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The quantum critical regimes (QCR) of both a two-dimensional (2D) disordered spin- 1
2 antiferromagnet and

a 2D clean dimerized quantum Heisenberg model are studied using the first-principles nonperturbative quantum
Monte Carlo simulations. In particular, the three well-known universal coefficients associated with QCR are
investigated in detail. While in our investigation we find the obtained results are consistent with the related
analytic predictions, non-negligible finite-temperature (T ) effects are observed. Moreover, a striking finding in
our study is that the numerical value for one of the universal coefficients we determine is likely to be different
significantly from the corresponding (theoretical) result(s) established in the literature. To better understand
the sources for the discrepancy observed here, apart from carrying out the associated analytic calculations not
considered previously, it will be desirable as well to conduct a comprehensive examination of the exotic features
of QCR for other disordered and clean spin systems than those investigated in this study.
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I. INTRODUCTION

The two-dimensional (2D) quantum antiferromagnets,
both with and without charge carriers, are among the most
important systems in condensed matter physics. From the
experimental perspective, these materials are related to the
high-temperature (high-Tc) cuprate superconductors. As a
result, numerous associated experiments were conducted and
the obtained data have triggered many theoretical studies of
these systems, including accurate determination of their low-
temperature properties such as the staggered magnetization
density and the spin stiffness [1–11].

Theoretically, at zero temperature and in the ordered phase,
the 2D spin- 1

2 Heisenberg antiferromagnet can be mapped to
a classical system with the effects of quantum fluctuations
being transformed into the renormalization of couplings [1,3].
This region is known as the renormalized classical regime
in the literature. When the long-range order of the system is
destroyed by the quantum fluctuations, a completely different
portrait of its ground states called the quantum disordered
regime appears. Moreover, in both regimes, as the temperature
T rises, there will be crossovers such that the system enters
yet another unique phase called the quantum critical regime
(QCR). In particular, due to the interplay between the thermal
and the quantum fluctuations, some exotic characteristics will
emerge in QCR. These special features of QCR are signaled
out by the presence of several universal behaviors among
some physical quantities of the underlying 2D spin system
[12–15].

Based on the analytic calculations using the method of
large-N expansion for the effective nonlinear sigma model of
the 2D Heisenberg antiferromagnet, three universal relations
are established (assuming the dynamic exponent z is 1):
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χu = �
c2 T , S(π, π )/χs = �T , and c/ξ = XT . Here, χu, c,

S(π, π ), χs , and ξ are the uniform susceptibility, the spin
wave velocity, the staggered structure factor, the staggered
susceptibility, and the correlation length, respectively. More-
over, the coefficients �, �, and X are universal, namely,
their numerical values are independent of any microscopic
details. For 2D dimerized Heisenberg models with spatial
anisotropy, QCR as well as the related universal coefficients
should be detectable at any values of the corresponding
tuning parameter. It is probable as well that systems with
(certain kinds of) quenched disorder may exhibit features
of QCR.

Interestingly, while universal behavior characterizing QCR
is indeed observed for several numerical studies of 2D dimer-
ized spin models, crystal clear evidence is only found at the
finite-temperature regions above the related quantum critical
points (QCPs). In other words, when the associated calcula-
tions are conducted away from QCPs, the emergence of the
exotic QCR scaling has not been established rigorously and
numerically yet [16–21]. For example, as introduced in the
previous paragraph regarding QCR, a plateau is supported to
appear in a certain region of the inverse temperature β when
S(π, π )/(χsT ) is treated as a function of β. However, such a
scenario does not occur in the relevant studies when the used
data were determined away from the corresponding QCPs.

At the moment, numerical studies related to QCR have
been focusing on clean dimerized spin systems. The explo-
ration of whether features of QCR, in particular the three
universal quantities mentioned previously, exist for models
with quenched disorder have been examined only implicitly,
not systematically. Motivated by this, here we simulate a
2D spin- 1

2 Heisenberg model on the square lattice with a
kind of (quenched) disorder using the quantum Monte Carlo
(QMC) calculations. The employed disorder distribution is
based on the so-called configurational disorder introduced in
Ref. [22]. Apart from this, the 2D clean dimerized plaquette

2469-9950/2018/98(24)/245111(10) 245111-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.245111&domain=pdf&date_stamp=2018-12-10
https://doi.org/10.1103/PhysRevB.98.245111


D.-R. TAN AND F.-J. JIANG PHYSICAL REVIEW B 98, 245111 (2018)

quantum spin system is investigated as well for comparison
and clarification.

