® te’* 0 1e7i® 0
3)

We have taken ¢; =0, i € {A, B, C, D}. One can extract all
the interesting features about the band structure of the system
from Eq. (3). The results are presented in the next section.

III. GENERATION OF NEARLY FLAT TOPOLOGICAL
BANDS

The standard prescription for investigating any special
feature of a lattice model is to frame the tight-binding Hamil-
tonian in k-space and then minutely study its band structure by
playing around the parameters of Hamiltonian, namely, short-
ranged hopping strengths, or some external perturbations like
magnetic field, electric field, disorder, etc. These effects of-
ten lead to some interesting topological properties in simple
tight-binding lattice models. In the present study we embark
on such a lattice geometry. Our aim is to discover whether
this lattice structure can show up some nontrivial topological
properties in its band structure under certain special condition
of the parameters space of the corresponding Hamiltonian.

The Hamiltonian in Eq. (3) describes our model. It is
apparent from Eq. (3) that the Hamiltonian breaks the time-
reversal symmetry for a nonzero value of the Aharanov-Bohm
phase ®, which implies to have ® # 0. Breaking of such time-
reversal symmetry in the system by introduction of a complex
phase factor in the hopping parameter through a staggered
magnetic flux [50,51] or through some artificial gauge field
[1,52] have insightful consequences on the band structure as
well as to the topological properties of the system as evinced
in other previous important studies. At ® # 0, band gap opens
up in between different bands of our system. In presence
of such gap opening in the system, we have calculated the

J

200 =3 —20Im[ U, (k)| H (k) / Ok |Upn (K)) (U (k)| H (k) / Ok | Uy (K))]
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FIG. 2. Plot of the band structure for the 2D diamond-octagon
lattice model prescribed in Fig. 1. The lowest and the third band show
nontrivial topological character with nonzero integer values of the
Chern numbers, viz., C = —1 and C = 1, while the remaining two
bands are topologically trivial with zero Chern numbers. We tune a
minimal nonzero value of the external magnetic flux & = /10,
and the short-ranged hopping parameters are set to be r = 1 and
A = 1, respectively. These are the optimized values of the parameters
to achieve the optimized flatness of the two topologically nontrivial
bands.

Chern numbers corresponding to different bands of the sys-
tem, and discovered that two of the bands possess nonzero
Chern numbers indicating nontrivial topological character of
those bands. The scenario in which we are interested in, is
to have the optimized flatness of the bands carrying nonzero
Chern numbers. To acquire such a condition, we optimize the
values of parameters of the Hamiltonian such as the hopping
strengths and the external magnetic flux. It turns out that for
the optimized nearly flat bands with nonzero Chern numbers,
the values of the parameters are found to be ® = /10,
t =1, and A = 1. The flatness ratio [37,38] for the Chern
bands with these model parameters is approximately 5. We
first numerically evaluate the values of the hopping integrals ¢
and A for which we have perfectly flat bands in the spectrum
in absence of any magnetic flux. Then we tune the magnetic
flux to a nonzero value to have the gap opening in the band
spectrum. Under this condition, we fix the magnetic flux to
a value where we get the maximum gap to bandwidth ratio
for the Chern bands. We note that for a minimal deviation
from these particular values of the model parameters, the band
features will not alter a lot. Thus, there is a realistic possibility
to realize our results in an actual experimental situation where
one needs a little bit of relaxation on the exact conditions of
the parameters.

To study the topological properties of the bands we calcu-
late the Berry curvature of all the bands using the standard
formula [53,54] given by

m##n

(En — En)? ’ @
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FIG. 3. Plot of the Berry curvature distribution in momentum
space corresponding to the topologically nontrivial bands carrying
integer Chern numbers. Panel (a) is for the lowest band (n = 1) with
C = —1 and panel (b) is for the third band (n = 3) with C = 1.

where U, (k) is the nth eigenstate of H (k) with an energy
eigenvalue E, (k). Using Eq. (4), one can easily evaluate the
value of the Chern number for each of the bands of the system
using the following expression,
C= L Q(k)dk, 5)
2 BZ
where BZ stands for the first Brillouin zone of the corre-
sponding lattice structure. We have taken the lattice constant
a to be unity throughout our calculations. Using the above
prescription, we have discovered that in our four-band lat-
tice model, two of the bands, viz., the third and the lowest
one possess nonzero Chern numbers C = +1 exhibiting the
topological character, and the remaining two bands are topo-
logically trivial with C = 0 as indicated in Fig. 2. We show
the variations for the Berry curvature in the momentum space
corresponding to the topologically nontrivial bands in Fig. 3.
One can easily observe the distinct features appearing in the
Berry curvature distributions for the topologically nontrivial
bands as apparent from Figs. 3(a) and 3(b).

