
PHYSICAL REVIEW B 98, 245114 (2018)

Helical metals and insulators: Sheet singularity of the inflated Berry monopole
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We study phases of interacting Dirac matter that host Berry signatures. We predict a topological Lifshitz
phase transition caused by the changes of a Dirac cone intersection from a semimetallic phase to helical
insulating or metallic phases. These helical phases provide examples of a gapless topological phase where the
spectral gap is not required for a topological protection. To realize nodal helical phases one would need to
consider isotropic infinite-range interparticle interaction. This interaction could emerge because of a momentum
conserving scattering of electrons from a bosonic mode. For repulsive/attractive inter-particle interaction in
density/pseudospin channel, the system undergoes a transition to the helical insulator phase. For an attractive
density-density interaction, a metallic phase forms that hosts a nodal circle and a nodal sphere in two and three
dimensions, respectively. A sheet singularity of Berry curvature is highlighted as a peculiar feature of the nodal
sphere phase in three dimensions and represents the extension of the Berry monopole singularities into an inflated
monopole. To illustrate the properties of these helical phases we investigate Landau levels in both metallic and
insulating phases. Our study provides an extension of the paradigm in the interacting Dirac matter and makes an
interesting connection to inflated topological singularities in cosmology.
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I. INTRODUCTION

Dirac and Weyl materials in two and three dimensions
[1,2] contain a topologically protected band crossing point
in the Brillouin zone (BZ) and exhibit quasiparticles that
are helical in nature. Dirac fermions (DFs) are modeled by
a simple effective Hamiltonian as ĤD = vσ̂ · p [3] where
v stands for the Fermi velocity of DFs and p = h̄k is the
momentum. The spinor structure represents either the real
spin or a pseudospin degree of freedom. Defining the helicity
operator as ĥ = σ̂ · p/p, we can immediately see the helical
nature of a massless fermion [4]. The stability of a nodal
point in two dimensions is often said to be protected by a
chiral (particle-hole) symmetry which leads to a nontrivial
value for the Wen-Zee winding number [5]. A nondegenerate
nodal point in three dimensions, which is also called a Weyl
point, is topologically protected due to a finite monopole
charge of Berry curvature [3]. Aside form the pointlike nodal
states there is theoretical and experimental interest in nodal
line semimetals, i.e., nodal structures with one-dimensional
Fermi surface (band touching) [6–13]. Nodal lines, just like
nodes, are topological, are protected by mirror, inversion, or
time-reversal symmetries, and their topology can be labeled
by proper Z2 or Z invariants [10].

The interrelation between pointlike topological signatures
and topology of the nodal lines is our focus. Intuitively it is
clear that nodal points and nodal line states are qualitatively
different and thus a phase transition is required to connect
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them. In this paper, we identify an interaction-induced quan-
tum phase transition from a nodal-point (0D) structure with
codimension [3] D = d − 0 = d to a nodal structure with
codimension D = 1. In two and three dimensions we obtain
thus nodal circles or nodal spheres, respectively; see Fig. 1.
Such transition belongs to a particular set of topological Lif-
shitz transitions in which the number of Fermi pockets is pre-
served although their dimensionality increases. In this sense it
is formally similar to a fermion condensate phase transition
[14]. We show how this phase can be established as result
of a very long-range interaction of Dirac fermions. We show
also how this transition, in the case of a repulsive/attractive
interaction in a density/(pseudo)spin channel, could lead to a
massless gap opening [15,16] at the nodal point. Our findings
also point to the existence of the gapless topological phases
of metals, where the topology is not connected with the
adiabatic protection of low-energy excitations due to gaps.
Using standard angle-resolved photo-electron spectroscopy
(ARPES), a linear-dispersive gap opening has been observed
in monolayer graphene on Ir [17] (metallic) and SiC [18,19]
(nonmetallic) substrates. The nature of this gap opening is
not fully understood either theoretically or experimentally.
Yet these experiments might be considered as experimental
evidence of a possible massless gapped phase in a Dirac
material. Our theoretical study fills this gap and provides the
possible routes to realization of the unusual helical states.

There is an interesting connection of the topological struc-
ture of the nodal helical metal in the three-dimensional (3D)
Dirac system with the inflated monopole scenarios proposed
in cosmology for the universe inflation. Topological defects
can merge, annihilate, or be created out of a vacuum as a
result of fluctuations as long as the total topological charge
is conserved in the process. For instance a trivial vacuum
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FIG. 1. Helical metal and insulator. (a)–(c) Characterization of
Dirac cones (k◦ = 0), helical insulators (k◦ > 0), and helical met-
als (k◦ < 0) in terms of the excitation spectrum. Different colors
of cones stand for the opposite helicity. The corresponding den-
sity of states (DOS) is shown in panels (d)–(f) in units of ρd =
2π (2πh̄v)−d . We set here � = ±1. Helical insulators are character-
ized by the opening of a massless gap, whereas helical metals present
a Dirac cone crossing. (g)–(h) Topology of nodal circle and nodal
sphere in two and three dimensions, respectively, as induced by the
Lifshitz transition (see text).

configuration can be deformed into vortex-antivortex pairs
in superconductors. As long as one has topological sectors
preserved all nontrivial configurations are allowed. Similarly,
pointlike monopoles can be inflated into a thin expanding shell
called inflated monopoles. These configurations of the field
would have exactly the same strength as the point monopole,
except singularity will be at the shell. Inflated monopoles were
proposed to be realized in some inflated universe scenarios
[20–23]. In the case of a Dirac node the pointlike Berry
monopole of charge Q is inflated to form an inflated Berry
monopole—the shell of finite radius and twice the initial
charge +2Q while leaving behind at the origin the point
monopole of opposite charge −Q. The net topological charge
is preserved: Q = +2Q − Q; see Fig. 2. Our results provide
the interesting alternative of expanded monopole singularity
in k space compared to the 4D space for regular monopoles
discussed in cosmology.

We discuss in detail a microscopic model for the origin
of this infinite-range interaction based on an electron-boson
interaction with zero momentum transfer. Considering this
electron-boson interaction and using Lang-Firsov transfor-
mation [24,25], we obtain an infinite-range electron-electron

FIG. 2. Sheet-singularity of Berry curvature. (a) Berry curvature
field of a single Dirac point embedded in three dimensions. (b) Berry
curvature field of a nodal sphere = inflated Berry monopole for
k◦ < 0.

interaction in both density and pseudospin channels. Apart
from the emergence of an effective attractive interaction, we
observe a polaronic reduction of Fermi velocity, e.g., v →
v exp{−2(g/h̄ω0)2} with ω0 and g as the boson frequency
and the electron-boson coupling constant, respectively. This
effect could be either isotropic or anisotropic depending on
the pseudospin structure of the electron-boson coupling.

To point out possible realizations of these states we provide
a few examples in realistic materials such as graphene in an
optical cavity [26] or graphene on top of a substrate with ac-
tive phonon modes, e.g., SrTiO3 (STO) [27–29]. We prove that
the induced interactions originating from intrinsic longitudi-
nal and transverse optical-phonon modes of graphene have
the opposite effect on low-energy dispersion of graphene,
so that the net self-energy correction vanishes. This can
answer the question about the required conditions to observe
such topological Lifshitz transition to insulating and metallic
phases. This transition would be forbidden in free-standing
graphene due to the dispersion of intrinsic phonon modes.
As another interesting observation that will have experimental
consequences, we find a polaronic band flattening in graphene
as a result of this intrinsic coupling.

A crucial feature of both nodal circle/sphere structures and
massless-gapped systems is that the quasiparticles preserve
helicity. These are the examples of the topological gapless
conducting states. Therefore, we can call these states a helical
metal and insulator, respectively. The density of states of the
nodal circle/sphere system indeed does not vanish on the
Fermi line/surface, implying that these phases are metals.
Importantly, we obtain a singularity of the Berry curvature,
�(k), in the nodal sphere system. The distribution of Berry
curvature charge, ρBerry(k) ∝ ∇ · �(k), changes at the transi-
tion to a helical metal and the Berry charge at the Dirac point,
Qi = +Q, jumps to Qf = −Q + 2Q where −Q singularity
is pinned to the Dirac point and +2Q is uniformly distributed
on the nodal sphere of the size dependent on the interaction;
see Fig. 2.

Having characterized the topological properties of
interaction-induced nodal structures, we also discuss some
observables that might provide the direct evidence for the
helical state. (i) It is clear that the helical metal states are
metallic and the density of states (DOS) is finite and grows
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as shown in Fig. 1(f) in two and three dimensions. (ii) We
predict a nontrivial Landau-level spectrum for the helical
insulator and metal: for the case of a 2D helical insulating
phase in the presence of a perpendicular magnetic field, we
find a zero-energy Landau level that remains pinned to zero
inside the energy gap. Such a zero-energy Landau level can
be used as a sharp experimental benchmark to distinguish
between massless and massive gapped spectra. In the helical
metal phase, on the other hand, we show that a Landau-level
inversion can be induced by tailoring the strength of the
external magnetic field. For the 3D case, Landau levels are
dispersive owing the z component of the momentum, kz.
In the nodal sphere phase, thus, the Landau levels reveal a
critical behavior for weak magnetic field strength that will be
discussed in detail.