Remarkably, for both the considered disordered and clean
models, features of QCR do emerge at their corresponding
QCPs. Furthermore, non-negligible T dependence for the
universal quantities of QCR, which was overlooked before, is
found in our investigation. The most striking result obtained
here is that the numerical values of the universal coefficient
� determined in our study for both the considered models are
likely to deviate significantly from those calculated previously
in Refs. [15,18,19,21]. The evidence provided here for the
described variation regarding the numerical value of � is con-
vincing. This finding of ours is consistent with that obtained in
Ref. [23]. Specifically, in Ref. [23] the � calculated through
a detailed study of a 2D clean bilayer quantum spin system
differs considerably from the known numerical results in the
literature. To better understand the sources of the discrepancy
found here, apart from carrying out the analytic calculations
associated with corrections not taken into account previously,
a more thorough exploration of other disordered and clean
spin models than those studied here is desirable.

The rest of the paper is organized as follows. After the
Introduction, the considered models as well as the required
physical quantities for investigating the features of QCR are
described. A detailed analysis, focusing on the three well-
known universal coefficients of QCR, is presented then. In
particular, the numerical evidence for the discrepancy men-
tioned above is given. Finally, a section is devoted to conclude
our study shown here.

II. MICROSCOPIC MODEL AND OBSERVABLES

The 2D spin- 1
2 system with a quenched disorder and the 2D

clean quantum dimerized plaquette Heisenberg model studied
here are given by the same form of Hamilton operator

H =
∑
〈ij〉

Jij
�Si · �Sj +

∑
〈i ′j ′〉

J ′
i ′j ′ �Si · �Sj , (1)

where Jij and J ′
i ′j ′ are the antiferromagnetic couplings

(bonds) connecting nearest-neighbor spins 〈ij 〉 and 〈i ′j ′〉, re-
spectively, and �Si is the spin- 1

2 operator at site i. The quenched
disorder considered in this investigation is based on the idea
of configurational disorder [22]. Specifically, in our simula-
tions for the disordered model, the probabilities of putting
a pair of J ′ bonds vertically and horizontally in a plaquette
consisting of two by two spins are both 0.5. (We will still use
the term configurational disorder for this employed disorder
distribution in the rest of the paper.) Figure 1 demonstrates
the studied disordered and clean models. Here, we use the
convention that the couplings J ′ and J satisfy J ′ > J . As a
result, each of the considered system will undergo a quantum
phase transition once the ratio J ′/J exceeds a particular value
called the critical point. These special points in the associated
parameter spaces are commonly denoted by (J ′/J )c in the
literature.

To examine the well-known universal relations of QCR,
particularly to understand whether these relations appear for
the considered disordered system, the staggered structure
factor S(π, π,L), the uniform and staggered susceptibili-
ties (χu and χs), the spin wave velocity c, as well as the

J

J’

FIG. 1. The model with configurational disorder (top panel) and
the clean dimerized plaquette model (bottom panel) considered in
this study.

correlation length ξ are measured. The staggered structure
factor S(π, π,L) on a finite lattice with a linear box size L

is defined by

S(π, π,L) = 3L2
〈(
mz

s

)2〉
, (2)

where mz
s = 1

L2

∑
i (−1)ii+i2Sz

i and the summation is over all
sites. The uniform susceptibility χu and staggered susceptibil-
ity χs take the forms

χu = β

L2

〈(∑
i

Si

)2〉
(3)

and

χs = 3L2
∫ β

0

〈
mz

s (τ )mz
s (0)

〉
dτ, (4)

respectively. The quantity β appearing above is the inverse
temperature. In addition, the correlation length ξ is ex-
pressed as

ξ = L1

4π

√
S(π, π )

S(π + 2π/L1, π )
− 1

+ L2

4π

√
S(π, π )

S(π, π + 2π/L2)
− 1, (5)

where the quantities S(π + 2π/L1, π ) and S(π, π + 2π/L2)
are the Fourier modes with the second largest magnitude.
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Finally, the spin wave velocities c for both the investigated
models are calculated through the temporal and spatial wind-
ing numbers squared (〈W 2

t 〉 and 〈W 2
i 〉 with i ∈ {1, 2}).