One of the most exciting features about our result is that
the bands having nonzero Chern numbers are nearly flat. Such
nearly flat bands with nonzero Chern numbers can be thought
of as the lattice analogue of the Landau levels appearing in a
continuum system. Thus, at fractional filling, our lattice model
can act as a potential setting to investigate and understand the
fractional quantum Hall physics in a lattice model with the
interactions between the particles being treated as just sub-
leading corrections. We note that the inclusion of the diagonal
hopping A in between the sites inside the diamond plaquette
in our model plays an important role in generating the flat
bands for our system. Such diagonal hopping parameters in
between the lattice sites have been taken into consideration
previously for some other interesting tight-binding lattice
models [1,55]. One can easily verify that, in absence of A,
the band structure of our lattice model will give rise to two
interpenetrating conical shapes as shown in Ref. [43]. We
also note that some interesting topological quantum phase
transitions have been reported earlier [56] on the similar
lattice structures considering a different Hamiltonian with
up to third nearest neighbor hopping parameter. They have
discussed the possibility of having topological approximate
flat bands as well as higher Chern numbers in the system

™
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FIG. 4. Formation of complete flat bands both in absence and
in presence of the external magnetic flux ®. The left panel is for
® = 0 and the right panel corresponds to & = ®(/3. We set t =1
and A = 1.

for certain other parameter regimes. However, in our model
we only consider short-ranged hopping parameters to show
the topological properties of the band structure. In addition
to that, we have discovered that perfect band flattening can
also be achieved for our model for certain combinations of
the parameter values. This is discussed in detail in the next
section.

IV. FORMATION OF PERFECT FLAT BANDS

The focus of this section is to explore the conditions
for obtaining the complete FB states for our lattice system.
In tight-binding lattice models often the interplay between
the lattice topology and the destructive quantum interference
among the particle hoppings lead to formation of perfect
FB states. The particles in these states do not hop to the
neighboring lattice sites and form highly localized states.
The effective mass of the particles in such situation can be
thus viewed as infinite. This phenomenon can appear both in
absence and in presence of broken time-reversal symmetry in
the lattice systems [50,51].

First we analyze the case with ® =0, i.e., in absence
of time-reversal symmetry breaking. For ® = 0, our lattice
model yields two perfectly flat dispersionless bands in the
band spectrum at energies Erg = 0 and —21, respectively, as
shown in Fig. 4(a). The values of the hopping parameters for
these flat bands are t = 1 and A = 1, respectively. The two
flat bands are accompanied by two dispersive bands in the
spectrum, one of which is completely isolated from the rest
of the bands and the other one is sandwiched in between
the two perfect flat bands. This is in marked contrast with
the frustrated hopping models, in which the dispersionless
energy band occurs only at the maximum or minimum of the
spectrum in absence of any magnetic field [50,57]. Such flat
bands appearing in absence of any magnetic flux allow for the
formation of compact localized states (CLS) [10,13]. In CLS,
the compact eigenstates are perfectly localized over a few
lattice sites, with exactly vanishing wave-function amplitudes
on all other sites [13,15]. Using a standard technique [15], we
have worked out the distribution of wave-function amplitudes
at different lattice sites corresponding to the CLS for our
model. The results are presented in Fig. 5. It is clear from
Figs. 5(a) and 5(b) that the wave functions corresponding
to the FB states are localized over a couple of lattice sites
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FIG. 5. Distribution of wave-function amplitudes at different
lattice sites for the compact localized states corresponding to the FB
states with energies (a) £ = 0 and (b) £ = —2. The onsite energy
for all the sites is set to zero, and the values of the other parameters
are ®=0,7=1, and A = 1. The values of the wave-function
amplitudes at different lattice sites are +1, —1, and 0, respectively.

with nonzero amplitudes (marked by dark colored circles)
and beyond that the wave-function amplitudes decay to zero
(marked by light gray circles). We note that the perfect flat
bands for @ = 0 can be attributed to the fact that the diamond-
octagon lattice is a line graph of the Lieb lattice [58].