The paper is organized as follows: in Sec. II, we discuss the
emergence of helical metals and insulators in Dirac matter due
to long-range interaction; in Sec. III, we discuss a microscopic
mechanism for infinite-range attractive interaction based on a
boson-mediated coupling; in Sec. IV, we discuss the topology
of new phases. Finally we present the characterization of
discrete Landau levels in the presence of a magnetic field
provided in Sec. V.

II. HELICAL METALS AND INSULATORS BY
LONG-RANGE INTERACTIONS

As it is well known, the helical character of 2D Dirac
point and 3D Weyl points is protected by symmetry against
the effects of well-behaved many-body interactions. Alterna-
tively, a conventional way to reduce the helical symmetry in
these systems is by introducing an external field that gives
rise to a term �σ̂z. In 2D Dirac systems such a term opens
a massive gap affecting thus the helical symmetry, whereas
in three dimensions it just leads to a shift of the Dirac point
position along the z direction without opening a gap and
without affecting the helicity.

Recently a paradigmatic model has been suggested where a
massless gap opening in 2D Dirac systems is induced without
affecting the helical properties [15,16,30,31]. Phenomeno-
logically, such a phase is established by considering a term
�σ̂ · k̂ in the Dirac Hamiltonian, namely

Ĥk = h̄vkσ̂ · k̂ + �σ̂ · k̂, (1)

where k̂ = k/k is the unitary momentum vector. The
Hamiltonian (1) works in the 2 × 2 pseudospin space defined
by the spinor ψ̂

†
k = (c†k,↑, c

†
k,↓). The energy dispersion can be

easily computed, giving ελ
k = λh̄v(k + k◦), where λ = +/−

and where k◦ = �/(h̄v). The excitation spectrum is thus
characterized by a rigid split of the upper and lower Dirac
cones, resulting in a gapped spectrum, as depicted in Fig. 1(b),
where the red (top) and blue (bottom) cones correspond to
λ = +, λ = −, respectively. Note that the additional term
∝ � does not break the helicity and the eigenvectors of
Hamiltonian (1) are identical to those of a single Dirac node
with k◦ = 0. Such kind of gap opening has thus been denoted
as a massless gap [15,16], because the conic structure is
preserved, and it is also known as a Weyl-Mott insulator, since
the helicity is preserved in a gapped state (see Refs. [30–32]).

On the microscopical ground, the need of a long-range
interaction in order to induce a massless gap has been dis-
cussed in Ref. [16] in the context of a spontaneous symmetry
breaking, as well as in Ref. [30] within the context of a Mott
transition induced by a k-local interaction. We show here that
neither of these two conditions is a compulsory requirement,
and that a massless gap can be naturally sustained by a
standard density-density interaction in the limit of very long
range.

The need of a long-range nonlocal interaction can be easily
inferred by performing the Fourier transform of Eq. (1) in the
real space. For general dimension d = 2, 3, we obtain (see
Appendix A)

Ĥr = h̄vσ̂ ·
[
−i∇ + ik◦(d − 1)

2πd−1

∫
dd s

s exp{s · ∇}
sd+1

]
. (2)

Note that the exponential function of Eq. (2) contains all
the powers of ∇ indicating the nonperturbative long-range
character of this term.

Motivated by this observation we consider a conventional
density-density interaction

V̂ee = 1

2

∑
q

V (q )ρ̂(q )ρ̂(−q ), (3)

where ρ̂(q ) = ∑
k ψ̂

†
k+qψ̂k and V (q ) is a long-range inter-

action. To investigate the role of the long-range scattering
(q → 0) we model here V (q ) with a Gaussian profile, but
similar results would hold true for Lorentzian or other models.
More specifically we write down

V (q ) = V (2π )d
e−ξ |q|2

(π/ξ )d/2
, (4)

where d = 2, 3 is the dimensionality and
√

ξ defines a char-
acteristic length scale for the interaction. Note that in the
long-range limit

√
ξ → ∞ and we have V (q ) ∝ δ(q ). In this

limit the Gaussian interaction can be thus mapped on the
class of exactly solvable models discussed in the seminal
paper by Hatsugai and Kohmoto (HK) [33], and later further
investigated in [30]. It was also realized that the exact solution,
for infinitely long-range repulsion, can be viewed as a saddle
point (mean-field solution) in the path-integral formalism
[34]. As a further step forward, we show in Appendix C
that the mean-field solution is also reproduced by the simple
lowest-order perturbation theory. Along this perspective, we
employ here a similar perturbative approach to investigate
at the qualitative level the main features of the Gaussian
interaction in the helical Dirac system.

The detailed evaluation of the self-energy associated with
such interaction is reported in Appendix C. Here we report the
main result:

�̂(k) = V CdM
(
1/2, 1 + d/2,−k2ξ

)
k
√

ξ σ̂ · k̂, (5)

where Cd in a geometric factor that depends on the dimension
d (Cd=2 = 1/16π3/2, Cd=3 = 1/12π7/2) and M (a, b, z) is the
Kummer’s function of the first kind. Note that the quantity
M (1/2, 1 + d/2,−k2s)k

√
ξ is well behaved in the limit ξ →

∞. So that in the limit
√

ξ → ∞, the Fermi velocity diverges
and it reproduces exactly the helical massless gap term of
Eq. (1) with � = V/2, pointing out thus how a massless

245114-3



ROSTAMI, CAPPELLUTI, AND BALATSKY PHYSICAL REVIEW B 98, 245114 (2018)

gap can arise as a result of a long-range density-density
interaction.

Such analytical derivation can be useful not only to assess
the physical feasibility of such phase, but also to explore
now possible phases. In particular, we can use the present
framework to investigate the effects of a long-range attraction
where V < 0. The self-energy is this case looks formally
similar as Eq. (5) but with V < 0 giving rise to a negative
k◦, k◦ < 0. The topological properties of such phase appear
immediately drastically different from the case k◦ > 0. In
particular a long-range attraction for d = 2 results in the elec-
tronic spectrum characterized by a Dirac-cone band crossing,
still fully preserving the helical degree of freedom, as depicted
in Fig. 1(c). As mentioned in the Introduction, such Dirac cone
crossing gives rise to a nodal line.

According with Figs. 1(e) and 1(f), the electron density of
states (DOS) at the Fermi level for k◦ < 0 results to be finite,
whereas it is null for k◦ > 0. Two such phases can be denoted
as helical metals and helical insulators, respectively.

A similar analysis can be straightforward generalized to the
d = 3 case. For helical metals, the initial Fermi point morphs
to a Fermi circle and a Fermi sphere for d = 2 and d = 3,
respectively; see Figs. 1(g) and 1(h). The transition from a
helical semimetal (k◦ = 0) to a helical metal/insulator (k◦ 	=
0) is thus a topological Lifshitz transition [3,5,35–37], where
the Fermi-surface manifold keeps its continuity but it changes
the dimensionality from zero dimension (point) to one (circle)
and two (sphere) dimensions for the case of d = 2 and d = 3,
respectively.

Note that the Mott-like model proposed in Ref. [30] to
describe the massless gap opening cannot account for the
helical metal phase with k◦ < 0 since the ground state will be
drastically different with no single occupancy and a coherent
superposition of empty and double occupied states close to the
Dirac point.

III. MICROSCOPIC MECHANISMS FOR
INFINITE-RANGE ATTRACTION

In the previous section, we have discussed how long-range
interactions can give rise to phases that can be identified as
helical insulators or helical metals according to the character
(repulsion vs attraction) of the interaction. Particularly, the
interesting part is the case of a long-range attraction which
can result in the onset of nodal lines/spheres in two or
three dimensions, respectively. As discussed above, a long-
range direct Coulomb electron-electron interaction provides
a plausible mechanism for the repulsion responsible for the
gapped insulating phase. In the following we discuss, on the
other hand, how indirect boson-mediated coupling is a natural
candidate for the attractive interparticle interaction in both
density and pseudospin channels.

In order to analyze this context in a formal way, we con-
sider the coupling of Dirac fermions with a generic bosonic
mode,

Ĥ = h̄v
∑

k

ψ̂
†
kσ̂ · kψ̂k + h̄

∑
q

ωq â
†
q âq

+ g
∑
k,q

ψ̂
†
k+q�̂k,qψ̂k(â†

−q + âq ), (6)

where â
†
q (âq) is the creation (destruction) of a boson mode

with momentum q, h̄ωq is the corresponding boson energy,
�̂k,q is a unitary matrix vector in the pseudospin Pauli ma-
trix space (Î , σ̂x, σ̂y, σ̂z), and g denotes the strength of the
electron-boson coupling. We focus here on the role of the
q = 0 boson responsible for the long-range coupling,

Ĥ = h̄v
∑

k

ψ̂
†
kσ̂ · kψ̂k + h̄ω0â

†
0â0

+ g
∑

k

ψ̂
†
k�̂kψ̂k(â†

0 + â0), (7)

where for the sake of short notation we set �̂k = �̂k,0, with �̂k

obeying the Hermitian property �̂
†
k = �̂k.