We would also like to point out that while the same nota-
tions are used here for both the observables of the two studied
spin systems, whenever a physical quantity associated with
the disordered model is presented, it is obtained by averaging
over the generated configurations of randomness.

III. NUMERICAL RESULTS

To study the features of QCR associated with the consid-
ered disordered and clean models, we have performed large-
scale QMC simulations using the stochastic series expansion
(SSE) algorithm with very efficient operator-loop update [24].
For the disordered quantum spin system, while most of the
corresponding results presented here are obtained by aver-
aging over several hundred realizations of randomness, the
outcomes related to the spin wave velocity are calculated
using (a) few thousand disorder configurations.

For a given J ′/J and for the corresponding results of finite
T , a generated configuration of randomness is employed for
the calculations associated with several sequential values of
β. Furthermore, for (almost) every considered temperature at
least 5000 Monte Carlo (MC) sweeps as well as the step of
adjusting cutoff in the SSE algorithm are carried out for both
the processes of thermalization and measurement. Therefore,
the correlations among the obtained data are anticipated to be
mild. In particular, the first few data in a Monte Carlo sim-
ulation are disregarded for the disorder average. As a result,
the potential issue of thermalization in studies of disordered
systems is under control. Indeed, the outcomes resulting from
several additional calculations using 2500 MC sweeps for the
thermalization agree remarkably well with those explicitly
shown here.

We would also like to emphasize the fact that the uncertain-
ties of the calculated observables should be dominated by the
number of configurations used for the disorder average. This
is because for each considered set of parameter, the number
of MC sweeps employed for the related simulations is much
larger than that of the associated configurations generated.
Still, the errors for the obtained quantities are estimated with
conservation so that the statistical uncertainties resulting from
the MC simulations are not overlooked. In addition, most (a
few) of the results presented here are obtained on L = 256
(L > 256) lattices. For comparison, some outcomes deter-
mined with smaller box sizes are shown as well. Finally, it
should be pointed out that in this study, whenever a presented
numerical result is obtained by fitting the associated data, the
quoted number is based on the fits that satisfy χ2/DOF < 2.

To carry out a comprehensive (and detailed as well) study
of QCR for the investigated models, ideally the calculations
should be conducted at the associated QCPs. In theory, close
to a second-order quantum phase transition and for various
L and (J ′/J ), if one treats the results of data collapse
of Q2/(1 + aL−ω ) as functions of [(j − jc )/jc]L1/ν , then
a universal smooth curve should emerge. Here, j = J ′/J ,
jc = (J ′/J )c, ν and ω are the correlation length and the
confluent critical exponents, respectively, and a is some con-

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

[(j-jc)/jc]L
1/ν
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Q
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1+
aL

-ω
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L = 16
L = 20
L = 24
L = 32
L = 40

FIG. 2. Q2/(1 + aL−ω ) (of the studied disordered model) as
functions of [(j − jc )/jc]L1/ν for various L and J ′/J . Here, j and
jc are defined as j = J ′/J and jc = (J ′/J )c, respectively. While
the numerical values of the coefficients a = −0.5, ω = 1.0, and
jc = 1.990 are taken directly from the outcomes determined in
Ref. [22], the ν used in producing the universal curve is its theoretical
prediction ν = 0.7115.

stant. Moreover, Q2 is the second Binder ratio which is
defined by Q2 = 〈(mz

s )4〉
〈(mz

s )2〉2 . Interestingly, the zero-temperature
data we calculate with the β-doubling scheme [25] are fully
consistent with the outcomes reached in Ref. [22]. Indeed,
using a = −0.5, ω = 1.0, jc = 1.990 (these three results are
taken directly from Ref. [22]), ν = 0.7115 (the established
value for this exponent), as well as the data obtained here,
we have reproduced the associated universal curve of Q2 just
like the one shown in Ref. [22] (see Fig. 2). With a fixed
ν = 0.7115, we additionally fit the observables Q2 and ρsL

[26] to their expected scaling formulas near QCP. The (J ′/J )c
determined from these fits associated with Q2 and ρsL are
both given by (J ′/J )c = 1.990(1). This strongly suggests that
taking 1.990(1) as the QCP for the investigated disordered
model should be beyond any doubt.