Next we consider the scenario with @ # 0, which breaks
the time-reversal symmetry for our model. In presence of the
time-reversal symmetry breaking, the bands are gapped out. It
turns out that for a nonzero value of the magnetic flux between
0 and @, the FB states get destroyed, leading to dispersive
bands in the band spectrum with opening of gaps in between
them. However, we have discovered that for certain special
values of the magnetic flux @, the FB states re-emerge in
the spectrum. For example, an isolated completely FB state
emerges at the energy Epg = — in the spectrum for a value of
the magnetic flux ® = ®/3 as depicted in Fig. 4(b). The val-
ues of the hopping integrals are t = 1 and A = 1, respectively.
The resulting FB (n = 2), however, turns out to be topolog-
ically trivial with zero Chern number while the dispersive
bands, namely, the lowest (n = 1) and the third (n = 3) one
show up topological character with nonzero integer values of
the Chern numbers, viz., C = —1 and +1, respectively. We
note that this result is consistent with the previous interesting
studies on other similar tight-binding lattice models such as
kagome or hexagonal lattice [51] and Lieb lattice [59]. One
can also have similar situation for ® = 2d,/3. We note that,
for ® =0 we have the gapless perfectly flat bands in the
spectrum, and as we tune ® to a nonzero value, there is a gap
opening and appearance of nearly flat bands in the spectrum
with nonzero Chern numbers. So we have a clear transition
from perfectly flat-band states to nearly flat Chern bands as we
change the magnetic flux ® from a zero to a nonzero value.

To substantiate the fact that the particles dwelling in a
complete FB state are highly localized, we compute the av-
erage density of states (ADOS) corresponding to the results
presented in Figs. 4(a) and 4(b). Using the standard Green’s
function technique, ADOS can be defined as

1
p(E) = —N—Im[Tr G(E)], (6)
T

where G(E) = [zT1 — H]71 is the Green’s function with
7T =E+i8 (8§ = 07), N is the total number of sites in the
system, and “Tr” denotes the trace of the Green’s function G.
Using Eq. (6), we calculate the ADOS for our lattice model
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FIG. 6. Plot of the average density of states (ADOS) for a 2D
diamond-octagon lattice structure with system size L = 50 x 50. For
panel (a) we have ® = 0 and for panel (b) we set & = &(/3. The
other parameters are same as in Fig. 4. The FB states in the ADOS
spectrum are indicated by red arrowheads.

with a system size L = 50 x 50, L being the number of unit
cells. The results are shown in Figs. 6(a) and 6(b). Evidently,
the presence of highly localized spiky states exactly at the FB
energies confirms the appearance of the complete FB states in
our lattice model.

Before ending this section, we present the energy eigen-
value spectrum of the real-space Hamiltonian against the
variation of the magnetic flux (®) for a finite system with
system size L = 10 x 10. This is exhibited in Fig. 7. This
result gives us the flavor about the real-space energy spectrum
of the system in presence of ®. From Fig. 7, we can clearly
observe the formation of multiple bands and gaps in the
spectrum as a function of ®. A variation in the value of
the magnetic flux leads to band overlapping in spectrum, and
the whole pattern is flux periodic. The spectrum will be more
and more dense as we increase the system size, but the overall
shape will remain the same.