In order to investigate the role of a q = 0 boson mode,
and to isolate the effective (boson-mediated) electron-electron
interaction, a useful approach is provided by the Lang-Firsov
transformation [24,25], where the linear electron-boson cou-
pling is removed in favor of an effective unretarded electron-
electron interaction along with a more complex kinetic term.
In the specific case of the Dirac system in Eq. (7), this task is
accomplished by the canonical transformation Ĥ′ = eŜĤe−Ŝ ,
where Ŝ = (g/h̄ω0)N̂ (â†

0 − â0), where N̂ = ∑
k ψ̂

†
k�̂kψ̂k.

Technical details of such transformation for this helical Dirac
model are reported in Appendix D. The resulting effective
Hamiltonian Ĥ′ will read

Ĥ′ = h̄v
∑

k

ψ̂
†
k[X̂†

kσ̂ · kX̂k]ψ̂k − U

[ ∑
k

ψ̂
†
k�̂kψ̂k

]2

, (8)

where U = g2/h̄ω0 and where X̂k = exp [(g/h̄ω0)�̂k(â0 −
â
†
0)]. Equation (8) explicitly shows the appearance of an

effective electron-electron interaction with effective coupling
strength U = g2/h̄ω0, whereas the complex entanglement
between electron and boson degrees of freedom is shifted
in the unitary operator X̂k. An effective decoupling between
fermions and bosons can be further achieved by means of the
so-called Holstein approximation, where the kinetic term is
averaged over the bosonic vacuum ground state, i.e.,

ψ̂
†
k[X̂†

kσ̂ · kX̂k]ψ̂k → 〈0|ψ̂†
k[X̂†

kσ̂ · kX̂k]ψ̂k|0〉. (9)

This step, which is straightforward in the single band case
and leads to the usual polaronic band narrowing as tij →
tij exp{−∑

q (gq/h̄ωq )2[1 − cos(q · Rij )]/2} [24] where tij
stands for the hopping integral between two lattice sites sepa-
rated by Rij . Obviously, if only the q = 0 mode is considered,
i.e., gq = gδq,0, there will be no band narrowing. This trivial
result is not the case in a helical Dirac system and it gives
rise to different physical scenarios according to the Pauli
matrix structure of the kinetic term and the electron-boson
interaction. For the sake of simplicity, we consider thus two
complementary cases: (a) a boson mode coupled with the
electron density, �̂k ∝ Î ; (b) and a boson mode that represents
spin fluctuations in the pseudospin space of the spinor ψ̂

†
k. In

that case �̂k = σ̂ · n̂ where n̂ is a unit vector (|n̂| = 1) in the
threefold Pauli matrix space (σ̂x, σ̂y, σ̂z).
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A. Electron-boson coupling with fermion density

Case (a) is relatively straightforward since it corresponds
to an effective disentanglement between fermion and bosonic
degrees of freedom. In particular in this case, due to the
commutation property of the electron-boson matrix structure
of the interaction �̂k with the noninteracting Hamiltonian, the
kinetic term reads, at the operational level,

X̂
†
kσ̂ · kX̂k = σ̂ · k, (10)

making unnecessary even the Holstein approximation (aver-
age over ground boson state). In this case, the interaction of
Dirac fermion with a q = 0 boson mode coupled with the
density can be mapped exactly on an effective Hamiltonian
of Dirac fermions interacting with an attractive infinite-range
interaction. As discussed in Sec. II, this leads naturally to
a helical metal of intersecting Dirac bands. Note that this
scenario is independent of the physical dimensions, and it
holds true in two as well as in three dimensions.

B. Electron-boson coupling with (pseudo)spin fluctuations

More care is needed in examining case (b) of a boson cou-
pled with (pseudo)spin fluctuations, i.e., �̂k = σ̂ · n̂, where
the electron-boson coupling �̂k does not commute with the
noninteracting Hamiltonian σ̂ · k̂.

In order to investigate this context, we make use
of the relations [σ̂ · a, σ̂ · b] = 2i(a × b) · σ̂ and exp(B̂σ̂ ·
n̂) = Î cosh(B̂ ) + n̂ · σ̂ sinh(B̂ ). Taking in our case B̂ =
[g/h̄ω0](â0 − â

†
0), we obtain thus, at the operatorial level, a

kinetic term

X̂
†
kσ̂ · kX̂k = cosh(2B̂ )σ̂ · k + [1 − cosh(2B̂ )](σ̂ · n̂)(n̂ · k)

− i sinh(2B̂ )(n̂ × k) · σ̂ . (11)

Equation (11) permits us now to perform, at a more in-
tuitive level, the average over the bosonic vacuum ground
state in a more compelling way. In particular, it is now
easy to see that 〈0| sinh(2B̂ )|0〉 = 0 and 〈0| cosh(2B̂ )|0〉 = γ ,
where γ = exp[−2(g/h̄ω0)2]. We obtain thus the effective
Hamiltonian

Ĥ = h̄v
∑

k

ψ̂
†
k[γ σ̂ · k⊥ + σ̂ · k‖]ψ̂k

− U

[∑
k

ψ̂
†
kσ̂ · n̂ψ̂k

]2

, (12)

where k⊥(k‖) is the perpendicular (parallel) component of
k vector with respect to n̂. The interaction part in the
(pseudo)spin channel can be written as follows:

V̂ee = 1

2

∑
q

V (q )Ŝn(q )Ŝn(−q ), (13)

where Ŝn(q ) = ∑
k ψ̂

†
k+q σ̂ · n̂ψ̂k and V (q ) = −2Uδ(q ) is an

attractive infinite-range interaction.
Note that, as long as the vector n̂ in the coupling matrix

�̂k = σ̂ · n̂ belongs to the Pauli matrix space of the kinetic
term, the interaction with the boson mode breaks down the
symmetry of the system in the k and in the Pauli matrix space.
In particular, we will obtain an anisotropic Dirac-like kinetic

term where the Fermi velocity perpendicular to n̂ direction
is reduced as v → γ v while its component along n̂ remains
unchanged. Such anisotropy is expected to appear thus in
three dimensions, and in two dimensions when the vector n̂
lies in the xy plane (n̂ · ẑ = 0). Quite peculiar is also the
case n̂ = ẑ which preserves the isotropy of the kinetic Dirac
Hamiltonian, with the usual overall reduction of the Fermi
velocity as v → γ v. As we are going to discuss below, the
symmetry can be restored when coupling with two or more
boson modes, allowed by the symmetry of the original system,
is considered.

From a general point of view, given the Hamiltonian (12)
with an effective unretarded electron-electron interaction, the
self-energy can be computed for generic �̂k = σ̂ · n̂. The
explicit derivation is provided in Appendix E. We get

�̂(k) = U
γ σ̂ · k⊥ − σ̂ · k‖√

γ 2k2
⊥ + k2

‖
. (14)

Again, we can distinguish two representative cases, depending
on whether n̂ belongs to the original space of the (2D or
3D) kinetic Dirac term or perpendicular (n̂ = ẑ in two dimen-
sions). In the first case, the initial node splits into two separate
nodes located at (k‖ = ±k∗, k⊥ = 0) with

k∗ = U

h̄v
. (15)

Quite interesting also is the second case where n̂ = ẑ in two
dimensions. In this case the self-energy �̂(k) in Eq. (14) reads

�̂(k) = U σ̂ · k̂, (16)

that fulfills precisely the requirements for a helical
metal/insulator. The metal/insulator character is determined
by the sign of the self-energy. Quite interesting, although the
effective interaction in (12) looks attractive, the overall sign of
Eq. (16) result is positive, giving rise thus to a helical insulator
with effective energy gap 2U which can be large enough for
being detected in a proper measurement.

C. Towards real materials

In the previous subsection we have investigated the effects
of a single-boson mode coupled with a Dirac system via
density or pseudospin fluctuations. Such analysis has permit-
ted us to point out, on a mathematical ground, the role of
matrix structure of the electron-boson coupling and of the
dimensionality. The physical relevance of such analysis will
be further discussed here with respect to realistic systems and
materials.

We first comment about the case of a boson coupled with
the electron density, �̂k ∝ Î . Giving the full commutativity
of this operator with any kinetic term, this analysis remains
valid in any dimension. On the physical ground, a finite
component of density-density interaction can result from any
kind of retarded coupling. As discussed above, such density-
density interaction, stemming from a retarded boson-mediated
coupling, is naturally attractive and it would leave, if alone, to
a helical nodal metal. In real systems, however, such attraction
needs to compete with the intrinsic long-range Coulomb
repulsion, discussed in Sec. II. The resulting scenario would
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result thus from relative strengths of the two channels, and
a helical nodal metal or a helical gapped insulator can in
principle be established under different conditions.

Of a direct physical relevance is also the case of a two-
dimensional Dirac model where n̂ = ẑ (�̂k ∝ σ̂z). This would
be a representative model for two-dimensional graphene in the
presence of a quantum field that breaks dynamically the sub-
lattice symmetry. Such conditions can be realistically obtained
from a coupling with a single optical cavity mode [26]. In this
scenario, the cavity mode Ê0 couples to Dirac fermions be-
cause of finite inter-band dipole moment of Dirac fermions, d.
This can be effectively modeled by assuming �̂k = |uc〉〈uv| +
|uv〉〈uc| = σ̂z, with |uc/v〉 as the conduction-/valence-band
states, and g ∼ Ê0 · d̂/h̄ as the Rabi frequency. For a tech-
nical point of view, the cavity mode frequency ω0 can be
tuned by the distance L of cavity mirrors, i.e., ω0 ∼ π/L. This
provides the possibility to control the strength of interparticle
interaction U , by tuning the separation of cavity mirror.