While it is desirable to simulate larger lattices (and obtain
more data points) in order to have a better estimation of
(J ′/J )c, as we will demonstrate later, with the accuracy of
the (J ′/J )c employed here, namely (J ′/J )c = 1.990(1), we
are able to obtain unambiguous conclusions and results re-
garding the considered universal coefficients. Apart from this,
as will be shown as well in the relevant section, the numerical
value of � estimated from the studied clean plaquette model,
which has a precisely determined critical point (J ′/J )c =
1.8230(2), is in nice agreement with that of the investigated
disordered system (see Figs. 8 and 11). This suggests that the
critical point (J ′/J )c = 1.990(1) used here for the disordered
model is accurate.

The fact that the (J ′/J )c resulting from Q2 and ρsL

agree quantitatively with each other indicates that the dynamic
exponent z related to the considered disordered system is 1.
We will demonstrate shortly that this is truly the case. Finally,
the QCP of the clean plaquette model has been calculated in
Ref. [27] and is given by (J ′/J )c = 1.8230(2).
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A. Determination of spin wave velocity c

The spin wave velocities c at the critical points for the
studied models are calculated using the method of winding
numbers squared proposed in Refs. [23,28]. Specifically, for
a fixed box size L (and a fixed J ′/J ), the value of β

is adjusted in the calculations so that the temporal wind-
ing number squared 〈W 2

t 〉 agrees quantitatively with that
of the averaged spatial winding numbers squared 〈W 2〉 =
1
2

∑
i=1,2〈W 2

i 〉. Under such a condition, the corresponding
spin wave velocity c(L, J ′/J ) is determined by the equation
c(L, J ′/J ) = L/β
, where β
 is the inverse temperature for
which the condition described above regarding the winding
numbers squared is fulfilled. Since this method is valid only
when the long-range antiferromagnetic order is present in the
system, the relevant simulations are done at J ′/J = 1.988 for
the disordered system [which has (J ′/J )c = 1.990(1) [22]].
For the clean plaquette model, calculations at several selected
J ′/J < (J ′/J )c = 1.8230(2), as well as fits and interpola-
tions, are conducted in order to obtained the bulk c at the
associated critical point.

1. Spin wave velocity of the disordered system

The 〈W 2
t 〉 and 〈W 2〉 as functions of β for the studied

disordered system are shown in Fig. 3. The calculations are
done at J ′/J = 1.988 and the outcomes presented in the top
and bottom panels of the figure are obtained with L = 24
and 48, respectively. The corresponding values of c estimated
conservatively from these two simulated results match each
other nicely. Indeed, while the calculated result of c for L =
24 is given by c = 1.934(5)J , the c determined from the data
of L = 48 is found to be c = 1.931(9)J . We have additionally
performed simulations at J ′/J = 1.986 with L = 48. The
outcome of c from the simulations associated with J ′/J =
1.986 agrees remarkably well with that of J ′/J = 1.988.
Therefore, it should be accurate to use c = 1.931(9)J as the
bulk value of c right at the critical point.

2. Spin wave velocity of the clean plaquette model

To determine the bulk c at the critical point of the 2D
clean plaquette model, a more thorough calculation is per-
formed. In particular, we carry out simulations with various
box sizes L at several selected J ′/J � 1.8227 close to the
critical point (J ′/J )c = 1.8230(2). The obtained results are
shown in Fig. 4. The bulk c(J ′/J ) of each considered J ′/J is
determined by applying the following two Ansätze

a0 + a1/L
2, (6)

b0 + b1/L
2 + b2/L

3 (7)

to fit the corresponding data. This strategy of calculating the
bulk values of c is inspired by the results demonstrated in
Ref. [23]. The uncertainty for the bulk c of every used J ′/J
is the standard deviation deriving from considering Gaussian
noises in the associated weighted χ -squared fits. With the out-
comes from the fits employing Ansatz (7), the c corresponding
to (J/′J )c is estimated by interpolation based on a linear fit of
the form a(J ′/J ) + b. With such a procedure, the spin wave
velocity c at the critical point is found to be c = 2.163(4)J .
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FIG. 3. The temporal and spatial winding numbers squared as
functions of β for the studied disordered model. The simulations are
conducted at J ′/J = 1.988 and the results shown in the top and the
bottom panels are determined with L = 24 and 48, respectively.