V. POSSIBLE EXPERIMENTAL REALIZATION
OF THE MODEL

In this section, we will discuss the possibility of an ex-
perimental realization of our lattice model using photonic

Eigenvalues

'iI>/<I>0

FIG. 7. Plot of the energy eigenvalue spectrum against the mag-
netic flux ® (measured in units of the fundamental flux quantum
@y = hc/e) for a finite system of size L = 10 x 10, L being the
number of unit cells.
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FIG. 8. Schematic representation of a possible proposed pho-
tonic waveguide network corresponding to the 2D lattice model
depicted in Fig. 1. Each lattice site is substituted by single-mode
waveguides to form the waveguide structure.

waveguide structure. The femtosecond laser-writing tech-
nique along with the aberration-correction methods [27] allow
us for the precise fabrication of two-dimensional arrays of
sufficiently deep single-mode waveguides. The advantage of
such techniques over other photonic platforms is that the
laser-writing parameters can be optimized to produce low
propagation loss over a long distance implicating single-mode
waveguides to operate at a particular wavelength. In addi-
tion to that, this method also gives us an efficient control
over the interwaveguide coupling strengths allowing us to
explore different parameter regimes. Such techniques have
been successfully implemented in recent times to accomplish
experimental realization of flat bands in a Lieb photonic
structure [26,27] and soon followed by other photonic lattice
geometries [28,29,31,32].

Considering the structural homology of our lattice model
in comparison with other 2D lattice geometries such as Lieb
or kagome structure, we strongly emphasize that our lat-
tice structure can be fabricated expeditiously using photonic
waveguides to study the formation of the flat bands and other
related interesting properties. A schematic representation of
such possible photonic waveguide structure corresponding
to our lattice geometry has been displayed in Fig. 8. The
values of the system parameters for these photonic waveguide
structures, such as lattice period, propagation distance, and
operating wavelength, are typically chosen in the range of
20-30 pum, 7-10 cm, and 500-800 nm, respectively [26—
29]. The exact value of these parameters may vary slightly
depending on the experimental conditions for obtaining the
flat bands. The effect of the external magnetic field can be
simulated in a coupled waveguide network by incorporat-
ing a synthetic magnetic field through a proper longitudinal
modulation of the propagation constants of the waveguides
[29]. The phenomenon of time-reversal symmetry breaking in
circuit-QED based photon lattices has also been reported ear-
lier [60]. Such mechanisms could be helpful to accomplish our

results in presence of an external magnetic field in an actual
experimental setup using photonic waveguides. In addition
to the advancement of the fundamental understanding of the
physics of flat bands, the photonic flat-band networks can also
have technological importance in photonics, such as slow light
propagation [61], where the suppression of the wave group
velocity can provide enhancement of nonlinear effects, and
promising solution for buffering and time-domain processing
of optical signals. Our lattice model implemented using a
photonic waveguide network can provide a potential platform
to realize such useful devices in photonics. Apart from the
photonic lattice structure, there has been a remarkable techno-
logical advancement in developing artificial lattice structures
using ultracold atomic condensates in optical lattices [62].
This can also be utilized to engineer our lattice model in
experiments, and study its interesting novel properties in a
very controllable and clean environment without the presence
of the impurities appearing in a typical solid state system.

VI. SUMMARY AND FUTURE OUTLOOK

In this paper, we have investigated the energy spectrum of a
tight-binding diamond-octagon lattice model containing flat-
band states. We have perceived that for a suitable combination
of the hopping parameters and an external magnetic flux, it is
possible to realize nearly flat-band states with nonzero Chern
numbers for this model. The presence of such bands in the
energy spectrum may lead to a very interesting scenario for
incarnating strongly correlated electronic states with nontriv-
ial topological properties. For a fractional filling in the ground
state of our system, one can envision the fractional quantum
Hall physics in a lattice model. In addition to that, we have
also revealed the existence of perfectly flat-band states in our
lattice model, forming compact localized states. The calcula-
tion of the density of states and the wave-function amplitude
distribution on lattice sites corroborate the formation of the
compact localized states corresponding to the flat-band states
in our model. Our work has put forward a simple example
of a 2D tight-binding lattice model to understand certain
important flat-band physics in a lattice system. We believe
that the experimental realization of our model using untracold
atoms in optical lattices is definitely on the card, and may
unfold interesting topological phases of matter. One can also
fabricate a photonic diamond-octagon lattice using single-
mode photonic waveguides controlled by femtosecond laser
pulses [27,28] to study the photonic flat bands in such a lattice
model. The investigation of the robustness of these flat-band
states encountered in our model under different perturbing
effects, such as spin-orbit interaction, disorder, etc., could be
an open direction for further exploration.
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