Alternative scenarios where Dirac fermions can be coupled
with �̂k = σ̂z or Î modes may arise by considering optical-
phonon modes of surrounding media, e.g., graphene on STO
substrate [27–29]. Very recently it has been experimentally
approved that an electron in monolayer iron selenide (FeSe)
could couple to the phonon mode of the STO substrate and
this could significantly enhance the superconductivity in FeSe
[38,39]. One can expect similar indirect electron-phonon cou-
pling for graphene/STO although, to best of our knowledge, a
microscopic study of this coupling is still missing. In both adi-
abatic and nonadiabatic regimes [40], we can find situations
for which g � h̄ω0 and therefore one can expect a strong
U = g2/h̄ω0 coupling. This regime might be achievable by
considering interaction between the ferroelectric soft mode of
STO and electrons in graphene.

Electron-phonon coupling in two-dimensional graphene
provides also a realistic context to revise the results obtained
by considering a single boson mode with �̂k ∝ σ̂ · n̂. This
is also a realistic scenario for real graphene, where such
coupling is provided by the lattice optical modes at q = 0.
However, in this case, the robustness of the Dirac point, pro-
tected upon lattice distortion, is enforced when the coupling
with both longitudinal and transverse modes is considered.

Following the detailed derivation in Ref. [41], this can be
modeled in our context by considering linear coupling with
two degenerate boson modes, corresponding to longitudinal
and transverse modes:

Ĥint = g
∑

k

ψ̂
†
k[(â0 + â

†
0)�̂a + (b̂0 + b̂

†
0)�̂b]ψ̂k, (17)

where �̂a,b = σ̂ · n̂a,b with n̂a · n̂b = 0. A proper Lang-Firsov
transformation, aimed to remove the linear electron-boson
coupling in favor of an effective unretarded electron-electron
interaction, can be performed also in such a two-boson case.
The long and cumbersome derivation is provided in Ap-
pendix F. The effective Hamiltonian, after averaging on boson
vacuum state, reads thus in an arbitrary dimension

Ĥ = γ h̄v
∑

k

ψ̂
†
k k · σ̂ ψ̂k − γ 2U

∑
i=a,b

[∑
k

ψ̂
†
kσ̂ · n̂i ψ̂k

]2

,

(18)

where γ = exp[−2(g/h̄ω0)2] is the usual renormalization
factor. Note that the effective attractive interaction in the pseu-
dospin channel contains the contributions of both transverse
and longitudinal modes. The total self-energy is thus given by
summing both contributions. At the mean-field level we obtain
�̂a (k) ∝ ka σ̂ · n̂a − kbσ̂ · n̂b and �̂b(k) ∝ −ka σ̂ · n̂a + kbσ̂ ·
n̂b, so that �̂(k) = �̂a (k) + �̂b(k) = 0.

As expected by symmetry properties, the linear coupling
with lattice, once taking into account properly both longitudi-
nal and transverses modes, does not break the Dirac point in
graphene, preserving the isotropic Dirac cone of noninteract-
ing fermions although with a Fermi velocity renormalization
factor γ . This Fermi velocity reduction is tightly related to
the (pseudo)spin feature of Dirac systems and such band
narrowing is absent in normal metals when only the zero-
momentum bosons are taken into account [24].

IV. TOPOLOGICAL CHARACTERIZATION OF HELICAL
METALS AND INSULATORS AND INFLATED

BERRY MONOPOLE

We illustrate below the topology of proposed helical phases
and address the salient features and connection between
topology and observables. As pointed out earlier, the nodal
helical metal states are interesting in a broader context. These
topological phases realize the inflated Berry monopole where
pointlike singularity is expanded to form a singular sheet;
Fig. 2. In cosmology there were discussions about inflated
magnetic monopoles forming expanded singular sheets [21].

A. Winding numbers

We illustrate the topology of helical metals and insulators
using analytical properties of the electronic Green’s function.
Fermi points/lines/surfaces can be identified by the the sin-
gularities of Green’s function in the ω-k space. In the nonin-
teracting case (k◦ = 0), Ĝ(iω, k) = −[iω + h̄vkσ̂ · k̂][ω2 +
(h̄vk)2]−1, implying a unique singularity point at (ω = 0, k =
0). For k◦ < 0 the singularities of Green’s function are given
by the condition (ω = 0, k = −k◦), resulting thus in a Fermi
circle and a Fermi sphere in two and three dimensions, respec-
tively. The helical structure of the state is fully preserved for
k◦ 	= 0, and as such Fermi singularities of nodal circles and
spheres in two and three dimensions, respectively, are fully
preserved.

Both nodal circles (1D objects) in two dimensions and
nodal spheres (2D objects) in three dimensions have codi-
mension 1, D = 1 [3,36]. Therefore, we can use the following
Volovik’s winding number [3,36] in order to characterize the
topology of the nodal circle/sphere:

N1 = 1

2πi

∮
C
d�Tr[Ĝ(iω, k)∂�Ĝ

−1(iω, k)], (19)

where C is a contour in the ω-k plane circulating an arbitrary
nodal point [see Fig. 1(g)]. For a contour in the ω-kx plane
with radius R, it is easy to show that

N1 =
∫ 2π

0

dφ

2π

|k◦|
|k◦| + iRe−iφ/2

= 1 − δk◦,0. (20)
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For a single monopole point, we would have N1 = 1 for
counterclockwise contour integration. Note that when k◦ →
0, the nodal region morphs back to a single Dirac cone in any
dimension which implies N1 = 0.

B. Berry curvature and inflated Berry monopole

Now, we proceed to analyze the details of topological sig-
natures in nodal phases. The Berry curvature of a Weyl node in
three dimensions resembles the magnetic field of a monopole
charge. It is defined as �λ(k) = ∂k × Aλ(k) where the Berry
connection is given by Aλ(k) = i〈uλ(k)|∂kuλ(k)〉 in which
uλ(k) stands for the wave vector of each band indicated by
the λ index. It is easy to show that �λ(k) = −λk/2k3 [2,42]
for a single node where λ = +/− corresponds to the red (top)
and blue (bottom) cone as depicted in Fig. 1. However, in
transport physics, we only need to know the occupied band
contribution in the Berry curvature. Therefore, we define the
occupied-band Berry curvature as follows:

�(k) =
∑

λ

�λ(k)nF
(
ελ
k

)
, (21)

where nF(x) = �(−x) is the Fermi distribution function at
zero temperature and zero doping. Note that �(x) is the
Heaviside step function. For the case of a single node or
massless gapped case, we have �(k) = �−(k). However, for
the case of nodal sphere, the Berry curvature follows

�(k) = sgn(k − |k◦|) k
2k3

. (22)

where sgn(x) = �(x) − �(−x). This is because for k < |k◦|
(k > |k◦|) the red cone with a negative Berry charge (the blue
cone with a positive Berry charge) is occupied. This change
in the Berry curvature field can be interpreted as a change
in the Berry charge density that splits into two parts under
the transition where a −Q monopole charge is pinned at the
center of the sphere and +2Q charge is uniformly distributed
on the inflated surface depicted in Fig. 2. This can be seen in
the Berry curvature divergence:

∇ · �(k) = −2πδ(3)(k) + δ(k − |k◦|)
k2◦

. (23)

Notice that upon this transition the total monopole charge
is conserved and higher multipoles stay zero. Therefore, this
new singularity structure will not create any correction to
the linear or nonlinear anomalous currents [43]. This char-
acteristic feature of the nodal sphere system can be revealed
upon applying a time-reversal protocol [44] for extracting
anomalous velocity [45]. The observed velocity will be pro-
portional to the cross product of the Berry curvature and the
external electric field, ∝ E × �(k). The group velocity in the
presence of an external electric field E is given by vk(E) =
[∂kεk − eE × �(k)]/h̄ [46]. The anomalous velocity, and
therefore the Berry curvature, can be extracted as �(k) ×
E = (h̄/2e){vk(E) − vk(−E)} in two separate experiments
with E and −E as the driving electric field.

For the 2D case, the Berry curvature does not change
when the system undergoes the transition from a single-node
to a nodal-circle phase. This is because the Berry connec-
tion (and therefore the Berry curvature) is identical for both

left- and right-handed helical bands in two dimensions, i.e.,
Aλ(k) = −φ̂/2k leading to �(k) = −πδ(2)(k) ẑ where φ̂ is
the azimuthal angle unit vector.