Here, the quoted uncertainty is not determined directly from
the interpolation, but is calculated with conservation assuming
that for (J ′/J )c a similar statistic as those of the J ′/J shown
in Fig. 4 is reached.

B. Universal coefficient �

Theoretically, the universal coefficient � is given by χu =
(�/c2)T d/z−1 at the critical point, where d is dimensionality
of the system (which is 2 here) and z is the associated dynamic
exponent. The z corresponding to the considered disordered
model is estimated to be 1 in Ref. [22].

1. Results of disordered system

The χuc
2 [determined at (J ′/J )c = 1.990 and on L = 256

lattices] as a function of T for the studied 2D spin- 1
2 system

with configurational disorder is depicted in Fig. 5. Apart
from the results obtained at the critical point (J ′/J )c, we
have additionally performed simulations at J ′/J = 1.989 and
1.991 with L = 256 so that for the considered observables
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FIG. 4. The estimated c as functions of 1/L for several selected
J ′/J of the 2D plaquette model.

the corresponding systematic errors due to the uncertainty of
(J ′/J )c can be investigated.

The fits carried out here for the determination of � are done
by fitting the data of χuc

2 to both the Ansätze

a + b T 2/z−1, (8)

b1 T 2/z1−1 (9)

with a, b, b1, z, and z1 left as the fitting parameters. With
these two formulas, the numerical values of � are just the
parameters b and b1 calculated from the fits. In the following,
z and b, instead of z1 and b1, will be used whenever the results
from the fits employing the second Ansatz are discussed, if no
confusion arises.

The obtained results of z and b for all the three considered
values of J ′/J are demonstrated in Figs. 6 (using the first
Ansatz) and 7 (using the second Ansatz). The horizontal (x)
axes in these figures stand for the minimum values of β used
in the fits. Interestingly, as one can see from the figures, most
of the determined values of z are slightly above 1. Moreover,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T/J

0

0.05

0.1

0.15

0.2

0.25

0.3

χ uc2 /J

FIG. 5. χuc
2 as a function of T for the considered disordered

model. The data are obtained at the critical point (J ′/J )c = 1.990
with L = 256.
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FIG. 6. The results of z (top panel) and b (�, bottom panel) for
the considered disordered system. These outcomes are obtained from
the fits using the Ansatz a + b T 2/z−1. The horizontal (x) axes stand
for the minimum values of β used in the fits. The solid lines in both
panels are the corresponding theoretical predictions.

the calculated b are larger than 0.271 85 (solid horizontal lines
in the bottom panels of both Figs. 6 and 7). Although b is
approaching 0.271 85 when more data determined at high-
temperature region are excluded in the associated fits using the
first Ansatz, the majority of the obtained results of b are well
above the corresponding theoretical prediction � = 0.271 85.
Similar to the analysis for the spin wave velocity c, here the
errors shown in the figures are the standard deviations result-
ing from considering Gaussian noises in the related weighted
χ -squared fits. While not presented here, the a determined
from the fits are either with small magnitude (of the order
10−3) or are statistically identical to zero.

It is intriguing to notice that when the first Ansatz is
considered, as the magnitude of the determined z increases
(this occurs when more and more data calculated at high
temperatures are excluded in the fits), the value of b obtained
comes toward 0.271 85. In other words, z and � are corre-
lated. Since the difference between the z found here and that
estimated in Ref. [22] is only at few percent level, it is unlikely
that such deviations are due to the fact that the z calculated
here for the studied disordered model is a new one other than
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FIG. 7. The results of z (top panel) and b (�, bottom panel) for
the considered disordered system. These outcomes are obtained from
the fits using the Ansatz b T 2/z−1. The horizontal (x) axes stand for
the minimum values of β used in the fits. The solid lines in both
panels are the corresponding theoretical predictions.

that found in [22]. Instead, the observed discrepancy should be
treated as a result of not taking some corrections into account
in the analysis. Indeed, to the best of our knowledge, we are
not aware of other formulas aside from those employed here
for the fits. As we will demonstrate later, such a scenario for z

and � occurs for the clean plaquette model as well.
Since z = 1 is beyond doubt for the considered disordered

system, to accurately estimate the numerical value of �, par-
ticularly to understand its dependence on (finite) temperature,
it is helpful to investigate the quantity χuc

2/T as a function of
the inverse temperature β. Such a study is inspired by the fact
that according to the relevant theoretical prediction, at (J ′/J )c
a flat plateau should appear if the data of χuc

2/T are plotted
against β since z = 1. By considering the same relations, i.e..
χuc

2/T versus β, for other values of J ′/J near (J ′/J )c, one
can additionally estimate the associated uncertainty of � as
well.