V. LANDAU LEVELS

We propose to use Landau-level spectroscopy as a conve-
nient way to track the change in the topology of underlying
Dirac system. In the presence of an external magnetic field,
we use the minimal coupling and replace (h̄/i)∇ in Eq. (2)
with π̂ = (h̄/i)∇ + eA where −e < 0 is the electron charge.
Then, we perform the integral over s to get the desired result.
Alternatively, one can use the Hermiticity property of the
Hamiltonian and consider k(k · k)−1/2 → [π̂ (π̂ · π̂ )−1/2 +
(π̂ · π̂ )−1/2π̂ ]/2. We arrive at the following Hamiltonian in
the presence of an external gauge field:

Ĥ(π̂ ) = v

[
σ̂ · π̂ + h̄k◦

2
{(π̂ · π̂ )−1/2, σ̂ · π̂}

]
, (24)

where {, } stands for an anticommutation operation. We con-
sider a constant magnetic field along the z direction, B = ẑB,
and we evaluate the Landau-level spectrum for a 2D helical
insulator and metal. We define an annihilation operator as
â = �B/(

√
2h̄)(πx − iπy ) which satisfies [â, â†] = 1. Note

that �B = √
h̄/eB is the magnetic length. The Hamiltonian

can be rewritten as

Ĥ =
√

2
h̄v

�B

[
0 f̂

f̂ † 0

]
, (25)

where f̂ = â + k◦�B{(2n̂ − 1)−1/2 , â} in which n̂ = â†â is
the number operator. After solving the eigenvalue problem of
the above Hamiltonian, we obtain the set of Landau levels (see
Appendix G)

ε±
n = ±h̄v

√
2n

|1 + αnk◦�B |
�B

. (26)

The key difference from the classical result is the energy
dependence on k0�B . It is precisely this dependence that will
result in nontrivial evolution of LL with magnetic field for
negative k0.

Note that n = 0, 1, 2, . . . , +/− corresponds to the
conduction-/valence-band index and αn = (2n − 1)−1/2 +
(2n + 1)−1/2. The corresponding eigenvectors are given in
terms of number operator’s eigenstates, i.e. |n〉, as 〈ψn=0| =
[0 , 〈0|] and for n � 1 we find

|ψ±
n 〉 = 1√

2

[±sgn(1 + αnk◦�B )|n − 1〉
|n〉

]
. (27)

For the 3D case, we need to add Ĥz = m(n̂, kz)σ̂z to the
Hamiltonian given in Eq. (25), where m(n̂, kz) reads

m(n̂, kz) = h̄vkz

[
1 + k◦�B√

2n̂ + 1 + (kz�B )2

]
. (28)

Landau-level energies depend on two quantum numbers of n

and kz and are obtained straightforwardly (see Appendix G):

ε̃±
n (kz) = ±

√
(ε±

n )2 + m(n, kz)2, (29)
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|

FIG. 3. Landau levels in 2D helical insulator and metal. (a)
Presence (absence) of zero-energy Landau level in 2D massless
(massive) gaped phase. (b) First three Landau levels of nodal circle
phase vs k◦�B . A level crossing and then a level inversion occurs at
k◦�B = −1/α1. (c) Landau levels with higher quantum number n are
depicted where in the inset we see a different kind of Landau level
crossing placed at nonzero energy.

where n � 1 and the corresponding eigenvector follows

|ψ̃±
n (kz)〉 = 1√

2

[
γ ±sgn(1 + αnk◦�B )|n − 1〉

|n〉
]
, (30)

where γ ± = |ε±
n |/[±|̃ε±

n (kz)| − m(n, kz)]. For the n = 0
case, we have ε̃0(kz) = −m(n, kz) and 〈ψ̃0| = [0 , 〈0|].

The results for the Landau-level spectrum of the helical
insulator and metal are depicted in Figs. 3 and 4. In Fig. 3(a),

kz B

ε/
(

v
−

1
B

)

Black: k◦ B = 0
Blue: k◦ B = −1
Red: k◦ B = −2

ε/
(

v
−

1
B

)

Black: k◦ B = 0.0
Blue: k◦ B = 0.5
Red: k◦ B = 1.0

(b)

(a)

FIG. 4. Landau levels in 3D helical insulator and metal. First
three Landau levels of 3D massless gaped phase. (b) First three
Landau levels of nodal sphere phase. At a critical value of k◦�B =
−1, the n = 0 landau level changes its linear dispersion to a cubic
form. As depicted in the legends in both panels, black, blue, and red
colors stand for different values of k◦�B . Note that solid, dashed, and
dotted curves correspond to the quantum number n = 0, 1, and −1,
respectively.

a zero energy Landau level always exists inside the gap and
this is a major difference with respect to what we have in the
massive Dirac system (with mσz mass term) in which there
is no zero energy Landau level. For the helical metal case,
we observe an interesting feature, shown in Fig. 3(b): there is
a critical value of the dimensionless parameter (−k◦�B )|cr. =
1/αn	=0 for which nth Landau levels with positive and neg-
ative energy cross each other at zero energy and therefore
the zero-energy Landau level gets triple degenerate. Upon
further increase of this parameter a level inversion occurs in
the Landau-level spectrum. This level inversion could have a
significant effect on the edge state dispersion and therefore
leads to a topological change of the Hall transport. Figure 3(c)
shows Landau levels with higher quantum number n where in
the inset we can see a different kind of Landau-level crossing
with double degeneracy placed at nonzero energy.

Landau levels of a 3D helical insulator and metal are
depicted in Fig. 4. Particularly, there is a new critical value
(−k◦�B )|cr. = √

2n + 1 for which the nth Landau levels get
modified from a linear dispersive mode, ε̃n(kz) ∝ −kz, to a
cubic one, ε̃n(kz) ∝ −k3

z , when |kz|�B � 1. For (−k◦�B ) >√
2n + 1, we can see that two extra nodes emerge at zero

energy, see Fig. 4(b), and the higher Landau-level dispersion
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looks like a flat band for small kz or strong enough magnetic
field, i.e., �B < 1/|kz|.

We note that similar aspects of helical states were consid-
ered before, e.g., in a phenomenological model of Ref. [15].
One distinct feature we find, for instance, is the onset of
Landau levels that was not addressed earlier. On the other
hand, the elementary excitations in Weyl-Mott insulators
discussed in Ref. [30], although characterized by a similar
energy spectrum, correspond to a completely different set of
eigenstates, as discussed in Appendix B.

VI. SUMMARY

In this work, we discussed helical phases that could emerge
as a result of a very long-range interaction in Dirac systems in
two and three dimensions. For the case of repulsive/attractive
interactions in the density/pseusospin sector our results are
consistent with the previous claims of a massless gap opening,
the so-called helical insulator. In this work we have addressed
both repulsive interactions that lead to massless gap opening
and a phase that emerge for the attractive interactions, the
so-called helical nodal metal.

These phases in either case of attractive or repulsive in-
teraction host helical particles. Attractive interactions induce
a topological Lifshitz transition to a different phase, the so-
called helical nodal metal with the topological nodal sphere
in the 3D Dirac system. The salient features of the nodal
phase are the intersecting Dirac cones and attendant Berry
singularity. Since the Berry curvature is localized on a sphere
(3D), we called it a Berry sheet. We point out that Berry sheet
singularity is identical to the inflated monopole configuration
discussed in inflationary cosmology. To elucidate the nature
of uncovered helical states, we evaluated the density of states
and Landau-level spectra that can be be used to identify and
distinguish helical phases from other states of interacting
Dirac matter.

We also discuss possible physical realizations of this long-
range potential based on the coupling to substrate and for-
ward scattering potentials. An alternative possibility is to
use polaronic effects in a boson-mediated electron-electron
coupling. We show how this coupling can be the origin of
this infinite-range interaction potential. We also discussed the
effect of this electron-boson coupling on the kinetic part of
Dirac Hamiltonian where a Fermi velocity reduction appears.
This feature is specific to the Dirac system because in normal
metals such band narrowing is absent when only the zero-
momentum bosons are taken into play.

In the analysis of the best conditions where helical metals
or insulators can be achieved in real materials, in addition to
the many-body interactions, one has to face the unavoidable
presence of disorder that might compete with topological
features. The effects of disorder have been discussed to a
large extent in the literature on graphene [47–52], with 2D
Dirac-like features, and in 3D Dirac (Weyl) materials [53–56].
The complexity of the problem stems in that case from the
fact that no intrinsic energy scale is present in the pure Dirac
model (in two or three dimensions), and a minimal amount
of disorder can have drastic consequences. The effects of
disorder are on the other hand less crucial in true topological
systems when a finite energy gap is present. In that case weak

disorder has shown to have weak effects on the topological
properties, and a qualitative change occurs usually above a
disorder threshold [1,57–59]. On the basis of this scenario,
we expect the features of helical metals and insulators, with
|�| > 0, to be also quite robust in the presence of weak
disorder. It should be noted indeed that the eigenstates of
the many-body helical metals or insulators, in the absence
of disorder, preserve the helicity degrees of freedom of the
bare Hamiltonian, associated with the term �̂(k) ∝ �σ̂ · k̂.
Due to its angular dependence, it is clear that isotropic im-
purity/disorder scattering cannot give rise to complementary
terms (e.g., in 2D �

imp
x ∝ σ̂xkx , �

imp
y ∝ σ̂yky) that compete

directly with the long-range many-body self-energy. This is
for instance different from what happens to the well-known
gapped Dirac model in two dimensions, where the topological
character is encoded in a k-independent term ∝ �σ̂z, and
isotropic impurity/disorder scattering can actually give rise
to the terms �

imp
z ∝ �impσ̂z in direct competition with the

topological property of the Hamiltonian in the absence of
disorder [60]. A possible interesting scenario could be the
presence of a helicity nonconserving disorder potential which
can mix the helicity and therefore induce a band repulsion
at the crossing points in the helical metal phase. However,
a detailed study of disorder effect on these helical phases is
beyond the scope of this paper and it can be explored in a
future project.
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APPENDIX A: REAL-SPACE HAMILTONIAN

We provide here a useful representation of Hamiltonian (1)
in the real space.

To this end we first write Eq. (1) as Ĥ = ∑
k ψ̂

†
k Ĥkψ̂k

where

Ĥk = h̄v

[
σ · k + k◦σ · k

k

]
. (A1)

We can now perform the Fourier transformation into the real
space as ψ̂k = ∑

r ψ̂ (r )e−ik·r . Note that �k = ∫
dd k

(2π )d . For
d = 2, 3, we find that∫

dd k
(2π )d

eik·r ′ k
k
e−ik·r = (i∇r )

∫
dd k

(2π )d
eik·(r ′−r )

k

= 1

2πd−1
(i∇r )

1

|r ′ − r|d−1

= i
d − 1

2πd−1

r ′ − r
|r ′ − r|d+1

. (A2)

The Hamiltonian (1) can be thus written in real space
in terms of a differential equation with a nonlocal hopping
potential fulfilling the following eigenvalue problem

[σ · (−i∇) − E]ψ (r )
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= −ik◦
d − 1

2πd−1

∫
dd r ′σ · r ′ − r

|r ′ − r|d+1
ψ (r ′). (A3)

Writing now r ′ → r + s and using exp(is · kop)ψ (r ) =
ψ (r + s) with kop = −i∇, we find

Ĥ(k̂op) = h̄v

[
σ̂ · k̂op + ik◦

d − 1

2πd−1

∫
dd s

σ̂ · s
sd+1

eis·k̂op

]
.

(A4)

APPENDIX B: ANALYSIS OF
HATSUGAI-KOHMOTO’S MODEL

An exactly solvable interaction potential was introduced by
Hatsugai and Kohmoto [33] in the context of Mott-insulator
transition. This model is attracting considerable interest in the
context of Dirac materials. For example, this model has been
applied to 3D Dirac fermions where a massless gap opens
when the interaction is repulsive [30].

This model posits an isotropic long-range interaction po-
tential where the center mass of an incoming and outgoing
pair of electrons does not change in the scattering process.
This leads to the following momentum space interaction po-
tential [30,33,34]:

V̂ee = V

2

∑
k

(ψ̂†
kψ̂k − 1)2. (B1)

The above interaction potential is fully local in the momentum
space and therefore it is exactly solvable. For the case of Dirac
fermions, the total Hamiltonian can be written in the diagonal-
ized basis in terms of number operators, i.e., nk± = c

†
k±ck±

where ± corresponds to the cones with opposite helicity,

H =
∑

k

{
h̄vk(nk+ − nk−) + V

2
(nk+ + nk− − 1)2

}
. (B2)

Since this Hamiltonian is diagonal in k, we can diagonalize it
at each k point independently. Accordingly, it can be seen that
it has four eigenstates: one vacuum, |�〉 with energy Evac =
V/2, two single occupancy states, as |� (1)

k±〉 = c
†
k±|�〉 with

E
single
± = ±h̄vk, and one double occupancy state as |� (2)

k 〉 =
c
†
k+c

†
k−|�〉 with Edouble = V/2. As shown in Ref. [30], the

case of V > 0 leads to a massless gap opening (or Mott-like
transition).In this section, we follow Ref. [30] and extend the
analysis to the attractive interaction case.

For the case of h̄vk > |V |/2, the ground state is always
made by |� (1)

k−〉 states where the sign of V would not matter.
Therefore, it coincides with the noninteracting ground state
implying that the conic shape of the dispersion is kept in
the large momentum range (i.e., h̄vk > |V |/2). However, For
small momentum (h̄vk < |V |/2) the ground states of the
system for V > 0 and V < 0 are completely different. For the
case of V > 0, the ground state is built by a single occupancy
state, |� (1)

k−〉, while for the case V < 0 it is the superposition
of the vacuum and double occupancy state which forms the
ground state. Having a double occupancy state in the ground
state implies a charge density wave instability when the case
of V < 0. In the diagonal basis, the Matsubara Green’s func-

tion for two different helicities, λ = ±, is given by [30]

Gλλ = A−
iωn − λε−

+ A+
iωn − λε+

, (B3)

where ωn is a fermionic Matsubara frequency, ε± = h̄vk ±
V/2, and

A± = exp{±βε±} + 1

2 + exp{−βε−} + exp{βε+} . (B4)

We now take the zero-temperature (β = 1/kBT → ∞) limit.
For the case of V > 0 we have A− → 0 and A+ → 1 while
the case of V < 0 requires more care. For the case of h̄vk >

|V |/2, we again obtain A− → 0 and A+ → 1 at zero tem-
perature. However, for h̄vk < |V |/2 we find A± → 1/2. By
having A± factors and performing a unitary transformation
back to the original spinor basis, one can extract the self-
energy as follows:

Ĝ(iωn, k) = Ûk

[
G++(iωn, k) 0

0 G−−(iωn, k)

]
Û

†
k

= {iωn − h̄vσ̂ · k − �̂(iωn, k))}−1, (B5)

where U
†
k σ̂ · k̂Uk = σ̂z. Explicitly, we have

for d = 2: Uk = 1√
2

[
1 1

eiφ −eiφ

]
, (B6)

for d = 3: Uk =
[

cos
(

θ
2

)
sin

(
θ
2

)
eiφ sin

(
θ
2

) −eiφ cos
(

θ
2

)]. (B7)

After performing this unitary transformation for the case of
V > 0 and V < 0 and h̄vk > |V |/2, one can obtain a purely
real self-energy which only depends on k̂,

�̂(k) = V

2
σ̂ · k̂, (B8)

while for the case of V < 0 and h̄vk < |V |/2, we have

�̂(iωn, k) = V 2

4

iωn + σ̂ · k
(iωn)2 − (h̄vk)2

. (B9)

This relation contains four important messages:
(i) Self-energy is second order in V .
(ii) Self-energy depends on frequency and therefore there

is a finite imaginary part in this range of wave vector. This
implies that the above self-energy cannot support the cone
crossing paradigm as we discussed in the main text for very
long-range interaction.

(iii) It can be seen that �̂(iωn, k) = (V/2)2G0(iωn, k)
where G0(iωn, k) is the bare Green’s function of the Dirac
model.

(iv) The self-energy has a discontinuity at h̄vk = |V |/2.
Note that for the case of h̄vk = |V |/2, we have A+ = 2A− =
2/3. One can plug these factors into Eq. (B3) and use the
unitary transformation Uk to extract the self-energy. The result
(not shown here) is different from both Eqs. (B8) and (B9).

APPENDIX C: LOWEST-ORDER SELF-ENERGY FOR
GAUSSIAN INTERACTION

In this section, we present the explicit calculation of the
lowest-order many-body self-energy induced in a helical sys-
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tem in the general case of d dimensions. We use a long-range
density-density interaction with Gaussian profile as in Eq. (3).

At the lowest order we can write

�̂(k) = i

∫
dω

2π

∫
dd q

(2π )d
V (k − q )Ĝ(iω, q ), (C1)

where

V (q ) = V (2π )d
ξd/2

πd/2
e−ξq2

, (C2)

and where we can conveniently write

Ĝ(iω, q ) = − iω + h̄vσ̂ · q
ω2 + (h̄vq )2

. (C3)

The frequency integration can now be performed using the
residue method,

i

∫
dω

2π
G(iω, q ) = σ̂ · q

2q
. (C4)

We find therefore

�̂(k) = V (2π )d

2

ξd/2

πd/2

∫
dd q

(2π )d
e−ξ (k2+q2−2k·q ) σ̂ · q

q
. (C5)

Exploiting the following property of Euler’s Gamma function:

1

q
= 1

�(1/2)

∫ ∞

0
dττ−1/2e−τq2

, (C6)

we obtain thus

�̂(k) = V (2π )d

4ξ�(1/2)

ξd/2

πd/2
e−ξk2

σ̂ · ∂k

∫ ∞

0
dττ−1/2

×
∫

dd q
(2π )d

e−(ξ+τ )q2+2ξ k·q . (C7)

The Gaussian interaction can be now performed giving∫
dd q

(2π )d
e−(ξ+τ )q2+2ξ k·q = eξ 2k2/(τ+ξ )

2dπd/2(τ + ξ )d/2
. (C8)

We get

�̂(k) = V

2�(1/2)
σ̂ · k

∫ ∞

0
dττ−1/2

(
ξ

τ + ξ

)d/2+1

× e−[τξ/(τ+ξ )]k2
. (C9)

It is now convenient to define a new variable u:

u= τξ

τ + ξ
→ τ = ξu

ξ − u
→ dτ =

(
ξ

ξ − u
+ ξu

(ξ − u)2

)
du.