Remarkably, a very flat plateau indeed emerges when
χuc

2/T is treated as a function of β (see Fig. 8). While it is
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βJ
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FIG. 8. χuc
2/T as functions of β for the studied disordered

model. The data are calculated at the critical point (J ′/J )c = 1.990
with L = 120 and 256. The horizontal solid line is the theoretical
prediction ∼0.271 85.

clear that the quantity χuc
2/T receives mild corrections from

terms taking some forms in T , the quality of flatness shown
in Fig. 8 strongly indicates that the value of the universal
coefficient � is larger than 0.271 85 (which is the horizontal
line in Fig. 8). The L = 120 data of χuc

2/T obtained at
(J ′/J )c are demonstrated in Fig. 8 as well. The quantitative
agreement between the χuc

2/T data of L = 120 and 256 rules
out the possibility that the deviations of � and z from their
expected values are due to finite-size effects. This strategy of
confirming the obtained results are the bulk ones is as effective
as other methods such as carrying out a careful finite-size
analysis.

Aside from the results associated with (J ′/J )c, the χuc
2/T

as functions of β for both J ′/J = 1.989 and 1.991 are shown
in Fig. 9. As can been seen from the figure, flat plateaus
well above 0.271 85 show up as well. The results presented
in Fig. 9 exclude the scenario that the observed discrepancy is
due to the uncertainty of the critical point.
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FIG. 9. χuc
2/T as functions of β for the studied disordered

model. The data are calculated at J ′/J = 1.991 and 1.989 with L =
256. The horizontal solid line is the theoretical prediction ∼0.271 85.
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FIG. 10. The results of z for the clean plaquette model. These
outcomes are obtained from the fits using the Ansätze a + b T 2/z−1

(top panel) and b1 T 2/z1−1 (bottom panel). The horizontal (x) axes
stand for the minimum values of β used in the fits.

2. Results of clean system

While it is well established that z = 1 for the considered
2D plaquette model, it will be useful to conduct a calculation
like that done in the previous subsection to determine the
dynamic exponent z associated with the studied clean sys-
tem. Interestingly, a scenario like the one of the investigated
disordered model is observed. Specifically, the values of z

obtained here are slightly above the theoretical prediction
z = 1 (see Fig. 10). Just like what has been argued previously,
since the deviations found are only at few percent level, these
deviations should be treated as consequences resulting from
(minor) corrections not taken into account in the analysis.

Similar to the analysis done previously, we have also inves-
tigated the size-convergence quantity χuc

2/T as a function
of β for the 2D clean dimerized plaquette model [29]. The
considered data are determined at the expected critical point
(J ′/J )c = 1.8230, as well as at J ′/J = 1.8228, 1.8232 in
order to take into account the effects from the uncertainties
of (J ′/J )c. The resulting outcomes are depicted in Figs. 11
and 12.

Interestingly, while moderate T dependence for χuc
2/T

definitely appears, as shown in the figures, one sees clearly

0 5 10 15 20

βJ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

χ uc2 /T

FIG. 11. Size-convergence χuc
2/T as a function of β for the

studied 2D dimerized plaquette model. The data are calculated at the
critical point (J ′/J )c = 1.8230 and the horizontal solid line is the
theoretical prediction ∼0.271 85.

that flat plateaus emerge as well. Furthermore, by comparing
the results presented in Figs. 8, 9, 11, and 12, the values of
χuc/T 2 for which all the plateaus take place match each other
very well and are statistically above 0.271 85.