(C10)

Therefore, we find

�̂(k) = V

2�(1/2)
σ̂ · k

∫ ξ

0
du

(
ξu

ξ − u

)(1−d )/2

ud/2−1e−uk2
.

(C11)

This integral can be now solved analytically:∫ ξ

0
du

(
ξu

ξ − u

)(1−d )/2

ud/2−1e−uk2

= �(1/2)
√

ξ
�

(
d+1

2

)
�

(
2+d

2

)M

(
1

2
,

2 + d

2
,−ξk2

)
, (C12)

ka

ε k
/
ε 0

FIG. 5. Energy dispersion of conduction band for different val-
ues of ξ/a2 where a is an arbitrary length unit. Note that we set V =
ε0 = h̄v/a. Fermi velocity diverges when ξ → ∞ and a massless
gap emerges.

where M (a, b, z) is the Kummer function of the first kind.
Eventually, we obtain the following self-energy for a Gaussian
interaction potential:

�̂(k) = V

2

σ̂ · k
k

fd (k
√

ξ ), (C13)

where

fd (x) = �
(

d+1
2

)
�

(
2+d

2

)M

(
1

2
,
d + 2

2
,−x2

)
x. (C14)

The asymptotic limits of Eq. (C14) can be derived. We obtain

fd (x) = �
(

d+1
2

)
�

(
2+d

2

){
x − x3

d + 2
+ O(x4)

}
for x � 1,

fd (x) = 1 − d − 1

4x2
+ O

(
1

x3

)
for x � 1. (C15)

In Fig. 5 we present the energy dispersion of the con-
duction band for different values of ξ . The Fermi velocity
diverges when ξ → ∞ and a massless gap emerges. This
implies that for the case of ξ → ∞, the self-energy form as
�̂(k) = V σ̂ · k̂/2 can lead to the effective Hamiltonian given
in Eq. (1).

We perform a self-consistent analysis for the infinite-range
interaction where for the case of V (q ) = V δ(q ) the self-
consistent self-energy is given by

�̂(k) = iV

∫
dω

2π

1

iω − h̄vσ̂ · k − �̂(k)
. (C16)

The initial iteration can be calculated by performing the
following frequency integral [see Eq. (C4)]:

�̂1(k) = iV

∫
dω

2π

1

iω − h̄vσ̂ · k
= V

σ̂ · k
2k

= V

2
σ̂ · k̂.

(C17)
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The second iteration follows

�̂2(k) = iV

∫
dω

2π

1

iω − h̄vσ̂ · k − �̂1(k)

= iV

∫
dω

2π

1

iω − (h̄vk + V
2 )σ̂ · k̂

= V

2
σ̂ · k̂. (C18)

Therefore, we converge very fast to the first iteration result.
This simple analysis implies that mean-field self-energy is
the exact self-energy for the case of infinite-range interaction
potential.

APPENDIX D: LANG-FIRSOV TRANSFORMATION IN
HELICAL SYSTEMS

We consider a linear coupling between Dirac-like/Weyl-
like fermions in d = 2, 3 dimensions with a a single boson
mode at q = 0, as described by Eq. (7), that we repeat for our
convenience:

Ĥ= h̄v
∑

k

ψ̂
†
kσ̂ · kψ̂k + h̄ω◦â

†
0â0 + g

∑
k

ψ̂
†
k�̂kψ̂k(â†

0 + â0).

(D1)

We consider a canonical Lang-Firsov transformation as
Ĥ′ = eŜĤe−Ŝ , where

Ŝ = g

h̄ω0
N̂ (â†

0 − â0), (D2)

and where

N̂ =
∑

k

ψ̂
†
k�̂kψ̂k. (D3)

Exploiting the formal expansion,

eŜÔe−Ŝ =
∑

n

[Ŝ, Ô]n
n!

= Ô + [Ŝ, Ô] + 1

2!
[Ŝ, [Ŝ, Ô]]

+ 1

3!
[Ŝ, [Ŝ, [Ŝ, Ô]]] + · · · , (D4)

after few careful steps we get

ψ̂ ′
k = eŜψ̂ke

−Ŝ = X̂kψ̂k, (D5)

where

X̂k = exp

[
g

h̄ω0
�̂k(â0 − â

†
0)

]
. (D6)

In a similar way, we get for the creation field operator

ψ̂
′†
k = eŜψ̂

†
ke

−Ŝ = ψ̂
†
kX̂

†
k, (D7)

where

X̂
†
k = exp

[
− g

h̄ω0
�̂k(â0 − â

†
0)

]
. (D8)

Note that �̂
†
k = �̂k because of the hermiticity of the

Hamiltonian. This implies also that the number operator is
invariant under the transformation

n̂k = ψ̂
′†
k ψ̂ ′

k = ψ̂
†
kX̂

†
kX̂kψ̂k = ψ̂

†
kψ̂k. (D9)

For the case of a bosonic operator, we have the usual relations:

â′
0 = eŜ â0e

−Ŝ = â0 − g

h̄ω0
N̂ , (D10)

and

â
′†
0 = â

†
0 − g

h̄ω0
N̂ . (D11)

Plugging it all together, we get the final expression for the
effective Hamiltonian in the rotated base.

APPENDIX E: MEAN-FIELD SELF-ENERGY FOR
LONG-RANGE INTERACTION IN PSEUDOSPIN CHANNEL

In this appendix we provide the explicit expression of
the self-energy for the infinite-long-range interaction with
pseudospin fluctuations, as described by Eqs. (12) and (13).

The formal expression for self-energy reads

�̂(k) = i
∑

q

∫
dω

2π
V (k − q )σ̂ · n̂Ĝ(iω, q )σ̂ · n̂, (E1)

where V (q ) = −2Uδ(q ) and where we can write

Ĝ(iω, k) = − iω + h̄vσ̂ · R
ω2 + (h̄vR)2

. (E2)

For the sake of shortness, we have here defined R = γ k⊥ +
k‖. The integral over frequencies can be now evaluated in a
straightforward way, and we get

i

∫
dω

2π
Ĝ(iω, k) = σ̂ · R

2R
, (E3)

leading to the final expression:

�̂(k) = −U
(σ̂ · n̂)(σ̂ · R)(σ̂ · n̂)

R
. (E4)

Equation (E4) can be written in a more compact way by
using the algebraic relation

(σ̂ · n̂)(σ̂ · R)(σ̂ · n̂) = −σ̂ · R + 2(σ̂ · n̂)(n̂ · R), (E5)

and, using the explicit expression of R, we have

(σ̂ · n̂)(σ̂ · R)(σ̂ · n̂) = −γ σ̂ · k⊥ + σ̂ · k‖. (E6)

We end up thus with the more transparent expression for
the self-energy:

�̂(k) = U
γ σ̂ · k⊥ − σ̂ · k‖√

γ 2k2
⊥ + k2

‖
. (E7)

In a self-consistent treatment for infinite-range interaction in
a pseudospin channel we can write

(σ̂ · n̂)�̂(k)(σ̂ · n̂) = −2iU

∫
dω

2π

1

iω − h̄vσ̂ · R − �̂(k)
.

(E8)

In the first iteration, we have

(σ̂ · n̂)�̂1(k)(σ̂ · n̂) = −U σ̂ · R̂. (E9)

In the second iteration, we find

(σ̂ · n̂)�̂2(k)(σ̂ · n̂)
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=−2iU

∫
dω

2π

1

iω − h̄vσ̂ · R + U (σ̂ · n̂)σ̂ · R̂(σ̂ · n̂)

=−2iU

∫
dω

2π

1

iω − [h̄vR − U ]σ̂ · R̂ + 2U (σ̂ · n̂)( R̂ · n̂)
,

(E10)

where it converges to the first-order result, i.e., Eq. (E9), when
R · n̂ = 0 which is the case in two dimensions when n̂ = ẑ. In
a general 3D case or for an in-plane n̂ in two dimensions, there
are higher-order corrections in U .