In summary, the outcome obtained here that � is quan-
titatively different from its theoretical prediction 0.271 85 is
convincing. In particular, based on the results of fits with a
fixed z = 1 [in the formula (8)], the numerical value of �

we estimate conservatively is about 0.306(10). A (slightly)
larger number is reached if one uses the outcomes calculated
by considering only the lower-temperature data for the fits.
In addition to this numerical result of � [� = 0.306(10)]
determined from the fits, a reasonable estimation for �,
which is � ∼ 0.32(1), can arise from investigating the plateau
behavior of χuc

2/T (as functions β). Both approaches lead to
values of � that are statistically different from 0.271 85. To
arrive at a more accurate determination of � requires better
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0.15

0.2
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0.3

0.35
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J’/J = 1.8228
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FIG. 12. Size-convergence χuc
2/T as functions of β for the

studied 2D dimerized plaquette model. The data are calculated at
J ′/J = 1.8228 and 1.8232. The horizontal solid line is the theoreti-
cal prediction ∼0.271 85.
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FIG. 13. S(π, π )/(χsT ) as functions of β for the disordered
model (top panel) and the clean dimerized system (bottom panel)
investigated in this study. In both panels, data sets are determined at
the corresponding critical points and the horizontal solid lines are the
theoretical predictions 1.09. The data of L = 120 and 256 shown in
the top panel indicate that most likely the outcomes associated with
L = 256 are the bulk ones. Most of the results shown in the bottom
panel are from the data of simulations with L = 256.

understanding of its analytic expression. This is beyond the
scope of our study presented here.

For the analysis done in the following (sub)sections, the
assumption z = 1 will be employed.

C. Universal coefficient �

Theoretically, a calculation with z = 1 for the O(N ) non-
linear sigma model using the large-N expansion predicts that
up to the order of 1/N , the quantity �, which is defined as
S(π, π )/(χsT ), is a universal number given by 1.09 for N =
3 (which is the case here). The observables S(π, π )/(χsT )
as functions of β for the considered models are shown in
Fig. 13. In both panels of Fig. 13 the solid lines represent
the theoretical value 1.09. In addition, an uncertainty of few
percent (of 1.09, dashed lines) is included in both panels
as well. The results shown in Fig. 13 imply that although
non-negligible T dependence for S(π, π )/(χsT ) does appear
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S
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)

J’/J = 1.8, L = 96
J’/J = 1.8, L = 196

FIG. 14. S(π, π )/(χsT ) as functions of β for the studied disor-
dered model with J ′/J = 1.2 (top panel) and J ′/J = 1.8 (bottom
panel). In both panels, the horizontal solid lines are the theoretical
prediction 1.09. These results are calculated using 8000 (4000) MC
sweeps for the thermalization (measurement).

for these models, the Monte Carlo data agree very well with
the associated theoretical predictions.

Most of the data shown in the bottom panel of Fig. 13,
which are associated with the clean plaquette model, are deter-
mined from the results obtained on L = 256 lattices. For this
model, we have performed simulations with L = 256 and 512
for the largest value of β considered (β = 20). The agreement
between the results of S(π, π )/(χsT ) obtained from these
two calculations is remarkably good (the difference is only
around one per mille). Therefore, the conclusion that our
Monte Carlo data are consistent with the theoretical prediction
is unquestionable.

Figure 13 also indicates that the data of S(π, π )/(χsT ) of
the considered two models approach 1.0 (dashed-dotted lines
in both panels) at the regions of high temperature. This is
consistent with the associated analytic calculations.

For the disordered model, in addition to the simula-
tions performed close to the critical point, we have carried
out calculations with J ′/J = 1.2 and 1.8. The results of
S(π, π )/(χsT ) for J ′/J = 1.2 and 1.8 are demonstrated in
Fig. 14. As shown in the figure, no plateaus appear for these
two newly obtained data sets of S(π, π )/(χsT ). This implies
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FIG. 15. c/(T ξ ) as functions of β for the disordered model
investigated in this study. The data sets are determined at the cor-
responding critical point (J ′/J )c = 1.990 and the horizontal solid
line is the theoretical prediction 1.04.

that the expected QCR behavior of this quantity does not
show up when the calculations are conducted away from the
associated QCP. This observed phenomenon is in agreement
with the outcome determined in [19]. It is also interesting to
find that at both the regions of high and low temperatures, the
corresponding results of � approach 1.0 (dashed-dotted lines
in both panels of Fig. 14). This is again consistent with the
expected theoretical prediction.