APPENDIX F: LANG-FIRSOV TRANSFORMATION FOR
BOTH TRANSVERSE AND LONGITUDINAL

OPTICAL MODES

We consider the following Hamiltonian with two boson
modes linearly coupled to electrons:

Ĥ = h̄v
∑

k

ψ̂
†
kσ̂ · kψ̂k

+ h̄ω0â
†
0â0 + g

∑
k

ψ̂
†
k�̂aψ̂k(â†

0 + â0)

+ h̄ω0b̂
†
0b̂0 + g

∑
k

ψ̂
†
k�̂bψ̂k(b̂†0 + b̂0), (F1)

where �̂a,b = σ̂ · n̂a,b with n̂a · n̂b = 0. We first perform a
Lang-Firsov transformation to eliminate linear coupling to a0

boson mode:

Ĥ′ = eŜaĤe−Ŝa , (F2)

where

Ŝa = g

h̄ω0
(â†

0 − â0)
∑

k

ψ̂
†
k�̂aψ̂k. (F3)

It can be shown that

ψ̂ ′
k = eŜa ψ̂ke

−Ŝa = X̂aψ̂k (F4)

with

X̂a = eÂ�̂a = Î cosh(Â) + σ̂a sinh(Â). (F5)

Note that Â = [g/h̄ω0](a0 − a
†
0) and σ̂n = σ̂ · n̂. Therefore,

we find

H′ = h̄v
∑

k

ψ̂
†
kX̂

†
a σ̂ · kX̂aψ̂k

+ h̄ω0â
†
0â0 − U

[∑
k

ψ̂
†
k�̂aψ̂k

]2

+ h̄ω0b̂
†
0b̂0 + g

∑
k

ψ̂
†
kX

†
a�̂bXaψ̂k(b̂†0 + b̂0), (F6)

where U = g2/h̄ω0 and

X̂†
a σ̂ · kX̂a = cosh(2Â)σ̂k + i sinh(2Â)(k × n̂a ) · σ̂

+ [1 − cosh(2Â)]σ̂a n̂a · k. (F7)

Similarly, by considering n̂a · n̂b = 0 and n̂a × n̂b = n̂c, we
find

X̂†
a�̂bX̂a = cosh(2Â)σ̂b − i sinh(2Â)σ̂c = û(Â) · σ̂ , (F8)

where we define

û(Â) = cosh(2Â)n̂b − i sinh(2Â)n̂c. (F9)

Therefore, we obtain the following rotated Hamiltonian in
which the linear coupling to â0 mode is removed:

Ĥ′ = h̄v
∑

k

ψ̂
†
k{cosh(2Â)σ̂ · k + i sinh(2Â)(k × n̂a ) · σ̂ + [1 − cosh(2Â)]σ̂a n̂a · k}ψ̂k

+ h̄ω0â
†
0â0 − U

[ ∑
k

ψ̂
†
kσ̂aψ̂k

]2

+ h̄ω0b̂
†
0b̂0 + g(b̂†0 + b̂0)

∑
k

ψ̂
†
k û(Â) · σ̂ ψ̂k. (F10)

Now, we perform a similar transformation for the case of the b̂0 mode as follows:

Ĥ′′ = eŜbĤ′e−Ŝb , (F11)

where

Ŝb = −B̂
∑

k

ψ̂
†
k û(Â) · σ̂ ψ̂k. (F12)

Note that B̂ = [g/h̄ω0](b̂0 − b̂
†
0). The transformation implies that

ψ̂ ′
k = eŜb ψ̂ke

−Ŝb = X̂bψ̂k (F13)

with

X̂b = eB̂ û(Â)·σ̂ = cosh(B̂ )Î + sinh(B̂ )û(Â) · σ̂ . (F14)

After lengthy but straightforward calculation, we find

Ĥ′′ = h̄v
∑

k

ψ̂
†
k{cosh(2Â){cosh(2B̂ )k · σ̂ + i sinh(2B̂ )[k × û(Â)] · σ̂ } + [1 − cos(2B̂ )]k · n̂b û(Â) · σ̂
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+ i sinh(2Â){cosh(2B̂ )(k × n̂a ) · σ̂ + i sinh(2B̂ )[(k × n̂a ) × û(Â)] · σ̂ }
+ (1 − cosh(2Â)){cosh(2B̂ )σ̂a + i sinh(2B̂ )[n̂a × û(Â)] · σ̂ }n̂a · k}ψ̂k

+ h̄ω0â
†
0â0 − U

[∑
k

ψ̂
†
k{cosh(2B̂ )σ̂a + i sinh(2B̂ )[n̂a × û(Â)] · σ̂ }ψ̂k

]2

+ h̄ω0b̂
†
0b̂0 − U

[∑
k

ψ̂
†
k û(Â) · σ̂ ψ̂k

]2

. (F15)

In order to prove the above relation, we have taken advantage of the following simplification:

cosh(2Â)k · û(Â) + i sinh(2Â)(k × n̂a ) · û(Â) = k · {cosh(2Â)û(Â) + i sinh(2Â)[n̂a × û(Â)]} = k · n̂b. (F16)

Now, we perform the Holstein approximation by averaging on
the bosonic vacuum, |0〉, and it implies that

〈0| sinh(2Â)|0〉 = 〈�| sinh(2B̂ )|0〉 = 0, (F17)

〈0| cosh(2Â)|0〉 = 〈0| cosh(2B̂ )|0〉 = γ, (F18)

where γ = exp{−2(g/h̄ω0)2}. After implementing the above
approximation on Eq. (F15), we arrive at the Hamiltonian
given in Eq. (18).

APPENDIX G: LANDAU LEVELS

In this section we provide a detailed derivation of the
Landau-level spectrum in a helical metal and insulator in two
and three dimensions.

1. Landau levels in two dimensions

Considering a magnetic field perpendicular to the 2D sys-
tem, the canonical momentum Cartesian components commu-
tation relation follows

[πx, πy] = −ih̄2/�2
B, (G1)

where �B = √
h̄/eB. The ladder operator is defined as

â = �B√
2h̄

(πx − iπy ), â† = �B√
2h̄

(πx + iπy ). (G2)

Note that [â, â†] = 1. One can show that

π · π = π2
x + π2

y = h̄2

�2
B

(2n̂ + 1), (G3)

where n̂ = â†â is the number operator. Using this ladder
operator we rewrite the Hamiltonian in the presence of a
perpendicular magnetic field,

H =
√

2
h̄v

�B

[
0 f̂

f̂ † 0

]
, (G4)

in which

f̂ = â + k◦�B

{
1√

2n̂ + 1
â + â

1√
2n̂ + 1

}
. (G5)

Considering the wave function spinor and the above
Hamiltonian as follows:

ψ =
[
φ1

φ2

]
, (G6)

we find

√
2
h̄v

�B

f̂ φ2 = εnφ1, (G7)

√
2
h̄v

�B

f̂ †φ1 = εnφ2. (G8)

The eigenvalue problem reduces to the following relation:(
2
h̄2v2

�2
B

f̂ †f̂ − ε2
n

)
φ2 = 0. (G9)

We take φ2 = |n〉 with n̂|n〉 = n|n〉, a|n〉 = √
n|n − 1〉, and

â†|n〉 = √
n + 1|n + 1〉. Therefore, we find

f̂ |n〉 =
[√

n + k◦�B

{ √
n√

2n − 1
+

√
n√

2n + 1

}]
|n − 1〉,

(G10)

f̂ †|n − 1〉 =
[√

n + k◦�B

{ √
n√

2n + 1
+

√
n√

2n − 1

}]
|n〉.
(G11)

Therefore, Landau levels are given by

ε±
n = ±h̄v

√
2n

�2
B

|1 + αnk◦�B |, (G12)

where

αn = 1√
2n − 1

+ 1√
2n + 1

. (G13)

The corresponding wave vector for zero level follows

ψ0 =
[

0
|0〉

]
(G14)

and for the case n � 1, the wave vector reads

ψ±
n = 1√

2

[±sgn(1 + αnk◦�B )|n − 1〉
|n〉

]
. (G15)
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2. Landau levels in three dimensions

The Hamiltonian of a 3D helical metal/insulator in the presence of a constant magnetic filed along the z direction is given by

H =
√

2
h̄v

�B

[
0 f̂

f̂ † 0

]
+ h̄vkz

(
1 + k◦�B√

2n̂ + 1 + (kz�B )2

)
σ̂z. (G16)

Similar to the 2D case after considering the wave function spinor, we find

√
2
h̄v

�B

f̂ φ2 =
[
ε̃n − h̄vkz

(
1 + k◦�B√

2n̂ + 1 + (kz�B )2

)]
φ1, (G17)

√
2
h̄v

�B

f̂ †φ1 =
[
ε̃n + h̄vkz

(
1 + k◦�B√

2n̂ + 1 + (kz�B )2

)]
φ2. (G18)

This implies that

2
h̄2v2

�2
B

f̂ †f̂ φ2 =
⎡⎣ε̃2

n − (h̄vkz)2

(
1 + k◦�B√

2n̂ + 1 + (kz�B )2

)2
⎤⎦φ2. (G19)

We take φ2 = |n〉 and we find

2
h̄2v2n

�2
B

(1 + αnk◦�B )2 = ε̃2
n − (h̄vkz)2

(
1 + k◦�B√

2n + 1 + (kz�B )2

)2

. (G20)

The Landau levels in three dimensions are obtained as

ε̃n = ±
√

2
h̄2v2n

�2
B

(1 + αnk◦�B )2 + [m(n, kz)]2, (G21)

where

m(n, kz) = h̄vkz

(
1 + k◦�B√

2n + 1 + (kz�B )2

)
. (G22)

We can simplify the Landau-level expression as follows:

ε̃n = ±
√

ε2
n + [m(n, kz)]2. (G23)

The other wave-function component is given by

φ1 =
√

2h̄v/�B

ε̃n − m(n, kz)
f̂ |n〉. (G24)

Equivalently, we have

φ1 =
√

2h̄v/�B

ε̃n − m(n, kz)

√
n(1 + αnk◦�B )|n − 1〉. (G25)

This implies that

φ1 = εnsgn(1 + αnk◦�B )

±√
ε2
n + [m(n, kz)]2 − m(n, kz)

|n − 1〉. (G26)
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