D. Universal coefficient X

The final universal coefficient studied here is associated
with c/(T ξ ) and is predicted to be 1.04 in theory. For the
investigated disordered system, the associated L = 120 and
256 data of c/(T ξ ) as functions of β are presented in Fig. 15.
In the figure besides the data of c/(T ξ ), the related theoretical
value and few percent error for it are also shown as the solid
and dashed lines, respectively. Similar to the scenario found in
our analysis of S(π, π )/(χsT ), a noticeable dependence on T

for the quantity c/(ξT ) is observed. In addition, while the bulk
results of the universal coefficient X are reached only for those
with β < 7.5, it is likely that for β ∈ [7.5, 9.0) the associated
X are the bulk ones as well. Considering the fact that there
is a broad range of β where the determined X are within
the theoretical predicted value with a reasonable estimated
error for it, the claim that our results shown in Fig. 15 are
consistent with the outcomes conducted in Refs. [12,13,15]
is unquestionable. While not shown here, a similar situation
occurs when c/(ξT ) of the clean dimerized plaquette model
is considered. In particular, analogous finite-size and finite-
temperature effects as those appearing in Fig. 15 are found.

IV. DISCUSSIONS AND CONCLUSIONS

Using the first-principles nonperturbative QMC simula-
tions, we have investigated the exotic characteristics of QCR
related to both a 2D quantum spin system with configurational

disorder and a 2D clean dimerized spin- 1
2 Heisenberg model.

These unique properties of the considered models result from
the interplay of the thermal and the quantum fluctuations. We
first reconfirm that the dynamic exponent z for the disordered
model studied here is 1. With this result, as well as the fact
that z = 1 for the clean dimerized plaquette model, the three
universal coefficients associated with QCR, namely, �, �,
and X are calculated. We find our Monte Carlo data of both
the disordered and the clean systems are consistent with the
analytic results based on the large-N calculations of the O(N )
nonlinear sigma model. It is interesting to notice that while
quantum systems with certain kinds of quenched disorder,
such as the configurational disorder employed in this study,
violate the Harris criterion [22,30–33], 2D disordered spin- 1

2
models with bond dilution fulfill this principle [25,34–37].
The results presented here seem to imply the scenario that
disordered systems which violate the Harris criterion conform
to the theoretical predictions of QCR. It will be compelling
to investigate whether for models that satisfy the Harris cri-
terion, the corresponding values of the three universal coef-
ficients of QCR remain the same as the known ones in the
literature.

While the numerical data obtained from the QMC simula-
tions are in good agreement with the corresponding analytic
predictions, non-negligible dependence on T is observed for
these three universal coefficients. Furthermore, for both the
considered models, the estimated values of �, which are
related to χuc

2, are different statistically from the analytic
and numerical ones established in the literature (except those
determined in Ref. [23]). The difference between the values
of � estimated here [� = 0.306(10) or � = 0.32(1)] and the
theoretical result previously known (� ∼ 0.27) is more than
10 percent, which cannot be accounted for by the potential
systematic uncertainties resulting from the calculations of c

conducted in this study. Among the relevant studies associated
with �, only the dedicated work of Ref. [23] agrees with ours.
It is also interesting to notice that the � estimated in Ref. [23]
is somewhat (slightly) larger than what has been calculated
here. We attribute this to the fact that data with temperatures
(lattice sizes) lower (larger) than ours were used in that work
for the related analysis. Indeed, in our investigation with a
fixed z = 1, the magnitude of � is increasing when more and
more data of higher T are excluded in the fits. Aside from that,
finite-temperature effect clearly shows up for χuc

2/T , as can
been seen in Figs. 8 and 11. Such an effect to some extent will
influence the determination of � if the formula χuc

2 = �T is
used to extract the value of �.

It is intriguing that while the analytic outcome of � in-
cluding both the leading and subleading contributions deviates
significantly from its numerical estimations obtained in this
study and in Ref. [23], the theoretical prediction of � by
considering only the leading term is in better agreement with
our results and that of Ref. [23]. In summary, the numerical
evidence reached here for the described discrepancy is quite
convincing. A detailed study of χu for the clean bilayer
spin- 1

2 model demonstrates such a deviation as well [23]. To
shed light on this deviation, aside from conducting analytic
studies associated with corrections not considered before, it
will be desirable as well to simulate other disordered and clean
dimerized models other than those investigated here.
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